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Résumé The DownSide Risk (DSR) model for portfolio optimisation allows to overcome the
drawbacks of the classical Mean-Variance model concerning the asymmetry of returns and the
risk perception of investors. This model optimization deals with a positive definite matrix that is
endogenous with respect to portfolio weights. This aspect makes the problem far more difficult
to handle. For this purpose, Athayde (2001) developed a new recursive minimization procedure
that ensures the convergence to the solution. However, when a finite number of observations
is available, the portfolio frontier presents some discontinuity and is not very smooth. In order
to overcome that, Athayde (2003) proposed a Mean Kernel estimation of the returns, so as to
create a smoother portfolio frontier. This technique provides an effect similar to the case in which
continuous observations are available. In this paper, Athayde model is reformulated and clarified.
Then, taking advantage on the robustness of the median, another nonparametric approach based
on Median Kernel returns estimation is proposed in order to construct a portfolio frontier. A
new version of Athayde’s algorithm will be exhibited. Finally, the properties of this improved
portfolio frontier are studied and analysed on the French Stock Market.
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1 Introduction

Optimizing asset allocation is simply defined as the process of mixing asset weights of a
portfolio within the constraints of an investor’s capital resources to yield the most favourable
risk-return trade-off. For typical risk-averse investors, an optimal combination of investment
assets that gives a lower risk and a higher return is always preferred (see Markowitz (1952)). In a
complete market without riskless lending and borrowing, a whole range of efficient asset portfolios
having the stochastic dominance features could be determined, which collectively delineates a
convex Mean-Variance frontier.
The classical Mean-Variance (M-V) portfolio optimization model introduced by Markowitz (1952)
aims at determining the proportions ωi of a given capital to be invested in each asset i belonging
to a predetermined set or market so as to minimize the risk of the return of the whole portfolio
for specified expected return. The risk is measured by the variance. More precisely, suppose that
m assets are available, and denote by µi the expected return of asset i , and σij the Covariance
of returns of assets i and j for i, j = 1, . . . . ,m. Let E∗ be the required level of return for the
portfolio, the classical M-V model is the following optimization program :

min
ω1,ω2,....,ωm

m∑
i=1

m∑
j=1

ωiωjσij (1)

subject to
m∑
i=1

ωiµi = E∗ and
m∑
i=1

ωi = 1.

This is a convex quadratic programming problem which can be solved by a number of efficient
algorithms with a moderate computational effort even for large instance. This problem can be
solved for a specific value of E∗ or, alternatively, for several values of E∗ thus generating the
minimum variance set. Either way, it is important to notice, firstly, that the risk of the portfolio
can be expressed as a function of the risk of the individual assets in the portfolio ; secondly,
that all the Variances, Covariances, and Expected Returns of the individual assets are exogenous
variables.
However, the use of variance as a risk measure is a questionable measure of risk for at least three
reasons : (1) it makes no distinction between gains and losses, (2) it is an appropriate measure
of risk only when the underlying distribution of returns is symmetric and (3) it can be applied
as a risk measure only when the underlying distribution of returns is Normal.
Markowitz (1959) recognised the “asymmetrical" inefficiencies inherited in the traditional M-V
model. To overcome the drawbacks of this model, he suggested to use a DownSide Risk (DSR)
measured by

DSR =
1

T

>∑
t=1

[min(rpt −B, 0)]2, (2)

where rpt denotes the returns of the portfolio and B any benchmark return chosen by the investor.
The benchmark can be equal to 0 (or the risk-free rate), any stock market index (CAC 40) or the
mean µ of the portfolio return. Note that if B = µ, the DSR is the so called Semivariance. The
DSR is a more robust measure of asset risk that focuses only on the risks below a target rate of
return. This measure of risk is a more plausible for several reasons. Firstly, investors obviously
do not dislike upside volatility ; they only dislike downside volatility, secondly, the DSR is more
useful than the variance when the underlying distribution of returns is asymmetric and just as
useful when the underlying distribution is symmetric ; in other words, the DSR is at least a
measure of risk as useful as the variance, and finally the DSR combines into one measure the
information provided by two statistics, variance and skewness, thus making it possible to use a
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one-factor model to estimate required returns. Then, the optimization model can be written as
follows :

min
ω1,ω2,....,ωm

1

T

T∑
t=1

[min(rpt −B, 0)]2 (3)

subject to
m∑
i=1

ωiµi = E∗
m∑
i=1

ωi = 1.

However, finding the portfolio with minimum DSR is not an easy task. The major obstacle to get
the solution of this problem is that the Semicovariance matrix is endogenous ; that is, a change in
weights affects the periods in witch the portfolio under-performs the target rate of return, which
in turn affects the element of the Semicovariance matrix.
Many approaches are suggested to estimate the portfolio semivariance. For example, Markowitz
(1959) suggested the following estimator :

Σ2
pB =

m∑
i=1

m∑
j=1

ωiωjΣijB , where ΣijB =
1

T

K∑
t=1

(rit −B)(rjt −B),

where periods 1 to K are periods in witch the portfolio under-performs the benchmark B.
The advantage of this estimator is that provides an exact estimation of the portfolio Semiva-
riance. However, the Semicovariance matrix remains endogenous. Many authors propose different
ways to resolve problem (3). Among them, Hogan and Warren (1974) proposed to use the the
Frank-Wolf algorithm. Ang (1975) proposed to linearise the Semivariance so that the optimiza-
tion problem can be solved using linear programming. Harlow (1991) also considered problem
(3) and generated Mean-Semivariance efficient frontier, which he compares to the Mean-Variance
efficient frontiers. Markowitz et al. (1993) transformed the Mean-Semivariance problem into a
quadratic problem by adding fictitious securities. King (1993) extended the Levy-Markowitz
argument (Levy and Markowitz, 1979) to account for asymmetric risk by basing the local ap-
proximation on piecewise linear-quadratic risk measures, which can be tuned to express a wide
range of preferences and adjusted to reject outliers in the data. Mamoghli and Daboussi (2008)
improved Harlow approach and their model allows to overcome the problem of inequality of
the Semicovariance measures which occur in the Mean-Semivariance model of Harlow. Estrada
(2008) proposed a simple and accurate heuristic approach that yields a symmetric and exogenous
Semicovariance matrix, which enables the determination of Mean-Semivariance optimal portfo-
lios by using the well known closed-form solutions of Mean-Variance problem. Athayde (2003)
generalised his own iterative algorithm developed in (2001) to construct a Mean-DownSide risk
portfolio frontier. The major contribution in Athayde (2001) is to replace returns by their mean
kernel estimations (nonparametric mean regressions). The great advantage of this technique is
to provide an effect similar to the case in which observations are continuous. The new portfolio
frontier has a smoother shape than the traditional one. Although Athayde contribution is innova-
tive, his two papers are unstructured with no simulations and no applications. Another neglected
aspect which deserves serious attention concerns the theory : a great confusion is palpable in the
estimators writing.

In this paper, Athayde’s work is first revisited by making it rigorous. The mean nonparametric
estimator is clarified and its parameters are exhibited as well as their practical choices. Than the
corresponding optimization algorithm is coded using R-software and empirically validated on real
data. Secondly, taking advantage on the robustness of the median, Athayde’s work is improved by
proposing another method to optimize a portfolio : this new method is based on nonparametric
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estimation of conditional median based on kernel method. It is well-known that the median is
more robust than the mean and less sensitive to the outliers. Returns will be replaced by their
nonparametric median estimators. Additionally, the optimal portfolio will be obtained under
positivity constraints (all the ωi are positive) and Short Selling constraints (ωi ∈ R). In order
to validate this method, a new algorithm is written and coded. All the optimization methods
are compared to each others and their efficiency is checked against the CAC40 index and using
Sharp and Sortino ratios.

The paper is organised as follows. Section 2 presents the classical concepts of the DSR and
the Athayde’s algorithm optimisation. A general presentation of the nonparametric estimators is
given in Section 3. In Section 4, the previous algorithm is extended to incorporate nonparametric
returns estimation, based on conditional mean and conditional median approaches, in the DSR
measures. Section 5 is devoted to a real data analysis of the French Stock Market. Finally, some
conclusions and perspectives are discussed in Section 6.

2 DSR : the traditional approach

The aim of this section is to present the algorithm of Athayde. The purpose of this algorithm
is to give an iterative solution to Downside optimization problem which deals with a positive
definite matrix. This matrix is endogenous to portfolio weights. This aspect makes the problem
far more difficult to handle. For this purpose, Athayde (2001) developed a simple algorithm that
ensures the convergence to the solution. Below, we outline this algorithm. We deal with a 2-asset
portfolio analysis in 2.1 and present general m-asset case in 2.2.

2.1 Case of a portfolio with two assets

2.1.1 Formal framework

To fix ideas, assume two risky assets a and b are available. The return of a portfolio p that
has ω units of a and (1− ω) units of b, at time t can be expressed as :

rpt(ω) = ωrat + (1− ω)rbt, (4)

where rit stands for the return of asset i at time t.
Consider that observations start on date time 1 and end on date T ,

DSR(ω) =
1

T

T∑
t=1

[min(rpt(ω)−B, 0)]2. (5)

The value of ω at time t that makes the portfolio’s return equal to the benchmark B is given
by :

ωt =
B − rbt
rat − rbt

. (6)

If only this observation is available, assuming that rat > rbt, the DSR of this portfolio, respectively
its first and second derivative with respect to ω, would be given by :
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DSR(ω) = [ω(rat − rbt)− (B − rbt)]2 if ω < ωt,

= 0 otherwise .
DSR

′
(ω) = 2[ω(rat − rbt)− (B − rbt)]× (rat − rbt) < 0 if ω < ωt,

= 0 otherwise .
DSR

′′
(ω) = 2(rat − rbt)2 > 0 if ω < ωt, ,

= 0 otherwise .

(7)

The symmetric case, i.e when rat < rbt, is treated similarly.

Remark 1 To compute the DSR as a function of the weight ω, the piecewise quadratic functions
(when rat > rbt and when rat < rbt) should be added . Every time, crossing points like ωt implies
a change in the convexity of the curve. Including all observations, the whole DSR will be a curve
as shown in Figure 1. In the figure 1 (a), the DSR is a function of weight ω. In the figure 1 (b),
the DSR is a function of expected return E(rp). The two curves are similar because that the
expected portfolio return is a linear function of ω (see (9)).

Figure 1: DSR curves.

The expected return of the portfolio will be given by :

E(rp) = ωE(ra) + (1− ω)E(rb)⇔
E(rp)− E(rb)

E(ra)− E(rb)
= ω. (8)

From the linear relation between ω and rp :

E(rp) = ω(E(ra)− E(rb)) + E(rb), (9)

the shape of the set DSR× E(rp) is drawn in Figure 1.

As it has been shown, this curve is a sum of segments of quadratic functions. The curve will
become steeper and steeper as we move toward the extremes, in either directions. The more
observations we have, the more quadratic functions will be added and smaller the segment of
each will become. The changes in the convexity, when we move from one quadratic function
to another will become more frequent and smoother. In the limit case, where we will have an
infinite number of observations, each of these quadratic functions will degenerate to a single point,
creating a continuous smooth changing in the convexity of the curve. Thus, in the bivariate case,
the portfolio set and consequently the portfolio frontier will have a convex shape.

2.1.2 The algorithm

The goal here is to find the portfolio weights that give the minimum DSR, that is the vertex of
the curve above should be determined. To this end, Athayde’s algorithm, which is summarized
below, is used :
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step 1 : Start with an arbitrary portfolio ω0 and compute its DSR. Then construct the
set of date S0 such that

S0 = {t|1 ≤ t ≤ T and rpt(ω0) < B},

and consider the following curve

σ2
0(ω) =

1

T

∑
t∈S0

(rpt(ω)−B)2, where rpt(ω) = ωrat + (1− ω)rbt.

Note that, to start the process, ω0 = (1/2, 1/2) is used.
step 2 : Minimize σ2

0(ω) over S0 to get ω1 = arg minω σ
2
0(ω). This is an ordinary

quadratic problem getting a minimum at

ω1 =

∑
t∈S0

(rat − rbt)(B − rbt)∑
t∈S0

(rat − rbt)2
,

calculate its DSR. Construct the set S1 such that

S1 = {t|1 ≤ t ≤ T and rpt(ω1 < B},

and consider the following quadratic curve

σ2
1(ω) =

1

T

∑
t∈S1

(rpt(ω)−B)2, where rpt(ω) = ωrat + (1− ω)rbt.

step 3 : Minimize σ2
1(ω) over S1to get ω2 = arg minω σ

2
1(ω) which is :

ω2 =

∑
t∈S1

(rat − rbt)(B − rbt)∑
t∈S1

(rat − rbt)2
,

calculate its DSR. Construct the set S2 such that

S2 = {t|1 ≤ t ≤ T and rpt(ω2) < B},

step 4 : Using S2, like the previous steps, determine ω3 that will give a new set S3, and
so on. The algorithm will stop after F iterations. It happens when SF = SF+1 and then
the optimal portfolio weights are

ωF,a =

∑
t∈SF

(rat − rbt)(B − rbt)∑
t∈SF

(rat − rbt)2
, ωF,b = 1− ωF,a.

2.2 Case of a portfolio with m assets

In this section, the bivariate case is extrapolated to the multivariate one. The focus is only on
the minimization algorithm. First, the Multivariate DownSide Risk portfolio is presented, then
the portfolio frontier is exhibited.
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2.2.1 The algorithm

Say that m assets are available, let Rjt = rjt − B the excess return of the asset j on the date t
where B the chosen benchmark.
A given portfolio ω0 is used for starting . A set S0 of observations is selected in which the portfolio
ω0 had negative deviations. The following positive semi-definite matrix is then constructed :

M0 = 1
T

∑
t∈S0


R1t

R2t

...
Rmt

 [R1t R2t · · · Rmt
]

= 1
T

∑
t∈S0


(R1t)

2 R1tR2t R1tRmt
R2tR1t (R2t)

2 R2tRmt
...

...
...

RmtR1t RmtR2t (Rmt)
2

 .
(10)

The next step is to find the portfolio ω1 that solves the following problem :

min
ω
ω>M0ω with ω>1 = 1, (11)

where 1 is a vector of 1s and ω> the transpose of the vector ω.

Using Lagrangian Method (see Annexe 1), the solution to the problem will be given by 1

ω1 =
M−10 1

1>M−10 1
. (12)

With the new portfolio ω1, a set S1 of observations that contains only negative excess returns of
portfolio ω1 is determined. A new positive semidefinite matrix M1 is then constructed :

M1 =
∑
t∈S1


(R1t)

2 R1tR2t R1tRmt
R2tR1t (R2t)

2 R2tRmt
...

...
...

RmtR1t RmtR2t (Rmt)
2

 . (13)

The next step is to find the portfolio ω2 that solves the following problem :

min
ω
ω>M1ω such that ω>1 = 1. (14)

As previously, the solution to the problem will be given by :

ω2 =
M−11 1

1>M−11 1
. (15)

Then, the previous process is iterated to construct a sequence of matrices Mi until getting the
first matrix MF satisfying the criterion MF = MF+1. The optimal portfolio will be given by :

ωF+1 =
M−1F 1

1>M−1F 1
. (16)

1. If M0 is non-invertible, this means that we will have few observations, and that it will be possible to find a
portfolio that will give us a null DSR. This is not an interesting case, it does not mean there is no DSR, it only
means that the sample in question is poor, leaving us with few degrees of freedom.
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This portfolio will give the minimum DSR.

Remark 2 It is clear that there are no constraints on the signs of weights ωi,1, ωi,2, ..., ωi,m which
make up the vector ωi (on the step i− 1). These constraints will be introduced in next sections.
This is one of the contributions that make this work different from Athayde’s one (2003).

2.2.2 The portfolio frontier

In terms of the portfolio frontier, the DSR will represent the vertex of the curve. In order
to build the portfolio frontier, some other points on the efficient set should be found. Since the
interest is in points with a higher expected return than the vertex, an expected return E∗ a bit
higher than the minimum DownSide risk portfolio above should be fixed. So the new recursive
minimization procedure will take the following form :

min
ω
ω>Mω such that ω>1 = 1 and ω>µ = E∗, (17)

where µ is the vector of expected returns and E∗ the target return of the portfolio.

F iterations, with the Lagrangian Method Optimisation at each iteration, are used to achieve
the convergence. The minimum DownSide Risk Portfolio weights with expected excess return E∗
will be given by :

ωF+1 =
αE∗ − λ
αθ − λ2

M−1F µ+
θ − λE∗

αθ − λ2
M−1F 1, (18)

where α = 1>M−1F 1, λ = µ>M−1F 1 et θ = µ>M−1F 1.

The minimum DSR is obtained by pre-multiplying ω>FMF (25) :

DSR(ωF+1) =
α(E∗)2 − 2λE∗ + θ

αθ − λ2
. (19)

Remark 3 The equation (19) shows that while the final matrix MF does not change, DownSide
risk will be a quadratic (parabola) function on the expected return, just like the bivariate case.
However, if the expected return changes considerably, this leads to a new final matrix, and
therefore a new quadratic function, because new values for α, λ and θ are got. The optimization
algorithm given by (18) does not take into account the sign of the weights ωi,1, ωi,2, ..., ωi,m. A
more efficiency analytic optimization program will be proposed.

The portfolio frontier will be described as a sequence of segments of different quadratic functions.
This result is expected because the portfolio frontier is a convex combination of several bivariate
cases (see above). To get a smoother frontier, more and more assets should be used, creating a
similar effect as if we were adding more observations. Nonparametric technique allows to create
a similar effect to those of continuous observations. Therefore, one can build a new portfolio
frontier with a smoother shape, and avoid huge changes in the convexity.

3 DSR : The kernel approach

Using the classical mean-semivariance method, the portfolio frontier presents some disconti-
nuity on its convexity. This is due to the fact that there are a finite number of observations. In
order to overcome that, we will make use of a more sophisticated estimation of DSR, in which the
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density of the returns is estimated using kernels. A kernel estimation of one point can be seen as
a weighted average or median of the observations, in which the weight given to each observation
decreases with its distance from the point in question. The initial idea was given by Athayde in
two papers dating back to (2001) and (2003). However, in both the papers, the estimators have
been badly exposed with several mistakes and imprecisions. The parameters and indices were
not clear with confused notation.
In this section, we clarify all the Athayde’s notation, exhibit properly the kernel mean estimator
and define and expand an alternative kernel median estimator with is more robust than Athay-
de’s one. This section starts by an overview on nonparametric estimation where an adequate
estimator and the corresponding DSR are exposed.

3.1 Basic Background

First meaning of nonparametric covers techniques that do not rely on data belonging to any
particular distribution. In particular, they may be applied in situations where less is known
about the application in question.
In the following, a return kernel density estimate is proposed. Kernel mean estimation of one
point can be seen as a weighted average of the observations, in which the weight given to each
observation decreases with its distance from the point in question.
First of all, some elements which will be used to define kernel estimators are introduced.

The kernel function K(·) : is a probability density function. For theoretical commodity,
the following properties are supposed :

(a)

∫
zK(z)dz = 0 (b)

∫
z2K(z)dz <∞.

Some examples of kernels :

— Rectangular : K(z) = 1
2 for |z| < 1, 0 otherwise.

— Triangular : K(z) = 1− |z| for |z| < 1, 0 otherwise.
— Biweight : K(z) = 15

16 (1− z2)2 for |z| < 1, 0 otherwise.
— Epanechnikov : K(z) = 3

4 (1− 1
5z

2) for |z| < 1
5 , 0 otherwise.

— Gaussian : K(z) = 1√
2π
exp(− 1

2z
2).

The bandwidth h(T ) := h : is a sequence of positive real numbers which decreases to 0
as T tends to infinity. It is also called the the smoothing parameter.

Remark 4 It has been shown in the statistical literature that the choice of the kernel does not
affect a lot the nonparametric estimation procedure. However, the choice of the bandwidth is
crucial.

3.2 Kernel mean estimation

3.2.1 Kernel mean return estimation

Given T return observations rt, t = 1, ..., T , from a given asset or portfolio, the kernel estimator
f̂(·) of probability density return f(·) is defined by

f̂(rt) =
1

Th

T∑
l=1

K

(
rt − rl
h

)
. (20)
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It is characterized by the kernel K which determines the shape of the weighting function, and
the bandwidth h which determines the width of the weighting function and hence the amount of
smoothing. The two components determine the properties of the estimator. Theoretical (mini-
mization of asymptotic errors) and practical (rule of thumb, cross validation, plug-in methods)
researches had been carried out (and continue to be carried out) on the question of how one
should select K and h in order to optimize the properties of the estimator. More details can be
found in Pagan and Ullah (1999), Silverman (1986), Subramaniana (2002), Wang (2002) and Ca-
sanova and Lecompte (2015). To build a more sophisticated estimation of DSR, Athayde (2001,
2003) used the kernel estimator to replace all the observations rt, t = 1, ..., T by mean kernel
estimators (mean regression) r̂t, t = 1, ..., T which are a weighted average of the observations, in
which the weight given to each observation decreases with its distance from the point in question.
The estimator r̂t of some return rt for a given asset or portfolio is then given by :

r̂t =

∑T
l=1 rlK( rt−rlh )∑T
l=1K( rt−rlh )

. (21)

3.2.2 Kernel mean and DSR estimation

Let ω = (ω1, ω2, ...ωm) be a vector of weights, using (21), a new estimation of the DSR of a given
portfolio with n assets, is defined as

DSR(ω) =
1

T

T∑
t=1

[min(r̂pt −B, 0)]
2
, r̂pt = ωr̂1t + ωr̂2t + ...+ ωr̂mt, (22)

where r̂jt, j = 1 . . . ,m, is the kernel mean estimator of the return rjt of asset j on date t.
The construction of the algorithm to get the portfolio frontier with the new DSR, will be exhibited
in Section 4. In the following, a new approach to estimate the DSR is proposed. This approach
is based on kernel median estimation.

3.3 Kernel median estimation

3.3.1 General concept

While an average has traditionally been a popular measure of a mid-point in a sample, it has the
disadvantage of being affected by any single value being too high or too low compared to the rest
of the sample. This is why a median is sometimes taken as a better measure of a mid point. The
median is generally used for skewed distributions. It is better suited for skewed distributions to
derive at central tendency since it is much more robust and sensible. In regression and prediction
context, the median is more robust and most adapted to model data than the mean when the
conditional distribution is multi-modal or asymmetric.
From theoretical point of view, if (X,Z) represents a random vector R2-valued and F (.|X = x)
the conditional distribution of Z given X = x, the conditional median m(x) of Z given X = x is
the solution of the following minimization problem :

m(x) = arg min
y∈R

∫
|z − y|F (dz|X = x). (23)

It is easy to get an estimator m̂(x) of m(x) by replacing in (23) F (dz|X = x) by an appropriate
estimator F̂ (.|X = x). Then

m̂(x) = arg min
y∈R

∫
|z − y|F̂ (dz|X = x). (24)
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More details on theoretical and applied properties of median (and more generally on quantiles)
can be found in Berlinet et al. (2001) or Gannoun et al. (2003).

Remark 5 The conditional distribution function can be seen as a conditional expectation i.e.
E(1{Z≤z}|X = x) = F (z|X = x). Morover, if F (.|X = x) is continuous and strictly increasing,
the conditional median of Z given X = x is obtained as follows :

m(x) = F (0.5|X = x). (25)

3.3.2 Median kernel return estimation

Given T return observations rt, t = 1, . . . , T , from a given asset or portfolio, the kernel estimator
F̂ (z|rt) of the conditional distribution function F (z|rt) is defined by

F̂ (z|rt) =

∑T
l=1 1{rl≤z}K( rt−rlh )∑T

l=1K( rt−rlh )
. (26)

Using Koenker (2005) and (26), a kernel median return estimation is obtained directly by :

ˆ̂rt = arg min
z∈R

∑T
l=1 |rl − z|K( rt−rlh )∑T

l=1K( rt−rlh )
. (27)

Another way to get ˆ̂rt is to solve the following equation

F̂ (z|rt) =

∑T
l=1 1{rl≤z}K( rt−rlh )∑T

l=1K( rt−rlh )
=

1

2
. (28)

Remark 6 In the mathematical statistics literature, more complicated nonparametric estimators
of conditional median exist : local polynomial method, double kernel method, L-estimator method
. . .(see, for instance, Gannoun et al. (2002) for more details). It is well-known that the median
smooths better than the mean and is less sensitive to the presence of outliers.

3.3.3 Kernel median and DRS estimation

Using the robustness of the median, a new estimation of DSR will be proposed. To this end, all
the returns observations rjt, t = 1, . . . , T andj = 1, . . . ,m, are replaced by their median kernel
estimators (median regression) ˆ̂rjt, which are a weighted median of the observations.
Let ω = (ω1, ω2, . . . , ωm). The DSR of given portfolio with m assets, is given by

DSR(ω) =
1

T

T∑
t=1

[
min(ˆ̂rpt −B, 0)

]2
, ˆ̂rpt = ω1

ˆ̂r1t + ω2
ˆ̂r2t + ...+ ωm ˆ̂rmt, (29)

where ˆ̂rjt is the kernel median estimator of the return rjt of asset j on date t.
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3.3.4 Kernel median and DRS estimation

Using the robustness of the median, a new estimation of DSR will be proposed. To this end, all
the returns observations rjt, t = 1, . . . , T andj = 1, . . . , n, are replaced by their median kernel
estimators (median regression) ˆ̂rjt, which are a weighted median of the observations.
Let ω = (ω1, ω2, . . . , ωn). The DSR of given portfolio with n assets, is given by

DSR(ω) =
1

T

T∑
t=1

[
min(ˆ̂rpt −B, 0)

]2
, ˆ̂rpt = ω1

ˆ̂r1t + ω2
ˆ̂r2t + ...+ ωn ˆ̂rnt, (30)

where ˆ̂rjt is the kernel median estimator of the return rjt of asset j on date t.

4 Nonparametric DSR minimization algorithm

In this section, the algorithm that minimizes the nonparametric DSR is presented. The idea
of this algorithm is to minimize the DSR in a sub-set of dates such that the DSR has a close
form solution. The sub-set is then iteratively modified up to global DSR minimization. Finally,
a method to construct the efficient frontier is proposed.

4.1 Case of a portfolio with two assets

Suppose that they are two risky assets a and b to constitute the portfolio P . Let ω0 be a
starting portfolio, ω0 = (ω0,a, ω0,b) = (ω0,a, 1 − ω0,a) where ω0,a and ω0,b are the proportions
of the portfolio allocated to assets a and b. The return of this portfolio on date t is r0,pt =
ω0rat + (1 − ω0)rbt. All this returns are replaced with a the kernel median estimators defined
above :

ˆ̂r0,pt = arg min
z∈R

∑T
l=1 |r0,pl − z|K(

r0,pt−r0,pl
h )∑T

l=1K(
r0,pt−r0,pl

h )
.

Then, for each single asset, the T returns are estimated following the same procedure and using
the weighting given to portfolio associated to ω0 :

ˆ̂r0,at = arg min
z∈R

∑T
l=1 |ral − z|K(

r0,pt−r0,pl
h )∑T

l=1K(
r0,pt−r0,pl

h )
, ˆ̂r0,bt = arg min

z∈R

∑T
l=1 |rbl − z|K(

r0,pt−r0,pl
h )∑T

l=1K(
r0,pt−r0,pl

h )
, (31)

Consider S0 the set of indexes such that the estimated excess portfolio returns associated to ω(0)

are negative
S0 = {t|1 < t < T such that ˆ̂r0,pt < B},

and solve the following problem :

arg min
ω

∑
t∈S0

(ˆ̂rpt −B)2, ˆ̂rpt = ω ˆ̂r0,at + (1− ω)ˆ̂r0,bt.

The solution is denoted ω1 and the associated portfolio returns are r1,pt = ω1rat + (1 − ω1)rbt.
These returns are nonparametrically estimated by :

ˆ̂r1,pt = arg min
z∈R

∑T
l=1 |r1,pl − z|K(

r1,pt−r1,pl
h )∑T

l=1K(
r1,pt−r1,pl

h )
.



Mean and median-based nonparametric estimation of returns in mean-downside risk portfolio frontier 13

The returns of each single asset are deduced as follows :

ˆ̂r1,at = arg min
z∈R

∑T
l=1 |ral − z|K(

r1,pt−r1,pl
h )∑T

l=1K(
r1,pt−r1,pl

h )
, ˆ̂r1,bt = arg min

z∈R

∑T
l=1 |rbl − z|K(

r1,pt−r1,pl
h )∑T

l=1K(
r1,pt−r1,pl

h )
, (32)

Consider S1 the set of indexes such that the estimated excess portfolio returns associated to ω(1)

are negative :
S1 = {t|1 ≤ t ≤ T such that ˆ̂r1,pt < B},

and resolve the following optimization problem :

arg min
ω

∑
t∈S1

(ˆ̂rpt −B)2, ˆ̂rpt = ω ˆ̂r1,at + (1− ω)ˆ̂r1,bt,

where ˆ̂r1,at and ˆ̂r1,bt are defined in (31).
From here on, the same procedure is followed to get S2, S3 . . . . Even with the same set of selected
observations, iterations should be continued because using the kernel estimations will be different
for every new portfolio found. Nevertheless, it should be noted that the changes in the portfolio (
and consequently on DSR), will be smaller from one iteration to another. Thus, iterations should
be stopped when changes become smaller than a fixed limit.

4.2 Case of a portfolio with m assets

4.2.1 The portfolio optimization method

Suppose that they arem assets available . We start with an arbitrary portfolio ω0 = (ω0,1, ω0,2, ..., ω0,m).
For each date t, t = 1, . . . , T , the return of this portfolio r0,pt = ω0,1r1t + · · ·+ω0,mrmt. All these
returns are replaced by median kernel estimators :

ˆ̂r0,pt = arg min
z∈R

∑T
l=1 |r0,pl − z|K(

r0,pt−r0,pl
h )∑T

l=1K(
r0,pt−r0,pl

h )
, t = 1, . . . , T.

The estimation of returns of each single asset i is given by

ˆ̂r0,it = arg min
z∈R

∑T
l=1 |ril − z|K(

r0,pt−r0,pl
h )∑T

l=1K(
r0,pt−r0,pl

h )
; t = 1, . . . , T, i = 1, . . . ,m.

From the previous estimators, dates when the estimated returns of portfolio associated to ω0 had
negative excess returns are selected. This set is called S0.
Let R̂0,it = ˆ̂r0,it −B and M0 the following positive semidefinite matrix :

M0 = 1
T

∑
t∈S0


R̂0,1t

R̂0,2t

...
R̂0,mt

 [ R̂0,1t R̂0,2t · · · R̂0,mt

]

= 1
T

∑
t∈S0


(R̂0,1t)

2 R̂0,1tR̂0,2t R̂0,1tR̂0,mt

R̂0,2tR̂0,1t (R̂0,2t)
2 R̂0,2tR̂0,mt

...
...

...
R̂0,mtR̂0,1t R̂0,mtR̂0,2t (R̂0,mt)

2

 .
(33)



14 Hanene Ben Salah et al.

The next step is to find the portfolio weight ω1 that solves the following problem :

arg min
ω
ω>M0ω with ω>1 = 1. (34)

The solution is given by

ω1 = (ω1,1, ω1,2, ..., ω1,m) =
M−10 1

1>M (−1)
0 1

. (35)

The new portfolio return r1,pt associated to ω1 are

r1,pt = ω1,1r1t + ω1,2r2t + ...ω1,mRmt.

The associated smooth returns are :

ˆ̂r1,pt = arg min
z∈R

∑T
l=1 |r1,pl − z|K(

r1,pt−r1,pl
h )∑T

l=1K(
r1,pt−r1,pl

h )
, t = 1, . . . T,

and the smoothing returns of the assets belonging the portfolio are :

ˆ̂r1,it = arg min
z∈R

∑T
l=1 |ril − z|K(

r1,pt−r1,pl
h )∑T

l=1K(
r1,pt−r1,pl

h )
, t = 1, . . . , T, i = 1, . . . ,m.

Now, let S1 be the set of all indices such that ˆ̂r1,pt −B < 0, i.e.

S1 = {t|1 ≤ t ≤ T where ˆ̂r1,pt −B < 0}.

Let R̂1,it = ˆ̂r1,it −B, t = 1, . . . , T and i = 1, . . . ,m.
Using the above estimators, the following new positive definite matrix M1 is built :

M1 = 1
T

∑
t∈S1


R̂1,1t

R̂1,2t

...
R̂1,nt

 [ R̂1,1t R̂1,2t · · · R̂1,nt

]

= 1
T

∑
t∈S1


(R̂1,1t)

2 R̂1,1tR̂1,2t R̂1,1tR̂1,mt

R̂1,2tR̂1,1t (R̂1,2t)
2 R̂1,2tR̂1,mt

...
...

...
R̂1,mtR̂1,1t R̂1,mtR̂1,2t (R̂1,mt)

2

 .
(36)

Next step is to to solve the following optimization problem

arg min
ω
ω>M1ω with ω>1 = 1. (37)

The solution is given by

ω2 = (ω2,1, . . . , , ω2,m) =
M−11 1

1>M−11 1
. (38)

Then, following the same procedure, all the returns r2,pt and their smoothing version ˆ̂r2,pt as-
sociated to ω2 are constructed. Similarly, for each asset i, i = 1, . . . ,m, all its corresponding
smoothing returns ˆ̂r1,it, t = 1, . . . , T are derived. The iteration should stop when the changes in
the portfolio become insignificant, or simply smaller than a pre-established limit.
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Remark 7 From a computational point of view, the iterations are more complicated than the
classical DSR because the median kernel estimators of returns change on each step. Neverthe-
less, the portfolio frontier will be a smoother curve than in the classical case (see below).

To solve the kernel mean DSR minimization problem described in Subsection (2.3.2.1), all
the previous steps should be respected with replacing ˆ̂rs,pt and ˆ̂rs,it by r̂s,pt and r̂s,it.

4.2.2 Nonparametric methods in efficient frontier construction

The idea is to mix the procedure exhibited in section 2.2.2 with an adapted optimization program.
The major change is in the use of the kernel median estimators of returns (or the kernel mean
estimators) instead of the observed returns. The aim is to get smooth efficient frontier compared
to frontiers determined by classical models (Mean-Variance and Mean-DSR).
Let M the semidefinite semicovariance matrix with coefficients determined by

ΣijB =
1

T

K∑
t=1

(rit −B)(rjt −B),

where periods 1 to K are periods in witch the portfolio under-performs the benchmark B.
The problem remains the same as in (3) with additional constraints concerning the weights :
positivity and Short-Selling constraints :

1. Positivity constraint
minω ω

>Mω
subjcet to (39)ω>1 = 1

ω>µ = E∗

ωi ≥ 0, i = 1, 2, . . . , n

2. Short-Selling constraint
minω ω

>Mω
subject to (40){
ω>1 = 1
ω>µ = E∗

Same steps as above are followed. On each step (j), until the convergence, we solve the following
problem :

arg minω ω
>Mjω

subjcet to (41)

Positivity constraint Short-Selling
ω>1 = 1 ω>1 = 1
ω>µ̃j = E∗ ω>µ̃j = E∗

ωi ≥ 0, i = 1, 2 . . . ,m

where

µ̃j =

[∑
t r̃j,1t
T

, . . . ,

∑
t r̃j,mt
T

]>
.
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with r̃ represents the nonparametric estimated return obtained by mean or median kernel me-
thods.
After the achievement of the convergence (in (F + 1)th step), the minimum DownSide Risk
portfolio with expected excess return given by E∗ will be given by :

(ωF+1)>MFωF+1. (42)

Remark 8 1. Under the Short-Selling constraint, the optimal portfolio weight is obtained by
successive iterations (similar approach as (2.2.2)) which leads, thanks to the Lagrangian
method, to the following explicit expression :

ωF+1 =
α̂E∗ − λ̂
α̂θ̂ − λ̂2

M−1F µ̃F +
θ̂ − λ̂E∗

α̂θ̂ − λ̂2
M−1F 1, (43)

where α̂ = 1>M−1F 1, λ̂ = 1>M−1F µ̃F and θ̂ = (µ̃F )>M−1F µ̃F .
Then the DownSide Risk is :

DSR(ωF+1) =
α(E∗)2 − 2λE∗ + θ

αθ − λ2
. (44)

2. In the case of the positivity constraint, the Quad.Prog in R-package is adjusted and
adapted to resolve each step of the minimization program.

5 Empirical analysis

Interesting applications dealing with Mean-DSR optimization on real data were performed by
Zenios and Kang (1993) and Pla-Santamaria and Bravo (2013).
In this section, the performance of the proposed methods are investigated. Classical and nonpa-
rametric methods are compared and tested under different kind of constraints : positivity and
Short-Selling constraints. It is supposed that there is no transaction costs and no taxes.

5.1 Data description

A dataset, drawn from Reuters, was used for this analysis. The original Data consists in daily 9
stocks returns belonged to different sectors : banks, insurance, industry, energy, technology and
telecommunication, from the French stock market :

— Nine assets from French Stock market throughout the period from April 2000 to April
2014, yielding a total of 3579 daily observations,

— The CAC 40 (the French Stock Market Index) values (observed in the same period) will
provide a baseline for subsequent comparisons between the different methods.

— The one year Government French Bond for 2013 is considered as the Risk-Free Rate of
Return.

— The benchmark B is supposed to be equal to zero.
Historical Price Data pt is adjusted for dividends. The assets returns are calculated from stock
prices observed on Thomson Reuters Platform as follows :

Rt =
pt − pt−1
pt−1

(45)

with
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— pt : Stock price at date t,
— pt−1 : Stock price at date t− 1

The historical statistics of the asset markets are summarised in Table (1)

Min Mean sd Skewness Kurtosis Max
Accor -0.1294 0.000225 0.02230 0.09481 3.0857 0.1241
Airb -0.2632 0.000436 0.02580 -0.13740 5.5292 0.1340
Alcat -0.1975 0.000531 0.03607 0.45715 8.4942 0.4054
BNP -0.1724 0.000327 0.02601 0.65718 8.8503 0.2090
Carr -0.1102 0.000157 0.01977 0.12020 2.8544 0.0995
Dano -0.1050 0.000285 0.01571 0.09250 4.2764 0.1019
Oréal -0.1112 0.000261 0.01745 0.21990 4.5650 0.1474
S.Gén -0.1623 0.000251 0.02890 0.39010 6.7635 0.2389
Total -0.0919 0.0001431 0.01716 0.22629 5.6594 0.1364

Table 1: Market Historical Statistics

In term of the third moment of expected returns (skewness), Alcatel, BNP, Carrefour, L’Oréal
and Société Générale (in the French Market) are positive skews. Accor and Danone returns are
approximatively normally distributed. All the distributions have heavier tails and a higher peak
than the normal. Therefore, these findings suggest the use of Downside Risk to find the optimal
portfolio.
The correlation matrix is given in the Table (2).

Accor Airb Alcat BNP Carr Dano Oréal S. Gén Total
Accor 1.000 0.457 0.447 0.544 0.474 0.351 0.426 0.539 0.489
Airb 0.457 1.000 0.401 0.418 0.404 0.337 0.376 0.407 0.415
Alcat 0.447 0.401 1.000 0.465 0.422 0.28 0.383 0.476 0.404
BNP 0.544 0.418 0.465 1.000 0.522 0.367 0.469 0.803 0.554
Carr 0.474 0.404 0.422 0.522 1.000 0.454 0.518 0.508 0.527
Dano 0.351 0.337 0.28 0.367 0.454 1.000 0.488 0.347 0.455
Oréal 0.426 0.376 0.383 0.469 0.518 0.488 1.000 0.434 0.512
S. Gén 0.539 0.407 0.476 0.803 0.508 0.347 0.434 1.000 0.514
Total 0.489 0.415 0.404 0.554 0.527 0.455 0.512 0.514 1.000

Table 2: French correlation matrix

This matrix shows that the assets are weakly correlated because the stocks belong to different
sectors.

5.2 Analysis of results

In this section two strategies are investigated : optimization with positive weights and optimiza-
tion with short selling. In order to ensure clear reading of our results ,from now on, the measures
of risk (Variance and DSR) are multiplied by 104 in all the tables and graphics exhibiting our
simulations.

5.2.1 Optimization with positive weights

Here, the optimal portfolio is obtained under positive constraints on the weights which mean
that short selling is not allowed (ωi ≥ 0, for i = 1, . . . ,m). Four methods are used and tested to
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determine the optimal portfolio.

A. The Mean-Variance method

The Mean-Variance Markowitz method is used in order to get an optimal portfolio. Assets dis-
tribution is supposed to be symmetric. The initial data is divided into two parts : one for making
optimization and one for testing the efficiency of the method. The test sample is used to assess
performance against the CAC 40 index during one year (2013).

A.1 The efficient frontier

The efficient frontier obtained with the Markowitz method is displayed in Figure 2.

Figure 2: Markowitz Mean-Variance efficient frontier.

Figure 2 shows the efficient frontier represented by the upper leg of the hyperbola. The minimum
risk portfolio is given by the vertex (0.104,0.03). To put it clearly, Table 3 gives the optimal
portfolio for many expected returns E∗.

E∗ (%) Variance ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

0.04 0.1055 0 0.1024 0 0 0 0.4379 0.3454 0 0.1143
0.05 0.1087 0 0.1554 0 0 0 0.4318 0.4083 0 0.0045
0.06 0.1169 0 0.1554 0 0 0 0.3104 0.4291 0 0
0.07 0.1327 0 0.3677 0 0 0 0.1841 0.4482 0 0

Table 3: Weights for optimal Portfolios using Mean-Variance method.

One can observe that, the assets Airbus, Danone and L’Oréal are part of the optimal portfolios
for all level of expected returns. It is well-known that those companies are financially strong.
Total asset contributes to the optimal portfolio only for low expected returns.

A.2 Portfolio returns against CAC 40

Now, for a given expected return (E∗ = 0.05%), the return of the optimal portfolio is compared
to the French CAC 40 index. A total of 239 portfolio returns (in working market days during
2013) are compared to 239 CAC 40 daily values. In 52% of cases, the optimal portfolio performed
relatively better than the CAC40 index. The same conclusion is reached for different choices of
E∗. The obtained daily returns during the test period are drawn in Figure 3.

Figure 3: Portfolio returns against CAC 40 Index.

B. The DSR methods

Following the same principle as before, three methods are applied on the previous data (classical
DSR, DSR with mean smoothing, DSR with median smoothing). For nonparametric methods,
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the kernel density used is the Gaussian one :

K(x) =
1√
2π
exp(

−x2

2
).

The bandwidths are determined by the following cross-validation method.

hop = argmin
h
CV (h) = argmin

h

T∑
i=1

[Rpi − R̂(−i,pi)(h)]2 (46)

where
— for mean smoothing

R̂(−i,pi)(h) =

∑T
t=1,t6=iRptK(

Rpi−Rpt

h )∑T
t=1,t6=iK(

Rpi−Rpt

h )
, (47)

— for median smoothing

R̂(−i,pi)(h) = argmin
z∈R

∑T
t=1,t6=i | Rpt − z | K(

Rpi−Rpt

h )∑T
t=1,t6=iK(

Rpi−Rpt

h )
. (48)

The general shape of CV (.) curve is exhbited in Figure (4)

Figure 4: Example of CV(h)

B.1 The efficient frontiers

Figure 5 displays the efficient frontier curves. The first part of this graphic allows easy comparison
between the three proposed Methods. The second part is devoted exclusively to the median
method.

Figure 5: DSR efficient frontiers.

It is apparent from the graphical comparison in Figure 5. that nonparametric methods push the
efficient frontiers outward to the left of the classical DSR curve to produce efficient portfolios
that are stochastically dominant.
In terms of DSR, the nonparametric methods have the smallest values for a given expected
return E∗. The method based on Median smoothing is more efficient. Table 4 gives an overview
of optimal portfolios obtained by each method for various expected returns E∗.
From now on, the abbreviations below will be used :

— ωi, i = 1, . . . , 9 : the optimal weights,
— I : Classical DSR,
— II : DSR with mean smoothing,
— III : DSR with median smoothing.
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Methods E∗ (%) DSR ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

I 0.04 0.049 0 0.064 0 0 0 0.448 0.425 0 0.062
II 0.04 0.010 0 0.000 0 0 0 0.780 0.211 0 0.000
III 0.04 0.002 0 0.506 0 0 0 0.000 0.000 0 0.493
I 0.05 0.050 0 0.138 0 0 0 0.384 0.477 0 0.000
II 0.05 0.012 0 0.310 0 0 0 0.689 0.000 0 0.000
III 0.05 0.004 0 0.567 0 0 0 0.000 0.432 0 0.000
I 0.06 0.052 0 0.243 0 0 0 0.249 0.507 0 0.000
II 0.06 0.014 0 0.394 0 0 0 0.605 0.000 0 0.000
III 0.06 0.006 0 0.567 0 0 0 0.459 0.000 0 0.000
I 0.07 0.059 0 0.348 0 0 0 0.115 0.536 0 0.000
II 0.07 0.024 0 0.439 0 0 0 0.283 0.277 0 0.000
III 0.07 0.012 0 0.762 0 0 0 0.238 0.000 0 0.000

Table 4: Weights for optimal portfolios using DSR methods.

There is a specific strategy for each method. Although, for the three methods, the assets Alcatel,
BNP and Carrefour do not contribute to the optimal portfolio for different level of expected
return, the contribution of the other assets are different from one method to another. In term of
DSR, the nonparametric methods are more efficient than the classical DSR method. The non-
parametric method based on median estimation has the smallest DSR for all the expected returns.

B.2 Portfolio returns against CAC 40

To compare the efficiency of these methods, the daily French CAC 40 index is used. The daily
portfolio returns are computed using the weights obtained with the sample data deprived of
2013’s observations. Results are summarized in Figure 6.

Figure 6: Portfolio returns against CAC 40 Index.

The portfolio returns obtained by nonparametric methods are equal or slightly better than the
CAC 40 index. More precisely, the method using the smoothing median performs better in 54%
of cases. Classical DSR method is less efficient than the CAC 40 (in 47% of days).
Other indices, mainly Sharpe and Sortino Ratios, are used here to measure numerically the
performance of each method. These tools will be exhibited later in this paper.

5.2.2 Optimization with short selling constraint

Short-selling is an interesting strategy because it provides a way to speculate if the market’s value
is going to decline. This allows to add value to the portfolio even in a bear market. Short-selling
could be also used to hedge long positions. Concretely, the strategy involves borrowing a stock
from a broker and then selling it in the market. The stock is bought back and returned to the
broker at a later date, this is called covering the short. If the stock drops, the short seller buys
it back at a lower price and then he makes money.

In this section, the optimal portfolio is obtained under realistic constraints, in the sense that
short selling is allowed (ωi ∈ R, for i = 1, . . . , 9). Short positions should be more than −20%
fulfilling the well-known 120-20 strategy in order to limit the possible high losses. The four me-
thods exhibited above will be used and tested to determine the optimal portfolio.
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A. Mean-Variance method

The classical Mean-Variance model of Markowitz, under short selling constraints , is used in
order to get an optimal portfolio. Assets return distribution is supposed to be Gaussian . As the
previous section, The initial data is divided into two parts : the first one for determining optimal
portfolios and the second one for testing the efficiency of the method. The last sample will be
used to assess performance of the optimal portfolio returns against the CAC 40 index measured
during one year (2013).

A.1 The efficient frontier

The efficient frontier with Short-selling constraint is plotted in Figure 7. It is graphically presen-
ted as a branch of hyperbola, and the minimum risk portfolio is given by the vertex (0.105,0.05).

Figure 7: Mean-Variance efficient frontier with short-selling constraint.

Table 5 shows the optimal portfolio’s weights for a given levels of expected return E∗. Since
short positions are allowed, investors are exposed to higher level of risk. Therefore, high level of
expected return is required.

E∗ (%) V ar ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

0.17 0.314 -0.158 0.917 -0.146 -0.005 -0.20 -0.014 0.893 -0.087 -0.20
0.18 0.354 -0.175 0.996 -0.167 -0.005 -0.20 -0.014 0.893 -0.087 -0.20
0.19 0.399 -0.192 1.075 -0.188 -0.048 -0.20 -0.148 0.954 -0.096 -0.20
0.20 0.447 -0.20 1.163 -0.20 -0.011 -0.20 -0.20 0.955 -0.106 -0.20

Table 5: Optimal portfolios using Mean-Variance method.

Investors should buy the assets AIRBUS and L’OREAL and take short positions for all the other
assets to construct the optimal portfolios, which means that, in that period French Stock Market
was Bearish because of the launch of financial transaction taxes, also because of the economic
recessions or depressions, when pessimism prevails.

A.2 Portfolio returns against CAC 40

For a given expected return (E∗ = 0.17%), the return of the optimal portfolio is compared to
the French CAC 40 index. In Figure 8, a total of 239 portfolio returns (in working market days
during 2013) are compared to 239 CAC 40 daily values. In 51% of cases, the optimal portfolio
returns performed relatively better than the CAC 40 index. The same conclusion is reached for
different choices of E∗.

Figure 8: Portfolio returns against CAC 40 Index.
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B. The DSR methods

After imposing Short-Selling constraint, the three methods (classical DSR, DSR with mean smoo-
thing, DSR with median smoothing) are applied on the data in order to get optimal portfolios.
The same procedure of the previous section is followed.

B.1 The efficient frontiers

Figure 9 shows the efficient frontier curves for the three proposed methods. The first part of the
graphic compares the three Methods. The second part presents only the median method.

Figure 9: DSR efficient frontiers.

Compared to the classical Mean-DSR model, the nonparametric methods present low downside
risk. More precisely , the nonparametric efficient frontier based on median estimation stochas-
tically dominates the other curves for any given expected return. These analyses are confirmed
by results shown in Table 6 which also gives the optimal portfolio weights for different expected
returns E∗.

Mds E∗(%) Var ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

I 0.17 0.135 -0.162 0.893 -0.134 0.131 -0.200 -0.13 1.002 -0.200 -0.20
II 0.17 0.010 -0.200 1.460 -0.200 -0.200 0.501 -0.20 0.239 -0.200 -0.20
III 0.17 0.008 -0.020 1.353 -0.200 -0.200 -0.200 -0.20 0.823 0.024 -0.20
I 0.18 0.152 -0.179 0.975 -0.152 0.127 -0.200 -0.20 1.029 -0.200 -0.20
II 0.18 0.015 -0.200 1.571 -0.200 -0.200 0.490 -0.20 0.139 -0.20 0 0.20
III 0.18 0.012 -0.200 1.510 -0.200 -0.200 -0.200 -0.20 0.666 0.024 -0.20
I 0.19 0.171 -0.200 1.066 -0.177 0.119 -0.200 -0.20 0.992 -0.200 -0.20
II 0.19 0.021 -0.200 1.683 -0.200 -0.200 0.478 -0.20 0.039 -0.200 -0.20
III 0.19 0.025 -0.200 1.668 -0.200 -0.200 -0.200 -0.20 0.508 0.024 -0.20
I 0.20 0.191 -0.200 1.161 -0.200 0.100 -0.200 -0.20 0.939 -0.200 -0.20
II 0.20 0.028 -0.200 1.794 -0.200 -0.200 -0.466 -0.20 -0.061 -0.200 -0.20
III 0.20 0.032 -0.200 1.826 -0.200 -0.200 -0.200 -0.20 0.351 0.023 -0.20

Table 6: Weights for optimal portfolios using DSR methods

The three methods propose different Long-Short strategies of investment. In order to take profit
of the market evolution, investors should take long position on AIRBUS and L’OREAL assets,
and should take short positions on the other assets. It should be noted that, for 0.2% expected
return, L’OREAL asset should be sold when the method based on mean estimation is used. The
difference in asset allocations, between the models, reflects the difference in the measure of risk
used in the optimization programs.
It is still interesting to note that the nonparametric methods seems appealing, because they have
lower risk comparing to the classical Mean-DSR model. The nonparametric method based on
median estimation, clearly outperforms the other models in the total return dimension for the
entire calculation period .
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B.2 Portfolio returns against CAC 40 Index

One way of comparing the performance of these methods, is to investigate expost daily optimal
portfolio returns . This has been done by using the minimum Semivariance determined by the
classical and the nonparametric models, presented previously. The optimal portfolio return is
then calculated for the entire data for 2013’s keeping asset weight within the portfolios static.
Figure 10 shows the obtained portfolio returns as well as the CAC 40 index. The optimal portfolio
returns are very close de the CAC 40 index. Accurately, the method using the smoothing median
outperforms the CAC 40 index in 55% of cases.

Figure 10: DSR efficient frontiers.

5.2.3 Measures of Performance

Another way to compare the performance of the proposed methods : the parametric and nonpa-
rametric methods, is to compute performance ratios : the Sharpe (ShR) and Sortino (SoR) ratios.

— Sharpe Ratio (Sharpe (1966))

The Sharpe ratio is quite simple, which lends to its popularity. The idea of the ratio is to
see how much additional return you are receiving for the additional volatility of holding
the risky asset over a risk-free asset, then, higher level of Sharpe ratio implies better
performance of the portfolio. The Sharpe ratio is given by this formula :

ShR =
E(Rp)−Rf

σ(Rp)
(49)

where E(Rp) denotes the expected return of the portfolio, Rf the return on the risk-free
asset and σ(Rp) the standard deviation of the portfolio returns.

This ratio is a relevant performance measure when returns are normally distributed. Ab-
normalities like kurtosis, fatter tails and higher peaks, or skewness on the distribution can
be a problematic for the ratio, as standard deviation doesn’t have the same effectiveness
when these problems exist. That is why we propose to calculate the Sortino ratio.

— Sortino Ratio (Sortino (1994)) :

Sortino ratio is a transformation of the Sharpe ratio that differentiates harmful volatility
from general volatility by taking into account the downside deviation. The use of this ratio
is recommended when we analyse highly volatile portfolios. A portfolio is considered as
efficient one when it has high Sortino ratio. The Sortino ratio is given by this formula :

SoR =
E(Rp)− τ
DSR

(50)

where E(Rp) is the asset or portfolio average realized return, τ the target or required rate
of return for the investment strategy under consideration (originally called the minimum
acceptable return) and DSR the target semi-deviation (the square root of target Semiva-
riance), termed downside deviation.
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The obtained Sharpe and Sortino ratios for all methods are given in Table 7 sums up the level
of Sharp and Sortino ratios for all the methods.

E∗(%)
Sharpe Ratio Sortino Ratio

M-V DSR Mean Median M-V DSR Mean Median
Positive weights only

0.04 0.021 0.051 0.058 0.132 0.022 0.053 0.060 0.137
0.05 0.067 0.068 0.077 0.136 0.069 0.069 0.079 0.115
0.06 0.091 0.092 0.094 0.118 0.096 0.096 0.097 0.126
0.07 0.110 0.111 0.118 0.142 0.116 0.117 0.122 0.157

Allowing negative weights
0.04 0.025 0.055 0.063 0.125 0.003 0.058 0.065 0.122
0.05 0.073 0.072 0.081 0.140 0.073 0.074 0.083 0.150
0.06 0.095 0.096 0.098 0.123 0.100 0.101 0.102 0.130
0.07 0.114 0.116 0.122 0.145 0.120 0.121 0.127 0.160

Table 7: Performance ratios.

Based on those indices, one can observe that nonparametric methods, especially the one using
DSR with median smoothing is more efficient than the classical ones. It is interesting to note
that the four methods with Short-Selling constraint, except when the expected return E∗ = 0.04,
have higher Sharpe and Sortino ratios, which means that long-short strategies are more efficient
then the long strategy only.

6 Conclusion

The classical Mean-Variance model of Markowitz is one of the most commonly used models for
determining optimal portfolio weight. However, built on the strict assumption that asset returns
are normally distributed, the Mean-Variance is inadequate to optimize portfolio when returns
have asymmetric distribution. The traditional Mean-Variance model which treats both the above
and the below target returns equally, tends to over estimate the risks .
In reality, investors are more concerned and averse about the downside movements, that is why
it is better to find a more appropriate measure of risk. Our contribution consists on the introduc-
tion of nonparametric approach in the estimation of the DownSide Risk. It leads to get smoother
efficient frontiers. In addition, adequate iterative algorithms were developed to resolve the opti-
mization problems. Nonparametric methods, specially the Mean-DSR with median smoothing,
provide lower portfolio risk compared to the classical Mean-Variance and Mean-Semivariance
models.
The proposed DownSide Risk versions were applied to determine the optimal weights for 9 assets
from the French Stock Market. The results show that the strategies of investment, in terms of
asset allocation depend on the methods, and the risk measure used to optimize the portfolio.
Asset allocation depends also on the kind of constraints used in the optimisation program like
allowing Short-Selling or not.
In fact, The nonparametric methods present lower risk comparing to the classical Mean-Variance
and Classical Mean-DSR models. In term of performance, the nonparametric methods, specially
the one based on median estimation outperforms the CAC 40 in 52% for long only strategy , and
in 54% for long-short strategy. They also have higher level of Sharpe and Sortino ratios than the
classical methods. It is interesting to note that , long-short strategies are more efficient when we
have high expected returns.
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Our empirical studies were limited to the French Stock Market, it will be interesting to test
our methods on other assets (Bonds, Options,...) and other markets ( developed and emergent
markets). The nonparametric methods give an efficient and simple alternative approach to im-
plement in order to determine the optimal portfolios. The method based on median estimation
are precise and very important in terms of performance thanks to the robustness of the me-
dian. Nevertheless, computational time is very long. It could be reduced by another optimization
algorithm which will be the subject of the ongoing paper.
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Annexe 1

Let ω = (ω1, ω2, . . . , ωm)>, µj = r̄j , j = 1, . . . , n and µ = (µ1, . . . , µm)>. The Lagrangian method
to solve

Minωω
′Mω (51)

under
{∑m

j=1 ωj = 1∑m
j=1 ωjµj = E∗

is the following: Lagranian L is

L =
1

2
ω>Mω − λ(µ>ω − E∗)− γ(1>ω − 1).

Second order conditions are satisfied because M is definite positive. The first order conditions
are

∂L

∂ω
= Mµ− λµ− γ1 = 0,

then
γ = λM−1µ+ γM−11.

By replacing in the two constraints, one get:{
λA+ γB = E∗

λB + γC = 1,

where
A = µ>M−1µ,B = µ>M−11, C = 1>M−11, D = AC −B2.

The optimal vector weights is then given by

ω∗ =
CE∗ −B

D
M−1µ+

A−BE∗

D
M−11.


