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Abstract

The evolvability of a system is the ability to generate herita-
ble, novel and non-lethal phenotypes, from random genetic
mutations. However, most evolutionary computation studies
estimate evolvability either as, (i) the proportion of mutations
beneficial to an individual’s performance, irrespective of the
phenotypic diversity of the mutants, or (ii) the range and di-
verseness of mutated phenotypes, without taking into account
the viability of the genetic change. This paper reports a novel
approach to measure the evolvability provided by an encod-
ing, by characterizing both the quality of the mutations and
the quantity of phenotypic variation. We evolved controllers
for hexapod robot locomotion using a parameterized direct
encoding, and the generative encoding of artificial neural net-
works (similar to HyperNEAT) and single-unit pattern gen-
erators (SUPGs). Our results reveal that the performance of
an encoding is not always a good assessment of evolvabil-
ity. Although both the generative encodings evaluated had
individuals with high performance gaits, there were appar-
ent differences in their measured evolvability. A direct and
predictive relationship is indicated between our measure of
evolvability, and the number of generations required by am-
putated individuals to recover an effective gait.

Introduction

The capacity of a population to rapidly adapt to novel envi-

ronments, called evolvability, is critical in the evolutionary

processes of natural organisms and artificial systems (Hu

and Banzhaf, 2010). In the natural world, the high evolv-

ability of biological systems is hypothesized to be respon-

sible for the rich diversity of the millions of species cre-

atively adapting to diverse niches, all arising from a combi-

nation of random mutations and natural selection (Pavlicev

and Wagner, 2012). Evolvability is also of interest in evo-

lutionary computation (EC), wherein highly evolvable so-

lutions are considered to optimize faster and achieve a

greater performance than non-evolvable solutions (e.g., Ch-

eney et al. (2013)), and may be capable of of generalizing

previously learned information and adapting it to new envi-

ronments (e.g., Reisinger et al. (2005); Clune et al. (2013)),

desirable characteristics from an engineering perspective.

The developmental mechanisms translating genetic

change into phenotypic change, that is the genotype-

phenotype map, is commonly understood to play a key role

in the evolvability of evolutionary systems (Kirschner and

Gerhart, 1998; Wagner and Altenberg, 1996). Mappings

facilitating evolvability, confer on the individual a robust-

ness to lethal mutations, and exhibit a modular architec-

ture wherein genes preferably only affect traits with the

same function (Pavlicev and Wagner, 2012). Inspired by

the evolvability of biological systems, researchers in EC

have abstracted the underlying developmental processes, to

formulate generative genotype-phenotype maps for artificial

systems (e.g., Stanley (2007)). The resultant generative en-

codings frequently outperform traditional direct encodings

for various application problems such as, designing 3D ob-

jects (e.g., Hornby (2005)), game playing (e.g., Reisinger

and Miikkulainen (2007); Gauci and Stanley (2010)), pat-

tern matching (e.g., Clune et al. (2011)), and robot loco-

motion (e.g., Hornby and Pollack (2002); Seys and Beer

(2007)). Furthermore, the higher evolvability provided by

generative encodings is often considered as the reason for

the observed differences in performance, consequent to their

capability to reuse parts of the genotype to affect differ-

ent phenotypes, scale well to large phenotypic spaces, and

generate modular architectures (Stanley and Miikkulainen,

2003).

In the field of EC, there are two main approaches to es-

timate the evolvability of artificial developmental systems.

Most studies estimate evolvability either as, (i) the propor-

tion of genetic mutations that are beneficial to an individ-

ual, irrespective of the phenotypic novelty of the resultant

offspring (e.g., Hornby et al. (2003); Reisinger and Miikku-

lainen (2007)), or as (ii) the range and diversity of the phe-

notypic variants resulting from genetic change (Lehman and

Stanley, 2011; Reisinger et al., 2005; Lehman and Stanley,

2013), usually without considering the deleteriousness of the

change. Importantly, both these estimates when considered

alone do not discount for mutations that, (i) generate very di-

verse phenotypes but prove lethal to an organism, and (ii) re-

sult in minor improvements to a phenotype, but are unable

to generate novelty. According to the theory of facilitated

variation (Gerhart and Kirschner, 2007), the capacity of an



individual to evolve is a function of its ability to curtail lethal

mutations, and simultaneously to decrease the number of

mutations necessary to evolve diverse or novel phenotypes.

In this study we present a novel approach to visualize

evolvability provided by direct and generative encodings,

featuring both the quality and quantity of phenotypic vari-

ation consequent to genetic change, for hexapod robot loco-

motion. Evolvability is analyzed for a parametrized direct

encoding, and the generative encoding of artificial neural

networks (similar to HyperNEAT, Stanley et al. (2009)) and

single-unit pattern generators (Morse et al., 2013), in three

independent experiments. The significance of our measure

of evolvability is analyzed by the ability of the robot to adapt

to previously unencountered changes in its morphology.

Measuring evolvability

The evolvability provided by the direct and generative en-

codings is measured by computing the effect of genetic mu-

tations on, (i) the viability of the mutated individual, and

(ii) the diversity of phenotypes generated. The two resul-

tant effects are treated separately instead of being combined

into a single quantitative measure of evolvability, to consider

the trade-offs between them in their individual influence on

evolvability.

Feature 1: Deleteriousness of mutations. The first fea-

ture in our measure of evolvability is computed as the pro-

portion decrement in the fitness of a mutated individual.

For an individual i and the mutant i′, we have,

f1 = (F ′

i − Fi)/Fi (1)

where Fi and F ′

i , are the fitness values before and after the

application of a random genetic mutation, respectively.

The feature f1 reflects the phenotype quality following

beneficial (f1 > 0), neutral (f1 ≈ 0), and deleterious (f1 <
0) genetic change.

Feature 2: Diversity of phenotypes. The second feature

in our measure of evolvability is quantified as the difference

in the phenotype, resulting from genetic mutation. There

are many available diversity metrics to measure behavioral

differences, ranging from the classical euclidean distance,

to correlation coefficients, and various information theoretic

measures (reviewed in Mouret and Doncieux (2012)). The

mutual information metric, in comparison with other mea-

sures such as correlation, provides a more general crite-

rion to investigate statistical dependences between behav-

iors, and is applicable to numerical and symbolic phenotypic

representations.

We compute the phenotype diversity as the normalized

mutual information (Cover and Thomas, 1991) between be-

haviors of an individual, before and after its genome is mu-

tated. Assuming that the behavior of an individual i can be

represented as a discrete vector Bi (details in Mouret and

Doncieux (2012)), for the behaviors Bi and B′

i, of individ-

ual i and mutant i′, we have:

H(Bi) = −
∑

bi∈Bi

p(bi) log p(bi) (2a)

H(Bi, B
′

i) = −
∑

bi∈Bi

∑

b′
i
∈B′

i

p(bi, b
′

i) log p(bi, b
′

i) (2b)

f2 =
H(Bi) +H(B′

i)−H(Bi, B
′

i)

max(H(Bi),H(B′

i)
(2c)

where H(Bi) is the entropy of the behavior Bi comprising

the individual states bi with probability p(bi), H(Bi, B
′

i) is

the joint entropy between behaviors Bi and B′

i with joint

probability density function p(bi, b
′

i), and f2 denotes the

normalized mutual information distance between the two be-

haviors.

The feature f2 in our measure of evolvability repre-

sents the quantity of phenotypic variation following genetic

change, and is indicative of the ability of the evolutionary

system to produce novel phenotypes.

Hexapod locomotion problem

The evolution of locomotion gaits for multilegged robots is

a classical problem in EC, addressed in many prior stud-

ies utilizing both direct and generative encodings (e.g., Liu

and Iba (2004); Clune et al. (2011); Valsalam and Miikku-

lainen (2008)). In the large majority of these studies, the

performance of evolved individuals is analyzed solely by

the walking speed of the robot and the required number of

generations of evolution. The rate of evolution and evolved

performance has also been linked to evolvability provided

by the encoding scheme, wherein controllers achieving a

higher task fitness and requiring fewer generations to evolve

are considered more evolvable (e.g., see Hornby et al.

(2003); Komosiński and Rotaru-Varga (2001)). While these

approaches provide interesting insights on the characteris-

tic of the underlying genotype-to-phenotype mapping, they

largely ignore its capabilities to generate viable phenotypic

variations (diverse gaits in case of legged robots). However,

the diversity of evolved walking gaits is important for the

legged robot to recover rapidly from faults such as, the loss

of one or more limbs, or motor malfunctions (Koos et al.,

2013), and for the robot to adapt to previously unencoun-

tered environmental changes. Furthermore, an efficient re-

covery is particular relevant for hexapedal legged robots,

wherein the probability of component failure is high, con-

sequent to the large number of moving parts.

Hexapod platform details: The hexapod robot is simu-

lated on a flat, horizontal surface (Fig. 1a), with the Open

Dynamics Engine1 (ODE) physics simulator. The robot has

18 Degrees of Freedom (DOF), 3 for each leg (Fig. 1b), and

each DOF is actuated by a single servo. The first servo on

each leg (s1) actuates the horizontal orientation of the leg

within range [−π/8, π/8] radians. The second (s2) and third

1
http://www.ode.org



(s3) servos control the leg elevation and extension, respec-

tively, each within the range of [−π/4, π/4] radians.

(a) Hexapod robot (b) Kinematic scheme

Figure 1: (a) Snapshot of an 18-DOF simulated hexapod

robot walking on a horizontal surface, with contacts sim-

ulated. (b) Kinematic scheme of the robot, with cylinders

representing actuated pivot joints. The three servos on each

leg, s1, s2 and s3, are labeled in increasing order of distance

to robot torso.

Angular positions are sent to the 18 servos once every

15 ms. Furthermore, in order to maintain the last subseg-

ment of each leg vertical (for enhanced stability), the control

signal for the third servo (s3) is always in antiphase to that

of the second servo (s2). Consequently, the robot is reduced

to a 12 DOF system, despite being actuated by 18 motors.

Hexapod gait representation: The phenotypic diversity

in our measurement of evolvability corresponds to the inter-

gait diversity in the hexapod robot locomotion problem. For

this measurement, a hexapod gait is represented using a gait

diagram (Kajita and Espiau, 2008, p. 379), comprising a bi-

nary matrix C of leg-surface contacts:

Ctl =

{

1 if leg i makes surface contact at time-step t,

0 otherwise.

where t ∈ {0 . . . T }, the gait is evaluated for T time-steps,

and the hexapod legs l ∈ {0 . . .5}.

The hexapod gait for an individual i is represented by bi-

nary vectorBi, comprising the contacts in C concatenated in

row-major order, Bi = [C00, C10 . . . CT5]. The difference

between two gaits is measured as the normalized mutual in-

formation between the corresponding gait vectors (eq. 2c).

Encoding schemes

The generative encodings for evolving hexapod locomotion

controllers are based on compositional pattern producing

networks (CPPNs) (Stanley, 2007). CPPNs abstract the pro-

cesses of embryonic development by determining the at-

tributes of phenotypic components as a function of their geo-

metric location in the individual, instead of simulating com-

plex inter-cellular interactions.

The CPPN genome is represented as a directed graph,

comprising a set of Sine, Gaussian, Sigmoid, and Linear

type of nodes, connected by weighted links. The node type

indicates the activation function applied to the sum of its

weighted inputs, to compute the node output. Selected acti-

vation functions can succinctly encode a wide variety of phe-

notypic patterns, such as symmetry (e.g., a Gaussian func-

tion) and repetition (e.g., a Sine function), that evolution can

exploit. Mutations to the CPPN genome can change the con-

nection weights and node type, and add or remove nodes

from the graph. Consequently, the topology of the CPPN is

unconstrained, and can represent any possible relationship

between the input coordinates of the phenotypic component

and its output attributes (see details in Stanley (2007)).

In this study, the CPPN genotype is mapped to two

very different phenotypes, the conventional Artificial neu-

ral networks (ANNs), and the Single-unit pattern generators

(SUPGs). The SUPG is a new type of macro-neuron intro-

duced by Morse et al. (2013) to genetically encode spatio-

temporal oscillatory patterns.

Encoding ANNs with CPPNs (minimal HyperNEAT):

The first generative encoding scheme evaluated is a sim-

plified version of HyperNEAT indirect encoding2 (Stanley

et al., 2009; Clune et al., 2011; Yosinski et al., 2011). The

CPPNs encode the weights of a fixed topology, single-layer

feedforward ANN, featuring 2-D cartesian grids of inputs,

hidden and output neurons (Fig. 2). Neurons are placed in

a geometric space termed the substrate, so that each neuron

in a layer has a distinct (x, y) coordinate. In addition, the

placement of the input and output neurons is meant to reflect

the hexapod robot morphology. The CPPN is iteratively in-

put the positions of all source (x1, y1) and target (x2, y2)
neurons in proximal layers, along with a constant bias, and

it outputs the corresponding weights of the input-hidden and

hidden-output neuron connections (see Fig. 2).

The ANN receives as input the previously requested an-

gles (actual angles unknown) for each of the 12 pivot joints

of the robot (s1 and s2, for 6 legs). In addition, sine and co-

sine waves of frequency 1 Hz are also input to the ANN, to

facilitate output periodic oscillations. The output from the

ANN at each time-step are 12 numbers (one for each of s1
and s2, on each of 6 legs) in interval [−1, 1], that are scaled

to the allowable angular range of the corresponding motors,

and indicate the next position of each motor.

In preliminary experiments, this encoding evolved ANNs

that exhibited high frequency output oscillations (in excess

of 20 Hz). In the resultant gaits, the robot could traverse

large distances by vibrating its legs rapidly, and in unison.

To resolve this problem, and as suggested by Yosinski et al.

(2011), we generated joint angular positions with a time-

2The CPPN is evolved with a simple multi-objective evolution-
ary algorithm, instead of the NEAT method (details in Tonelli and
Mouret (2013)).
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Figure 2: Encoding ANNs with CPPNs (inspired by Clune et al. (2011); Yosinski et al. (2011)). Inter-neuron connection

weights are encoded as function of the position source and target neurons of each neural connection. The CPPN outputs the

weights of input-hidden and hidden-output neuron connections, for each source (x1, y1) and target neuron (x2, y2) in proximal

layers. The ANN is input the requested angles of the previous time-step for the first two servos (s1 and s2) on each leg, and a

sine and cosine wave. The output neurons specify the new joint angles for the current time-step.

step of 15 ms, by averaging over four consecutive pseudo-

positions generated at 3.75 ms intervals. The number of

evolved ANN controllers outputting high frequency oscil-

lation was thus reduced.

Encoding SUPGs with CPPNs: In the second generative

encoding scheme evaluated, the CPPN encodes the attributes

of a SUPG. The SUPG is a macro-neuron (Fig. 3) that upon

being triggered, produces a single cycle of a CPPN encoded

activation pattern. Consequently, the repeated triggering of

the SUPG results in temporal oscillations, that can be used

to drive the motors of a legged robot (Morse et al., 2013).

In this encoding, the CPPN is input the position (x, y) of

the SUPG in the substrate, and the elapsed time (in interval

[0, 1]) since the SUPG was last triggered (Fig. 3a). During

the period of the SUPG, its internal timer ramps upwards

with each simulation time-step, from an initial value of 0
to a maximum value of 1 (Fig. 3b). Therefore, the resultant

activation pattern output by the SUPG is a function of both,

its position in the substrate, and the time since the last cycle

was initiated.

Applying the SUPGs for hexapod locomotion, the sub-

strate comprises 12 SUPGs positioned to reflect the robot

morphology (Fig. 3c). The outputs of the SUPGs at each

time-step specify the desired angles for the first and second

servos (s1 and s2), on each leg of the robot. The two SUPGs

on each leg of the robot are triggered by the corresponding

foot touching the ground, resulting in a closed-loop control.

Finally, to avoid all the SUPGs being triggered simultane-

ously, the first trigger to each SUPG is delayed by an offset.

In this study, the offset output of the CPPN is determined

for the s1 SUPG on each leg by supplying its coordinates as

input, and setting the time input to 0. The same offset value

is also applied to the s2 SUPG on the leg, allowing both the

oscillators on each leg to start simultaneously.

Direct encoding: Locomotion controllers evolved with di-

rect encoding are designed to be simple, wherein the actua-

tion along each DOF of the robot is governed by the periodic

signal of an uncoupled amplitude controlled phase oscillator.

For an oscillator controlling servo sj on leg l of the robot,

we have:

α̈lj = β

(

β

4
(Alj − αlj)− α̇lj

)

(3a)

γlj = αlj cos (2π (t+ φlj)) (3b)

where αlj and φlj denote the amplitude and phase of the

oscillator, Alj represents its intrinsic amplitude, and γlj rep-

resents the control signal with frequency of 1 Hz. The un-

coupled oscillator amplitude αlj converges to the intrinsic

amplitude Alj at rate determined by positive constant β (set

to 10 for rapid convergence). The Euler integration method

with a step-size of 20 ms is used to solve the differential

equation.

Hexapod leg actuation is governed by the differential

equation model (eq. 3) instead of a standard periodic func-

tion (e.g., Koos et al. (2013)), to allow for smooth transitions

in amplitude and frequency of the control signal between

different gaits and to investigate the effects of coupling be-

tween oscillators, in our future work.

There are four evolved parameters (Al1, φl1,Al2, φl2) on

each leg l ∈ {0 . . . 5} of the robot. Consequently, a directly

encoded controller for the hexapod robot is fully represented

by 24 parameters.
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Figure 3: Encoding SUPGs with CPPNs (inspired by Morse

et al. (2013)). (a) The SUPG output is a function of its co-

ordinates (x, y) in the substrate, and the elapsed time since

last trigger (output of Timer). The time of first trigger is de-

termined by an offset. (b) Once triggered, the SUPG timer

ramps upward linearly from 0 to 1 and stays there, until it is

re-triggered. (c) Positions of the 12 SUPGs in the substrate,

outputting the desired angles for the first two servos (s1 and

s2), on each leg of the hexapod.

Experiments

We conducted 8000 generations of artificial selection in pop-

ulations consisting of 100 individuals. Our aim was to evolve

controllers for the hexapod robot to walk forward, evaluated

for a period of 5 s (334 time-steps). The nondominated sort-

ing genetic algorithm II (NSGA-II) was used to simultane-

ously optimize the following three objectives:

Maximize











−Fi

−|Θi|
1

N

∑j=N

j=0
D(Bi, Bj)

(4)

where for individual i in the population, Fi is the fitness

computed as the distance between the final position of i and

a goal located 25 m directly in front of the robot’s initial

position, Θi denotes the angle of the robot’s trajectory with

respect to the normal forward walking direction, D(Bi, Bj)
is the hamming distance between the binary gait vectors of

individual i and j, and N is the size of the population.

In eq. 4, the first and second objectives reward individuals

to walk forward large distances towards a goal, unattainable

by the robot within the experiment evaluation time. The

third objective is introduced to facilitate the exploration of

diverse solutions and avoid premature convergence (Mouret

and Doncieux, 2012).

Artificial selection was conducted in 20 independent

replicates, for each of the three encodings. Performance

and evolvability analysis are reported for the best individ-

ual of each replicate, selected to have the highest fitness in

the population, and with an angle of trajectory in the range

of ±1◦ (simulation source code can be downloaded from

http://pages.isir.upmc.fr/evorob_db.)

Individual performance

In all the encodings, the performance of the best indi-

viduals rapidly increased with a quasi-stable equilibrium

being reached with less than 5000 generations of selec-

tion (Fig. 4a). Additionally, the directly encoded individu-

als converged more rapidly as compared to those encoded

with ANN and SUPG schemes (Fig. 6a). After 8000 gen-

erations, the performance of the Direct, ANN and SUPG

encodings, was 1.94 ± 0.18, 2.93 ± 1.60 and 2.78 ± 1.43
meters, respectively (Median±IQR, see Fig. 4b). Amongst

the three encoding schemes, the directly encoded individ-

uals received the lowest performance (Mann-Whitney test,

d.f. = 2, p < 0.001), while no significant difference in per-

formance was detected between the two generative encoding

schemes.
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Figure 4: Performance in forward displacement for the Di-

rect, ANN, and SUPG encodings: (a) Median performance

for the 8000 generations of evolution; and (b) Performance

of encodings at generation 8000.

Importantly, the frequency of the directly encoded oscil-

lations governing leg actuation was prefixed at 1 Hz (eq. 3b).

By contrast, the individuals evolved with generative encod-

ings were capable of expressing higher frequency oscilla-

tions (2.56 ± 1.25 Hz for ANN, and 3.81 ± 0.73 Hz for

SUPG), and the frequency of the gait may itself be under se-

lection. Consequently, an assessment of the three encodings

solely on the basis of the performance is biased, and other

measures are needed to compare encodings.

Evolvability analysis

The evolvability provided by the encoding schemes is an-

alyzed by mutating the best individual of each replicate at

generation 8000, and reporting the following: (i) The pro-

portion decrease in performance consequent to the muta-

tion (eq. 1); and (ii) The gait diversity, computed as the

mutual information between gait vectors of the original and

mutated individual (eq. 2c). The individual is mutated 1000
times, in separate, independent instances. Finally, a kernel



Figure 5: Gait diversity and the proportion decrease in performance, consequent to each of 20000 independent mutations, for

the Direct (left), ANN (middle), and SUPG (right) encoding schemes, pooled from all 20 replicates.

density estimation (Scott, 2009), is used to visualize the re-

sultant landscape of 20000 data points (1000 mutations ×
20 replicates), pooled together from all replicates.3

Across the three encoding schemes, the SUPG approach

revealed the highest evolvability, with the capability to ex-

plore very different but viable gaits (see Fig. 5). In evolvabil-

ity analysis with Direct encoding, a conservative exploration

of the phenotype, limited to solutions close to the unmutated

individuals was found (0.33 and 10.5%, median gait diver-

sity, and drop in performance, respectively). By contrast, the

generative encodings were aggressive in the exploration of

the phenotypic landscape, with the gait diversity of mutated

individuals at 0.95 for ANN, and 0.99 for the SUPG encod-

ings. However, differences existed in the severity of nega-

tive effects of mutations amongst the two encoding schemes.

The ANN encoded individuals were sensitive to the effects

of deleterious and lethal mutations4, resulting in a 78.9%
drop in performance. In comparison, individuals evolved

with the SUPG encoding were much more resilient to the

negative effects of mutations, with a smaller decrement of

43.1% in performance following mutation.

Adaptation to faults

The significance of our measure of evolvability of the Direct,

ANN and SUPG encodings was investigated by analyzing

the adaptation of the evolved robot’s gait, following the re-

moval of one of its legs. We expect that for the encodings

registering a higher measure of evolvability, the correspond-

ing evolved individuals would require fewer generations to

recoverer an effective walking gait.

In these experiments, the new populations comprised 100
mutated individuals of the best individual of each replicate

at generation 8000. We conducted a further 10000 gener-

3Bivariate density estimation, with Gaussian type kernels over
a grid of 100× 100 equidistant points.

4Lethal mutations result in performance drops in excess of
100%, corresponding to the failure of any forward movement by
the robot.

ations of artificial selection on the populations of amputee

hexapods (leg 1 removed). The number of generations re-

quired to regain an effective gait and the proportion of the

original performance recovered, was analyzed.
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Figure 6: Recovered performance in forward displacement

with the removal of leg 1 (legs numbered in Fig. 1a), for the

Direct, ANN, and SUPG encodings: (a) Median proportion

of performance before (left), and after (right) leg removal;

and (b) Proportion of performance recovered 10000 genera-

tions after leg removal.

In the 10000 generations of selection, all the three en-

codings were capable of recovering the majority of their

original performance (see Fig. 6a). After 10000 genera-

tions post leg removal, the recovered proportion of per-

formance of the Direct, ANN and SUPG encodings, was

0.88 ± 0.04, 0.92 ± 0.38, and 1.02 ± 0.14, respectively

(Median±IQR, see Fig. 6b). Furthermore, amongst the three

encoding schemes, the SUPG encoded individuals recovered

the most of their original performance (Mann-Whitney test,

d.f. = 2, p < 0.001), while no significant difference in re-

covered performance was detected between the Direct and

ANN schemes.

In order to analyze the recovery rate of amputee hexapods,

in Fig. 7 we have plotted the performance lost immedi-

ately after leg removal in each of 20 replicates (horizon-

tal axis) and the number of generations required to recover



90% of the original performance in each replicate (vertical

axis). The directly encoded individuals could make a 90%
recovery in only 6 of 20 replicates, and suffered a median

drop in performance of 60.9% immediately following leg

removal. By contrast, the ANN and SUPG generative en-

coding schemes were better able to recover the loss in per-

formance following amputation. In experiments with ANN

encoding, 12 of 20 replicates recovered 90% of their original

performance in 4392 generations (median for all replicates),

despite a drastic initial loss in performance of 93.9%. The

SUPG encoded amputee hexapods exhibited the fastest re-

covery, with 18 of 20 replicates being able to make the mark

in 559 generations (median for all replicates), after incurring

a smaller initial drop in performance of 67.3% consequent to

leg removal.
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Figure 7: Proportion of performance lost immediately after

leg removal and the number of generations (of 10000) re-

quired for recovery, in each of the 20 replicates (small mark-

ers), and the corresponding medians (large markers), for the

Direct, ANN, and SUPG encoding schemes. The bounding

boxes extend from first to third quartile.

Discussion

We investigated the evolvability provided by generatively

encoded ANNs (Clune et al., 2011; Yosinski et al., 2011) and

SUPGs (Morse et al., 2013), and a direct encoding, quanti-

fying both, (i) the robustness to deleterious mutations, and

(ii) the variations in the phenotypes after genetic change,

for the hexapod locomotion problem. The significance of

our measure of evolvability was evaluated by the individ-

ual adaptation response to morphological changes, not pre-

viously encountered by the hexapod.

Our results revealed a direct relationship between the es-

timated evolvability, and the capability of an individual to

adapt to severe changes in its morphology, simulated by the

amputation of one of its legs. Amongst the three encod-

ings evaluated, SUPGs exhibited the highest evolvability,

and were best able to recovery following leg removal. In all

but two replicates, the individuals were capable of recover-

ing 90% of their original performance, and did so almost an

order of magnitude faster than the other encodings, perhaps

consequent to the closed-loop control ingrained in the SUPG

encoding scheme. Such a mechanism would attempt to re-

form deleteriously mutated gaits, and consequently buffer

the individual from the negative effects of such mutations.

However, the effects of such a self-correction mechanism on

evolvability needs further investigation.

The generatively encoded ANN and SUPG individuals

achieved high performance gaits, when evolved for the sym-

metric hexapod robot. However, the performance recovery

following leg removal was appreciably different between the

two encoding schemes. The longer recovery of ANN indi-

viduals may be consequent to the resultant unsymmetrical

and irregular hexapod morphology, a region of the problem

geometry space wherein ANN generative encodings have

been shown to perform poorly (Clune et al., 2011). Conse-

quently, the damage recovery of ANN-encoded individuals

would improve in situations wherein changes to the hexapod

morphology preserve its symmetry (such as the removal of

two middle legs). The outcome of such a scenario needs to

be explored further.

For our measure of evolvability, we mutated the individ-

uals with a predetermined mutation rate, tuned to allow a

speedy convergence of the evolved solutions. This is a crit-

ical consideration, as variations to the mutation rate can af-

fect the viability and gait diversity of generated mutants.

Preliminary results suggest that with an increase in mutation

rate, the peak of the distribution of mutants shifts towards

more diverse gaits. However, the overall shape of the dis-

tribution, highlighting desirable regions of the evolvability

landscape, remains the same for all three encodings. A rig-

orous analysis on the effect of variations in mutation rate and

size (e.g, small mutations to many genes, or large mutations

to a few genes) on the evolvability landscape, is part of our

future work.

In this study, we present a novel approach to visualize the

evolvability of a genotype-phenotype map, to analyze simul-

taneously the quality of genetic mutations, and the quantity

of phenotypic variation generated. Our measure of evolv-

ability may allow the selection of an encoding capable of

producing adaptable individuals, when a inter-encoding per-

formance comparison is no longer sufficient. In our model,

the phenotypic variation was associated with the mutual in-

formation between hexapod gaits, but the diversity may be

similarly computed for bipedal and quadrupedal robots, and

for other qualities, such as the final position of a robot in

a maze navigation task (Lehman and Stanley, 2011; Mouret

and Doncieux, 2012). In this way, we hope our work may

serve as a stepping stone for further research on evolvability,



applied to a wide range of problems in the field of evolution-

ary computation.

Supplemental data: Movies of hexapod walking behav-

ior are online at http://goo.gl/4HC5MY.
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