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Abstract—Recent results in evolutionary robotics show that
explicitly encouraging the behavioral diversity of candidate solu-
tions drastically improves the convergence of many experiments.
The performance of this technique depends, however, on the
choice of a behavioral similarity measure (BSM). Here we propose
that the experimenter does not actually need to choose: provided
that several similarity measures are conceivable, using them
all could lead to better results than choosing a single one.
Values computed by several BSM can be averaged, which is
computationally expensive because it requires the computation
of all the BSM at each generation, or randomly switched at
a user-chosen frequency, which is a cheaper alternative. We
compare these two approaches in two experimental setups – a
ball collecting task and hexapod locomotion – with five different
BSMs. Results show that (1) using several BSM in a single run
increases the performance while avoiding the need to choose the
most appropriate BSM and (2) switching between BSMs leads to
better results than taking the mean behavioral diversity, while
requiring less computational power.

I. INTRODUCTION

Evolutionary Robotics (ER) aims at designing robot con-
trollers and, optionally, morphologies to reach a particular
behavior whose efficiency is described by a fitness function [9],
[8]. This function is then optimized thanks to an Evolutionary
Algorithm (EA) that explores a search space of parameters, e.g.
Rn, or structures, e.g. neural networks topologies. Discovering
interesting solutions implies to balance exploration – to avoid
local optima – and exploitation – to get the nearest optimal
solution.

Preserving diversity in the population is known to be
an efficient way to deal with a natural tendency of EAs to
favor exploitation. In classic EA, this diversity preservation
in computed in the space of genotypes, phenotypes or fitness
values [10], [16]. In ER, it has been widely observed that many
genotypes and phenotypes lead to similar behaviors, whereas
a very small difference in a genotype can substantially modify
the behavior of the robot[20]. Since ER is ultimately seeking
behaviors, the diversity that appears to matter is the diversity
in behavior space. In accordance with this intuition, explicitly
encouraging diversity in this space revealed to drastically
improve convergence of ER experiments in multiple contexts
[11], [19], [18], [20].

Behavioral diversity methods foster diversity by reward-
ing individuals whose behavior is different from the rest of
the population. The similarity is computed using behavior
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Fig. 1. Main proposition. Encouraging behavioral diversity drastically
improves the convergence of evolutionary robotics experiments[20], but it
requires defining a Behavior Similarity Measure (BSM). Using many BSM
avoids the need to choose and leads to similar or better convergence rates.

similarity measures (BSM) that can be problem-specific [18],
[15], [20], [21] or designed to be used on a large class of
robotic tasks [7], [25], [21], [11], [20]. Empirical comparisons
between BSM have been made in several papers [11], [20], but,
although different BSM yielded different results, no measure
has proved to be ”the one” for every contexts. The present
work investigates another approach: if the best BSM is not
known, is it possible to efficiently exploit all the different BSM
an experimenter can think of without having to choose among
them?

Besides removing the need to choose, relying on several
BSM instead of one may also increase the impact of behavioral
diversity. A BSM is not perfect when it fails to recognize new
behaviors that could substantially increase the best fitness on
the long term. Using several different BSM may then lead to
a better exploration as their criteria for recognizing a behavior
as new and different are not the same. More behaviors will
then be recognized as new along a run, leading to a better
exploration.

How to take into account several BSM? Two different
approaches have been compared. In the first approach, the
behavioral diversity objective is simply the average value of the
behavioral diversities associated to each BSM1. In the second

1Each behavioral diversity is normalized by its maximum value in the
current population.



approach, one BSM is used at a time. At a given a period, a
new BSM is randomly chosen out of the available BSM and
used to compute the behavioral diversity. This second approach
decreases the computational load as only one BSM is used at
a time. The sensitivity of the results to the switching period is
studied.

Hence, this article aims to validate the following hypothe-
ses:

1) using several BSM instead of a single one doesn’t
decrease performance;

2) a unique BSM does not capture and appropriately
reward every original behavior;

3) using several BSM gives statistically more chance to
original behaviors to be rewarded during an evolu-
tionary run.

Using several BSM may seem at first sight to be a
practical limitation of this approach compared to single BSM
approaches because it requires more work to prepare an experi-
ment. In practice it reveals to be easy to find different BSM and
quite difficult to choose the one to be used. The only way to
do it now is to make some preliminary experiments to evaluate
the relative efficiency of each candidate BSM. Not having to
choose between different alternatives therefore substantially
decreases the amount of preparation for an experiment.

Two setups have been considered: a ball collecting task
[21] and an hexapod walking task.

II. RELATED WORK

While most EA have diversity preserving mechanisms
based on the genotype or fitness space, the introduction in ER
of a behavior space, may be exploited in this context to foster
exploration. Three different approaches dedicated to ER can
be identified: novelty search [15], behavior speciation [25] and
behavioral diversity [20]. Novelty search aims at abandoning
any task-related objective to reward behavioral novelty only
[15]. Behavior speciation subdivides the population in several
sub-populations on the basis of individuals behavior, thus
replacing a global competition by a local competition between
individuals with similar behaviors [25]. Lastly, behavioral di-
versity defines an helper objective that evaluates the difference
in terms of behavior of an individual relative to the current
population. This objective is then maximized in a multi-
objective scheme together with goal related objectives [20].
All these methods rely on comparisons of behaviors.

How to compare behaviors? A robot behavior results
from its interaction with the environment. Different behavior
descriptors can be used:

• robot trajectory [7], [25], [21]

• robot perceptions and/or actions [11], [20]

• adhoc measures depending on the problem to solve
[18], [15], [20], [21].

Once such descriptors are available, and depending on their
features, a similarity can be computed with different kinds of
distances, like for instance an Euclidean distance [18], [15], a
hamming distance [11], [7], [20] or an edit distance [25], [21].

Few comparisons have been performed on the choice of the
descriptor and distance to use [11], [7], [20]. They highlighted
that this choice has a significant impact on the performance and
that performing a hamming distance on a temporal sequence of
discretized robot actions – and eventually perceptions – gives
an overall good performance even if has failed in several setups
[20].

Some features of BSM, like, for instance, the adequacy to
human classification [7], were also investigated in an attempt
to characterize efficient BSM, but such studies did not lead
to any clear conclusion yet. Up to now, it is therefore hard
to know whether a single BSM will outperform other BSM
in any context or if some method can be built to design an
efficient, if not optimal, BSM for a particular problem. The
rationale of the present work is different: if several BSM are
known and no criteria to decide which one is the best, is it
possible to use all of them instead of just one?

III. MULTI-DIST BEHAVIORAL DIVERSITY

Following the results of [4], [1], [20], a multi-objective
diversity mechanism has been used. The general framework
of this approach is to add a helper objective in addition to the
objectives rewarding the performance on the task [12]. The
helper objective measures the mean distance of the evaluated
solution to the rest of the population on the basis of behavior
comparisons [19], [18], [20].

Instead of using a single BSM during the whole run,
the proposed methods consists in using several BSM. The
first method consists in averaging the behavioral diversities
computed with each BSM. The mean behavioral diversity
objective is then defined as follows:

BDmean(x) =
1

M

M−1∑
k=0

 1

N

∑
y∈P

dk(x, y)

maxa,b∈P (dk(a, b))


(1)

where P is the current population and then x, y, a, b individuals
in the population. N the size of the population and dk(x, y) a
BSM between x and y (k ∈ [0,M − 1]), M being the number
of available BSM.

The second method consists in changing the BSM used
along the generations. For each generation, a single BSM is
used, but at a given generation period pg , the BSM is changed
and chosen out of a set of M BSM.

BDswitch(x) =
1

N

∑
y∈P

dk(x, y) (2)

where k the index of the BSM to be used at the current
generation, k ∈ [0,M − 1]. Every pg generation, a new value
of k is chosen out of a uniform distribution over [0,M − 1]:

k = rand(M) (3)

A typical experiment consists then in maximizing the
following objectives:

Maximize
{
F (x)
BDmean(x) or BDswitch(x)

(4)
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Fig. 2. Overview of the arena and of the robot. The goal of the experiment
is to place as many balls as possible into the basket. A robot controller is
evaluated three times at three different initial positions. To reach the four
balls in the left room, the robot has to open the door by first pressing the
switch button.

An alternative to this approach may be to simultaneously
use several behavioral diversity objectives, each of them
relying a different BSM. Although it may in theory lead
to the similar results, the performance in practice of multi-
objective EA quickly decreases when the number of objectives
grows [23]. The design of the proposed multi-dist behavioral
diversity objectives takes it into account. Furthermore, using
several diversity helper objectives would reduce the selection
pressure exerted by F (.).

In both experiments, NSGA-II [5], a state-of-the-art multi-
objective evolutionary algorithm, has been used with a popula-
tion size of 200. When only one objective is optimized, NSGA-
II is a classic elitist evolutionary algorithm with a tournament-
based selection. The best-of-run individual is the individual
with the best F (.) value2. The source code of both experiments
is available at http://pages.isir.upmc.fr/evorob db.

IV. BALL COLLECTING TASK

A. Experimental setup

The goal of this task is to collect balls in an arena and put
them into a basket (figure 2). The task has been first described
in [21]. The arena contains four balls and a switch button
that allows the robot to open the door of a room containing
four more balls. The robot has two wheels and twelve sensors:
three wall distance sensors, two bumpers, two ball detection
sensors, two switch sensors, two basket detection sensors and
one ”carrying ball” sensor. It has three effectors: left and
right motors as well as an ”action” effector. A nearby ball is

2the behavioral diversity is used as an helper objective during an optimiza-
tion. It can be discarded once the results have been generated.

collected or the switch is activated if the value of the ”action”
effector value is above 0.5. If it is below 0.5, a carried ball is
released. A released ball disappears from the arena. If, at that
time, the robot was in front of the basket and touching it, then
the ball is considered to be collected.

The fitness function is the number of collected balls divided
by the maximum number of balls available. The performance
is evaluated in three different contexts (with different starting
positions, as shown on figure 2). The maximum number of
balls is then 24 and a fitness of 0.5 corresponds to 12 collected
balls.

Four different BSM have been considered:

• adhoc [21]: the behavior of a robot is described by
the final position of the balls, i.e. the initial position
of balls that have not been moved and the last position
of the robot if it was still carrying the ball at the end
of the run or else the position of the robot when it
has released the ball. The behavior descriptor is the
vector of ball positions and the BSM is the Euclidian
distance between these vectors;

• hamming [20]: the value of each sensor and effector
is discretized and memorized during 4000 time steps.
It results in a binary vector of 60000 bits (4000 × (12
sensors + 3 effectors)). The BSM is then the Hamming
distance that measures the number of bits that differ
between the two vectors;

• trajectory [21]: the discretized position of the robot
is recorded each 50 time-steps. This vector is the
behavior descriptor. The BSM is then the edit distance
between the two vectors [24];

• entropy: the entropy is computed for each sensor and
effector. For binary sensors, i.e. bumpers, balls, basket
and switch sensors, the entropy has been computed as
follows:

E = −
∑
i=0,1

pi
ln(pi)

ln(2)

with pi the probability that the corresponding sensor
takes the value i during the evaluation. For sensors and
effectors with a continuous value, the range of possible
values has been divided in ten different subranges and
the entropy has been computed as follows:

E = −
10∑
i=1

pi
ln(pi)

ln(10)

with pi the probability that the sensor or effector value
belongs to the i-th subrange. The behavior descriptor
is then the vector of the entropies of each sensors
and effectors. The corresponding BSM is an Euclidean
distance between those vectors;

The robot is controlled by a neural network with twelve
inputs and three outputs. Both structure and parameters of the
neural network are evolved with DNN [20]. DNN (Dynamic
Neural Network) is a simple direct encoding with no crossover.
Mutations can add or remove neurons and connections and
change connection weights. As in NEAT (NeuroEvolution of
Augmenting Topologies) [22], DNN starts with a perceptron
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Fig. 3. Number of collected balls for 30 runs after 4000 generations and
for the treatments without the diversity objective (no div), with the most
performing single BSM diversity objective (adhoc) and with the proposed
BDmean and BDswitch (pg = 50 generations). The statistical significance
is represented with the horizontal lines: ’****’ means p − value < 10−4,
’***’ means p − value < 10−3, ’**’ p − value < 10−2 and last ’*’
p − value < 0.05. No horizontal line between two treatments means no
statistical difference in the results. The boxes extend from the lower to upper
quartile values of the data, with a line at the median. The whiskers show the
range of the data.

with no hidden layer. DNN parameters used for these experi-
ments are listed in the appendix.

B. Experiments and results

a) Main results: Figure 3 shows the number of col-
lected balls for each of the 30 runs and for the treatments
without diversity (no div), with a single BSM (adhoc) and with
the proposed multi-dist behavioral diversity objectives that use
all of the four BSM previously defined. Both the BDmean

and BDswitch outperform the runs without diversity and also
the runs relying on a single BSM3 (p-value< 1e − 4 in the
worst case for BDswitch, p-value< 0.022 in the worst case
for BDmean). Furthermore, the runs using BDswitch outper-
form BDmean. This is particularly interesting as computing
a behavioral distance is expensive, in particular for certain
BSM, like hamming distance, for instance. BDswitch is then
more interesting than BDmean both in terms of efficiency
and required computational power. Further results aim at more
deeply exploring the efficiency of each BSM, the influence of
pg parameter and the influence of number of available BSM.

b) Control: single BSM: Treatments using a single
BSM were considered as control experiments. Two other treat-
ments were added: one without diversity (one single objective
to optimize: the number of collected balls) and another one
with a BSM that returns a random value. Results are plotted
on figure 4. Median fitnesses range between 0.125 and 0.375
(medians of the control experiments are 0). The low fitness of
the experiments using hamming distance seems contradictory
with the results reported in [20]. In this paper, the setup was
the ”simple” collectball, i.e. the collectball without the switch
and the other room. As new sensors have been added in the

3adhoc BSM is one of the most efficient BSM on this task, see figure 4.
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Fig. 4. Control experiments using a single BSM during evolution on the ball
collecting task. Medians of 30 runs after 4000 generations.

***

Fig. 5. Influence of the switching period between BSM. Experiments with
4 BSM (adhoc, hamming, trajectory, entropy). Medians of 30 runs after 4000
generations. The medians of the control runs have been reported on the plot
to ease comparisons. Only statistical difference between pg = 2000 and the
other treatments are shown.

setup used here, the dimensionality of the binary vector used
to compute hamming distances has increased. To explain these
bad results of hamming BSM, we hypothesize that either the
vector size has grown too much or that some features of the
added sensor values decrease the efficiency of this measure.
These results highlight that, even a BSM that revealed to be
efficient on some problems may well not be that efficient on
new problems, even if they are very similar. This highlights the
difficulty of choosing the right BSM and confirms the potential
of an approach that do not need to choose a single BSM.

c) Random choice between 4 BSM: influence of the
switching period pg: In these experiments, the BDswitch

objective is used. Every pg generations, one of the four BSM
previously introduced is randomly selected (adhoc, hamming,
trajectory and entropy) and used for the next pg generations.
Treatments with pg ∈ {1, 10, 20, 50, 100} give better results



Fig. 6. Experiments with a switch between two BSM: influence of the
available BSM. pg = 50. Medians of 30 runs after 4000 generations. The
medians of the control runs have been reported on the plot to ease comparisons.
Statistical significances have not been reported for clarity reasons.

than any of the single BSM treatments (statistically significant,
Mann-Whitney U test, p− value < 0.01)4. The median of all
sets of experiments except for pg = 1000 and pg = 2000 equal
0.5. The results of treatments with pg ∈ {1, 10, 20, 50, 100} are
not statistically different between each other (Mann-Whitney
U test, p−value > 0.05) and they are all different from those
with pg ∈ {1000, 2000}. Treatments with pg ∈ {20, 50} give
statistically different results from the treatment with pg = 500.
As the runs last for 4000 generations, it is not surprising that
above a period of 500, the effect of BSM switching starts to
decrease as at pg = 500, there are only 8 BSM switches during
a run. For pg = 2000, there is only one switch. This treatment
gives then, not surprisingly, performances that are close to the
control experiments with a single BSM. Figure 5 highlights
then that as long as enough switches are done during the run,
pg has a weak influence. This parameter is then not critical.

d) Random choice between 2 BSM: influence of the set
of available BSM: Figure 6 shows the results of treatments
with a switch between two different BSM at a period of
50 generations. All treatments are significantly different from
treatments with a single BSM, except the hamming-trajectory
whose difference is not statistically significant with the adhoc
treatment and the hamming-entropy with the adhoc and the
trajectory treatments. It means in particular that any pair of
BSM gives better results than each of these BSM considered
separately. Even with only two BSM then, a significant in-
crease in performance is observed. Although the median is
the same for all runs, some results are statistically different.
The adhoc–entropy run, for instance, is statistically different
from all other treatments (p − value < 0.05), except adhoc–
hamming.

e) 2 BSM vs 4 BSM: All treatments with 2 BSM and 4
BSM with pg ∈ {1, 10, 20, 50, 100} have the same median
at 0.5. The results of treatments with adhoc–hamming and
adhoc–entropy are not statistically different from any of the
treatments with 4 BSM and pg ∈ {1, 10, 20, 50, 100}. The

4Treatments with pg ∈ {500, 1000} are also significantly better than single
BSM treatments, except for adhoc BSM.

Fig. 7. Fitness along the 300 first generations for all the 30 runs of the
treatments with pg = 50. Vertical dotted lines represent the generations in
which a switch occurred.

results of adhoc–trajectory are statistically below those of the
treatment with 4 BSM and pg = 50 (p − value < 0.02).
The results of the trajectory–entropy treatment are statistically
below those of the treatments with 4 BSM and pg ∈ {20, 50}
(resp. p − value < 0.05 and p − value < 0.006). Finally,
the treatments with hamming–trajectory and hamming–entropy
are statistically below any of the treatments with 4 BSM and
pg ∈ {1, 10, 20, 50, 100} (p − value < 0.031 in the worst
case). To sum up this part, the difference between treatments
with 2 BSM and treatments with 4 BSM is low, but significant
for several treatments and in every case in favor of 4 BSM
treatments.

f) Correlation between behavioral diversity switch and
fitness increase: Figure 7 shows the fitness of the 30 runs with
pg = 50. There is no clear and immediate effect on the fitness
of the behavioral diversity switch. This is not surprising as this
switch has an impact only on the exploration ability. A better
exploration ability do not immediately result in best results
as exploration may take time before interesting solutions are
discovered.

g) Example of result: Individuals able to collect up
to 23 balls out of a maximum of 24 have been generated
(figure 8). Surprisingly, some of the most efficient neural
networks do not contain any recurrent connection and only
one hidden neuron (figure 9). The network topology only needs
three structural mutations to be found, but probably requires
an accurate tuning that makes it difficult to discover without
specific exploration fostering mechanisms.

V. LOCOMOTION TASK

A. Experimental setup

The control of legged robots combines the challenge raised
by the use of many redundant degrees of freedom with the need
to tame dynamic behaviors. This difficult problem in robotics
has a long history in evolutionary computation because it is
often seen as an interesting benchmark to evolve controllers
that could be useful in robotics[13], [17], [2], [26], [14].
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Fig. 9. Neural network generating the behavior shown on figure 8 for the ball collecting task.

Fig. 8. Example of trajectory for an individual collecting 23 balls. Only the
trajectory of the first evaluation is shown. Lines with circles show part of the
trajectory where the robot carries a ball.

Fig. 10. Overview of the hexapod robot used in these experiments. 15 degrees
of freedom must be controlled.

This continuing interest is also rooted in the observation that
locomotion is one of the most fundamental ability of animals.
Here we use this task to assess the advantages of using several
BSM by testing it in a setup very different from ball collecting.

A hexapod robot is simulated in a dynamic simula-
tor5(figure 10) and its 18 degrees of freedom must be syn-
chronized to move as fast as possible. The angular position of
each degree of freedom i is governed by the periodic function

5http://www.ode.org

ϑi(t) [3]:

ϑi(t) = cj +Aj · ϕ(F · t+ pi) (5)
where ϕ(x) = tanh(3 · sin(x)) (6)

F is fixed and it is common to all degrees of freedom; cj
and Aj are shared by all joints of the same class (there are
three classes of joints, each leg being moved by one joint of
each class: knee, up-down hip and forward-backward hip); pi
is different for each degree of freedom. The total number of
parameters for this controller is therefore 3×18+3+3 = 60.
To make the discovery of regular behaviors easy, only 5
values are possible for each parameter. They are uniformly
spread over the range of movement of each degree of freedom
(A1, A2, A3 : [0, π8 ], c1, c2, c3 : [0, π24 ], pi : [0, 2π], see
appendix).

The fitness is the distance covered in 25 simulated seconds
(time-step is 0.01 seconds).

h) Behavior similarity measures and distances: The
choice of the best BSM to improve diversity when evolving
gait controllers is an open problem. Here we investigate four
different BSM:

• Contact. Walking gaits have been historically de-
scribed by entomologists using parallel diagrams in
which each horizontal line corresponds to a leg (e.g.
[6]). For each time step, a black dash is drawn when
the leg is in contact with the ground, otherwise nothing
is drawn (see e.g. figure 12). For instance, such
diagrams make easy to distinguish a tripod gait from a
tetrapod gait. Taking inspiration from this description,
the gait of an hexapod robot can be described by a
matrix C, in which each row corresponds to a time-
step:

Ctj =

{
1 if the leg i is in contact at time-step t
0 otherwise

Behaviors are compared by computing the number of
differences between their matrix C.

• End point. When evolving a biped gait with the
novelty search algorithm – which also relies on a BSM
–, Lehman and Stanley[15] proposed to describe each
behavior by the position of the center of mass at the
end of the experiment. Behaviors are compared by
computing the Euclidean distance between end points.



Fig. 11. Medians of the distance covered by the best individual of each run
(60 runs) after 2000 generations (400000 evaluations). DBD means “Dynamic
Behavioral Diversity”.

• State. At each time step, the position of each degree
of freedom describes the current state of the robot.
The behavior of the robot can therefore be described
by the list of angular positions for each time step.
Behaviors are then compared by computing the aver-
age Euclidean distance between vector states at each
time-step.

• Trajectory. The behavior of the robot can also be
described by the 3D trajectory of its center of mass. In
this case, behaviors are compared by computing the
average Euclidean distance between 3D positions at
each time step.

We consider the following treatments:

• fitness only (no diversity, control experiment). Diver-
sity is not encouraged at all; the EA is therefore a
standard single-objective (rank-based) EA.

• fitness + a single BSM behavioral diversity objective;

• fitness + BDmean;

• fitness + BDswitch (pg = 50 generations).

We launched 60 runs of 2000 generations and we encour-
aged diversity using the same multi-objective approach as the
one used in the previous section. The size of the population
was 200. The 60 parameters have been mutated using a shift to
the left value or to the right value (only 5 values are possible
for each evolved parameter); cross-over was not used.

Fig. 12. Contact diagram of the best gait obtained with dynamic behavioral
diversity. For each time-step, the presence of a black dot denotes that the leg
is in contact with the ground. This gait is mostly stable because three legs are
always in contact.

B. Results

Figure 11 shows the median distance achieved with each
of the treatment. Surprisingly, using a single BSM does not
seem to improve performance much and only the “contact”
BSM leads to results statistically different from the control
experiment (no diversity). At first sight, this result appears to
contradict recent results about behavioral diversity [11], [19],
[18], [20]. However, the analysis of the controllers obtained
with the control runs (no diversity) shows that they actually
perform well, hence showing that this walking task is easy
enough to not require any diversity preservation mechanism to
obtain good controllers (the controller is designed so that many
different gaits are possible but many of them are working).

There is nonetheless room for improvement: the “switch”
the “mean” variants obtained better results than any of the
other approach, with statistically significant p-values (p <
0.025 in the worst case). This result confirms that using
several BSMs removes the need to choose between BSMs and
improves the performance. Figure 12 describes the best gait
obtained with the “switch” variant.

VI. CONCLUSION AND PERSPECTIVE

The obtained results can be summarized as follows:

• using several BSM in a single run increases the
performance while releasing the constraint to choose
the most appropriate BSM;

• switching between BSM is more efficient than taking
the mean behavioral diversity while requiring less
computational power;

• the difference is significant with two BSM only, but
different BSM pairs may yield different results;

• treatments with four BSM slightly outperform those
with two BSM;

• the period of the switch is a non critical parameter, as
long as enough switches are performed during a run
(more than eight).

The results validate the hypotheses we made, at least on the
considered setups: using several BSM during a run actually do
not decrease performance. It gives more chance to avoid local
optima and converge towards more efficient solutions. It also



validates the hypothesis that a single BSM may not reward
every potentially interesting original behavior.

The results suggest to use as many BSM as available, at
least up to four. Although it may seem to be a limitation of
this approach, as more BSM are required, in practice, defining
different BSM is not a difficult problem, whereas choosing
one out of these is very difficult. Switching between BSM
simplifies then the preparation of an experiment, does not
significantly increase the computational load and introduces
no critical parameter.

The mean BSM approach could easily be extended to
novelty search, but the BSM switch approach would need some
adaptations in the archive management process as randomly
changing the BSM during the run will impact the choice of
individuals to include in it.
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APPENDIX

• MOEA: NSGA-II (pop. size : 200)

• DNN (direct encoding, ball collecting task):
◦ number of neurons∈ [10, 30]
◦ number of connections ∈ [50, 250]
◦ prob. of changing weight/bias: 0.1
◦ prob. of adding/deleting a conn.: 0.15/0.05
◦ prob. of changing a conn.: 0.03
◦ prob. of adding/deleting a neuron: 0.05/0.05
◦ activation function for neurons:

yi = ϕ
(∑

j wijxj
)

where ϕ(x) = 1
1+exp(b−kx)

• Mutation (locomotion task): each parameter has a 10%
chance of being incremented or decremented. Five values
are available:
◦ A1, A2, A3 : {0, π

32
, π
16
, 3π
32
, π
8
}

◦ c1, c2, c33 : {0, π
96
, π
48
, 3π
96
, π
24
}

◦ pi : {0, π2 , π,
3π
2
, 2π}

• Source code :
http://pages.isir.upmc.fr/evorob_db


