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Artificial Evolution of Plastic Neural Networks:
a few Key Concepts

Jean-Baptiste Mouret and Paul Tonelli

Abstract This paper introduces a hierarchy of concepts to classify the goals and
the methods of works that mix neuro-evolution and synaptic plasticity. We propose
definitions of “behavioral robustness” and oppose it to “reward-based behavioral
changes”; we then distinguish the switch between behaviors and the acquisition
of new behaviors. Last, we formalize the concept of “synaptic General Learning
Abilities” (sGLA) and that of “synaptic Transitive Learning Abilities (sTLA)”. For
each concept, we review the literature to identify the main experimental setups and
the typical studies.

1 Introduction

The abilities of animals to adapt to new environments is one of the most fascinating
aspects of Nature and it may be what most clearly separates animals from current
machines. Natural adaptive processes are classically divided into three main cat-
egories, each of them having been a continuous source of inspiration in artificial
intelligence and robotics [8]: evolution, development and learning. While studying
each of these processes independently have been widely successful, there is a grow-
ing interest in understanding how they benefit from each other.

In particular, a large amount of work has been devoted to understand both
the biology of learning (e.g. [19, 29]) and the design of learning algorithms for
artificial neural networks (e.g. [9]); concurrently, evolution-inspired algorithms
have been successfully employed to automatically design small “nervous systems”
for robots [7, 10, 12, 13, 25, 26], sometimes by taking inspiration from develop-
ment processes [10, 13, 16, 25]. A comparatively few papers proposed to com-
bine the artificial evolution of neural networks with synaptic plasticity to evolve
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Fig. 1 The artificial evolution of plastic neural networks relies on the classic evolutionary loop
used in neuro-evolution. The algorithm starts with a population of genotypes that are there-
after developed into plastic neural networks. The topology of the neural network is sometimes
evolved [17, 18, 21–24, 28]. Typical plastic neural networks use a variant of the Hebb’s rule to
adapt the weight during the “lifetime” of the agent. The fitness of the agent is most of the time
evaluated in a dynamic environment that requires the agent to adapt its behavior. The agent is
therefore usually directly selected for its adaptive abilities.

artificial agents that can adapt their “artificial nervous system” during their “life-
time” [7, 15–18, 21–23, 28, 30] (Fig.1). However, the analysis of these works shows
that they often address different challenges in very different situations, while using
the same terminology (e.g. “learning”, “robustness” or “generalization”).

The goal of the present chapter is to provide a set of definitions to make as clear as
possible current and future works that involve the evolution of such plastic artificial
neural networks (ANNs) to control agents (simulated or real robots). While some
definitions and some distinctions are novel, the main contribution of the present pa-
per is to isolate each concept and to present them in a coherent framework. For each
definition, we will provide examples of typical setups and current results. Figure 2
displays the hierarchy of the concepts that will be introduced; it can serve as a guide
to the paper.

2 Synaptic Plasticity

In neuroscience, plasticity (or neuroplasticity) is the ability of the brain and nervous
systems to change structurally and functionally as a result of their interaction with
the environment. Plasticity is typically observed during phases of development and
learning. Trappenberg [29] defines two kinds of plasticity: structural plasticity and
synaptic (or functional) plasticity.
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Fig. 2 Hierarchy of concepts described the present paper. See text for a definition of each gray
box.

Definition 1 (Structural plasticity). Structural plasticity is the mechanism describ-
ing generation of new connections and thereby redefining the topology of the net-
work.

Definition 2 (Synaptic plasticity). Synaptic plasticity is the mechanism of chang-
ing strength values of existing connections. It is sometimes termed “functionnal
plasticity” [29].

Nolfi et al. [16] investigated structural plasticity in a system in which the geno-
type contained developmental instructions for the construction of a neural network.
Genes specified (1) the position of each neuron and (2) instructions that described
how axons and branching segments grew. These instructions were executed when
a neuron was sufficiently stimulated by its surrounding neurons and by the agent’s
environment. The authors observed different phenotypes when the same genotype
was used in two different environments and concluded that their approach increased
the adaptive capabilities of their organisms. Several other authors evolved neural
networks while letting them grow axons depending on their location (e.g. [10, 25])
but the enviroment was not taken into account.

Most studies on the evolution of plastic neural networks instead focused on
synaptic plasticity [2, 6, 14, 30], maybe because of the prominence of learning al-
gorithms that only adapt weights in the Machine Learning literature. Most of the
works that do not rely on machine learning algorithms (e.g. the backpropagation al-
gorithm) [3, 15] use variants of the “Hebb’s rule” [2, 6, 17, 28, 30], which posits that
the simultaneous activation of two neurons strengthens the synapse that link them.
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Definition 3 (Hebb’s rule). Let us denote by i and j two neurons1, ai and a j their
respective activation level, wi j the synaptic weight of the connection from i to j and
η a learning rate that describes how fast the change occurs. According to Hebb’s
rule, wi j should be modified as follows:

wi j(t +1) = wi j(t)+∆wi j (1)
∆wi j = η ·ai ·a j (2)

Hebb’s rule is often extended to include more complex combinations of pre- and
post-synaptic activities [2, 6, 17, 29, 30].

Definition 4 (Extended Hebbian rule).

∆wi j = f (ai,a j,wi j) (3)

Many different f () have been investigated; one of the simplest extended Hebbian
rule consists in linearly combining pre- and post-synaptic activities [14, 17, 21, 30]:

∆wi j = A ·ai ·a j +B ·ai +C ·a j +D (4)

where A,B, C and D are four real numbers. Most authors select a set of values for
A,B,C and D, but several different combinations can also be used in the same neural
network. For instance, Urzelai and Floreano proposed to evolve the plasticity rules
that govern each synapse of fully connnected neural networks [30].

A synapse can also be strengthened or weakened as a result of the firing of a
third, modulatory inter-neuron (e.g. dopaminergic neurons) [1, 14, 22]. To reflect
this phenomenon, two kinds of neurons can be distinguished: modulatory neurons
and modulated neurons. Inputs of each neuron are divided into modulatory inputs
and signal inputs; the sum of the modulatory inputs of j governs the modulation of
the all non-modulatory connections to j:

Definition 5 (Modulated Hebbian rule). Let us denote by I(m)
j the set of modula-

tory inputs of neuron j and by I( j)
s the set of non-modulatory inputs. Each incoming

connection of neuron j is modified as follows:

m j = tanh

 ∑
k∈I(m)

j

wk jak

 (5)

∀i ∈ I( j)
s ,∆wi j = m j · f (ai,a j,wi j) (6)

In addition to its biological realism, this weight adaptation rule makes easier to use
rewards signals (for instance, plasticity could be enabled only when a reward signal

1 We focus our discussion on classic neurons (as used in classic machine learning) and population-
based models of neurons (e.g. leaky integrators) because they are the neuron models that are used
by most of the community. Spiking neuron models can make use of other plasticity mechanisms
(e.g. STDP) that will not be described here.
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is on). It also leads to networks in which only a part of the synapses are changed dur-
ing the day-to-day life of the agent. These two features make such networks match
more closely some of the current actor-critic models of reinforcement learning used
in computational neuroscience [19].

Modulated Hebbian plasticity has been used several times when evolving plastic
neural networks [11, 14, 18, 21, 22]. In these simulations, experiments in reward-
based scenarios where modulatory neurons were enabled achieved better learning
in comparison to those where modulatory neurons were disabled [21].

3 Robustness and Reward-based Scenarios

A major goal when evolving neuro-controllers is to evolve neural networks that keep
performing the same optimal (or pseudo-optimal) behavior when their morphology
or their environment change. For instance, a robot can be damaged, gears can wear
out over time or the light conditions can change: in all these situations, it is desirable
for an evolved controller to compensate these changes by adapting itself; we will call
this ability behavioral robustness.

Definition 6 (Behavioral robustness). An agent displays behavioral robustness
when it keeps the same qualitative behavior, notwithstanding environmental and
morphological changes. Behavioral robustness does not usually involve a reward/
punishment system.

In a typical work that combines synaptic plasticity, evolution and behavioral ro-
bustness, Urzelai and Floreano [30] evolved neuro-controllers with plastic synapses
to solve a light-switching task in which there was no reward; they then investi-
gated whether these controllers were able to cope with four types of environmen-
tal changes: new sensory appearances, transfer from simulations to physical robots,
transfer across different robotic platforms and re-arrangement of environmental lay-
out. The plastic ANNs were able to overcome these four kinds of change, contrary
to a classic ANN with fixed weights.

However, as highlighted by Urzelai and Floreano, “these behaviors were not
learned in the classic meaning of the term because they were not necessarily retained
forever”. Actually, synaptic weights were continuously changing such that the robot
performed several sub-behaviors in sequence; the evolutionary algorithm therefore
opportunistically used plasticity to enhance the dynamic power of the ANN. These
high-frequency changes of synaptic weights appear different from what we observe
in natural system (in particular in the basal ganglia), in which synaptic weights tend
to hold the same value for a long period, once stabilized [5, 27].

Besides robustness, an even more desirable property for an evolved agent is the
ability to change its behavior according to external stimuli and, in particular, accord-
ing to rewards and punishments. For instance, one can imagine a robot in a T-maze
that must go to the end of the maze where a reward has been put [17, 18, 21]. The
robot should first randomly try different trajectory. Then, once the reward would
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have been found a few times, the robot should go directly to the reward. Nonethe-
less, if the reward is moved somewhere else, the robot should change its behavior to
match the new position of the reward. Once the robot will have found the optimal
behavior (the behavior that maximizes the reward), the synaptic weights of its con-
troller should not change anymore. This ability to adapt in a reward-based scenario
can be more formally defined as follows:

Definition 7 (Behavioral change). A plastic agent is capable of behavioral changes
in a reward-based scenario if and only if:

• a change of reward makes it adopt a qualitatively new behavior;
• the synaptic weights do not significantly change once an optimal behavior has

been reached.

Notable setups in which authors evolved plastic neuro-controllers for behavioral
changes are the T-maze [17, 18, 21], the bumblebee foraging task [14], the “danger-
ous foraging task” [24] and the Skinner box [28].

4 Learning Abilities in Discrete Environment

The main challenge when evolving plastic agents for behavioral change is to make
them able to learn new behaviors in unknown situations and, in particular, in situ-
ations that have never been encountered during the evolutionary process. Put dif-
ferently, selecting agents for their abilitities to switch between alternatives is not
sufficient; the evolved agent must also be placed in completely new situations to as-
sess its ability to find an optimal behavior in a situation for which it has never been
selected.

Discrete T-maze Operant Conditionning Chamber

Turn
Maze
End

Home Reward

Turn
Right

ForwardTurn
Left

Evolved Neural Network
with free topology

-0.33 0.33

1 2 3 Reward

Evolved Neural Network
with free topology

1 2 3

Fig. 3 Learning the best-rewarding behavior in a discrete T-maze is equivalent to a Skinner box
(Operant Conditioning Chamber, left): in both cases, the challenge is to associate the right stimulus
to the right action.
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We previously introduced a theoretical framework to characterize and analyze
the learning abilities of evolved plastic neural networks [28]; we will rely on this
framework in the remainder of this paper. For the sake of simplicity, we focus on a
discrete world, with discrete stimuli and discrete actions. The canonical setup, in-
spired by experiments in operant conditioning, is the Skinner Box [20]: an agent is
placed in a cage with n stimuli (lights), m actions (levers), positive rewards (food)
and punishments (electric shocks). The goal of the agent is to learn the right as-
sociations between each stimulus and each action. This task encompasses most
discrete reward-based scenarios (Fig. 3). For instance, the discrete T-maze exper-
iment [17, 18, 21–23] can be described as a special case of a Skinner box.

More formally, an evolved neural network N(I,λ ) must adapt several synaptic
weights λ ∈ Rz such that each input pattern I ∈ [0,1]n is associated to the best re-
warded output vector K ∈ [0,1]m. The adaptation is performed by a learning function
such that λ = g(λr, I,RI,K), where λr is a random vector in Rz and RI,K the reward
function. These notations lead to the following definitions:

Definition 8 (Association set). An association set A =
{
(I1,K1), · · · ,(In,Kn)

}
is a

list of associations that covers all the possible input patterns. The set of all associa-
tion sets is denoted A.

Definition 9 (Fitness associations set). The fitness associations set FA= {A1 · · ·Ak}
is the set of the association sets that are used during the fitness evaluation.

For a given topology, some association sets may not be learnable by only chang-
ing synaptic weights. This case occurs in particular when the topology of neural
networks are evolved: if there is no selective pressure to maintain a connection, it
can easily disappear; but this connection may be required to learn a similar but dif-
ferent association set. Some association sets may also be not learnable because they
require specific topologies. For instance, the XOR function requires a hidden layer
of neurons to be computed.

Definition 10 (Learnable set). Given a suitable reward function RI,K , an associa-
tion set A∈A is said to be learnable by the neural network N, if and only if ∀λr ∈Rz

and ∀(I,K) ∈ A, ∃λ = g(λr, I,RI,K) such that N(I,λ ) = K. The set of all learnable
sets for N is denoted LN .

Definition 11 (sGLA). A plastic ANN is said to possess synaptic General Learning
Abilities (sGLA) if and only if ∀A ∈ A, A ∈ LN .

Although it does not use Hebbian learning, the multi-layer perceptron with the back-
propagation algorithm is an example of a neural network with synaptic General
Learning Abilities. At the opposite, a neural network in which each input is con-
nected to only one output can learn only one association set.

To evolve a plastic ANN with sGLA, the simplest method is to check the learn-
ability of each association set during the fitness evaluation, that is the fitness associ-
ations set is equal to the set of all the association sets; this approach has often been
followed by the authors who evolved agents to solve the T-maze task [17,18,21–23].
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We propose to call such approaches the evolution of behavioral switches to distin-
guish it from the evolution of more general learning abilities.

Definition 12 (Evolution of behavioral switches). A study deals with the evolution
of behavioral switches when the fitness associations set FA is equals to the set of all
association sets that are possible for the studied task (called A): FA = A

However, a plastic ANN that can cope with unknown situations must have sGLA
while only a subset of the possible association sets (i.e. a subset of problems from
the same problem class) has been used during the evolutionary process.

Definition 13 (Evolution of sGLA for unknown situations). A study deals with
the evolution of synaptic General Learning Abilities for unknown situations when
the goal of the authors is (1) to use a fitness associations set that is smaller than the
set of all association sets (card(FA)< card(A)) and (2) to show that all associations
sets are learnable with evolved solutions (∀A ∈ A, A ∈ LN):
card(FA)< card(A) and ∀A ∈ A, A ∈ LN .

At first sight, Nature relies on the long lifetime of animals (compared to the
“lifetime” of artificial agents) and on the large size of the populations to obtain a
stochastic evaluation of virtually every possible scenarios. This probably explains
why most authors tried to obtain agents with sGLA by using a large, often ran-
domized subset of the association sets in the fitness association set. In supervised
learning, Chalmers [3] assessed how well an evolved plastic ANN can cope with
situations never encountered during the evolution. In his experiments, he evolved
the learning rule for a small single-layer ANN (5 inputs, 1 output) and his analy-
sis showed that at least 10 sets of input/output patterns (among 30 possible sets)
were required to evolve an algorithm that correctly learns on 10 unknown sets. In
reinforcement learning, Niv et al. [14] evolved plastic ANNs to solve a bumblebee-
inspired foraging task in which simulated bees must select flowers by recognizing
their color. To promote general learning abilities, they randomly assigned rewards
to colors at each generation and they showed that the resulting ANNs successfully
learned unknown color/reward associations. In the “dangerous foraging task”, Stan-
ley et al. [24] similarly randomized the parameters of the fitness function to avoid
overspecialized behaviors.

However, the encoding and the development process may also play a key role in
allowing the adaptation to situations which have never been encountered before [28].
Intuitively, a very regular network may repeat the same adaptation structure many
times whereas it was only required once by the fitness; it could therefore “propa-
gate” the adaptation structure. Since most developmental encoding are designed to
generate very regular structures [4,13,28], using such encodings could substantially
reduce the number of evaluations required to obtain general learning abilities. In the
ideal case, we should be able to show that the developmental process implies that if
a few association sets have been successfully learned, then all the other sets have a
high probability of being learnable. Such networks will be said to possess “synaptic
Transitive Learning Abilities”.
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Definition 14 (sTLA). Let us denote by TN a subset of the learnable association set
A. A plastic ANN is said to possess synaptic Transitive Learning Abilities (sTLA)
if and only if ∃ TN ⊂ A such that the following implication is true:

TN ⊂ LN ⇒ LN = A

p = card(TN) will be called the “sTLA-level”.

Definition 15 (Optimal-sTLA). A plastic ANN is said to possess Optimal synaptic
Transitive Learning Abilities (optimal-sTLA) if and only if it possesses sTLA and
card(TN) = 1.

The sTLA-level of certain families of topologies (i.e. topologies generated by a
specific genetic encoding) can possibly be computed theoretically. It can also be eas-
ily evaluated by a succession of evolutionary experiments: (1) select p association
sets; (2) evolve ANNs that successfully learns the p association sets; (3) check the
sGLA of optimal ANNs; (4) if optimal ANNs do not possess sGLA, then increase
p and start again.

Using this method, Tonelli and Mouret [28] showed that a very regular map-
based encoding proposed in [13] have a TLA-level or 1 or 2. Preliminary exper-
iments suggest that other generative encodings such as HyperNEAT [4, 25] could
also possess a low TLA-level. Overall, the concept of sTLA highlights how evolu-
tion, learning and development are interwoven.

All these definitions are well suited for discrete worlds and discrete behaviors.
Future work should try propose equivalent definitions for continuous worlds.

5 Concluding Remarks

With the rise of computing power, it is now easy to simulate artificial agents for
enough time for them to learn and to evolve; this allows the study of well-defined
scientific questions with modern experimental and statistical techniques. Neverthe-
less, future work in this direction will have to precisely define what they work on:
do they aim at behavioral robustness or at behavioral change? how do they evaluate
the general learning abilities of the evolved agents? do the evolved neural network
manage to learn in unknown situations? what is the role of the encoding in the final
result? The definitions proposed in the present paper will hopefully help to design a
methodology to answer such questions.

The present work also highlights open questions and avenues for future re-
searches:

• Should future work focus more on structural plasticity? This approach to plastic-
ity may be more complex but it may also allow agents to learn new skills without
forgetting the old ones (because the previous structure is not deleted).

• How to evaluate learning abilities in continuous world and with continuous be-
haviors?
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• What are the links between encodings, plasticity and learnability? [28] provides
first answers but only for simple and discrete scenarios.
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