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Abstract

We pursue our study of the antiperiodic dynamical 6-vertexiet using Sklyanin’s separation of variables
approach, allowing in the model new possible global shiftfhie dynamical parameter. We show in particular
that the spectrum and eigenstates of the antiperiodicfeanmatrix are completely characterized by a system
of discrete equations. We prove the existence of differeftrmulations of this characterization in terms of
functional equations of Baxter's type. We notably consither homogeneous function&tQ equation which
is the continuous analog of the aforementioned discretesyand show, in the case of a model with an even
number of sites, that the complete spectrum and eigenstities antiperiodic transfer matrix can equivalently
be described in terms of a particular class ofjtsolutions, hence leading to a complete system of Bethe-equa
tions. Finally, we compute the form factors of local operafor which we obtain determinant representations
in finite volume.
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1 Introduction

This paper is a continuation of a previous work of one of thibans [38], in which the study of the antiperiodic
dynamical 6-vertex model was initiated by means of the Sdjmar of Variable (SOV) method introduced by
Sklyanin [49/50] 51, 52].

The dynamical 6-vertex model is constructed fromfamatrix satisfying the dynamical (or modified) Yang-
Baxter equation [19, 15]. In the context of exactly solvaiedels of statistical mechanics, it is the archetype
of interaction-round-face$IRF) models[[6], which describe the interactions of a logaiable around faces of
a two-dimensional square lattice. This is notably the cdsbeoexactly solvable solid-on-solid (SOS) model
[52,[11]29] 45], which models the growth of a surface (fetamce in the context of a crystal-vapor interface)
with respect to a flat reference surface. In this context,igheariable is attached to each site of the lattice,
and the local Boltzmann weights describing the probabditya height configuration around each face of the
lattice correspond to the non-zero entries of the dynanfeaiatrix. This model plays a crucial role in Baxter's
solution [5] of the famous eight-vertex model.

The fact that theR-matrix of the model depends on an extra parameter, thelkatalynamicalparameter
(related to the height variable in the language of SOS mpajlts into a modification of the algebraic structure
underlying integrability compared to what happens in useatex models such as the six-vertex model [15,
18,[17]. In particular, as mentioned above, Ramatrix of the model no longer satisfies the usual quantum
Yang-Baxter equation, but instead a modified version of eélisation, in which the dynamical parameter gets
shifted by an element of the Cartan. As a consequence, thesponding Yang-Baxter algebra incorporates
some additional operator structure acting on the dynamexdble [18[ 17]. In practice, the appearance of the
dynamical shifts may be a problem for actual computationghykical quantities of the model. For instance,
the partition function of the model with domain wall boungaonditions does not seem to be expressible in
the form of a single determinarit [48,144] as in the six-vedage[[22]. As a consequence, the study of the form
factors and correlation functions of the periodic modehim élgebraic Bethe Ansatz (ABA) framework happens
to be slightly more complicated than in the six-vertex c&&(B1,/32]. In fact, the latter relies on the use of
a compact formula, preferably in the form of a single deteant, for the scalar products of Bethe states. The
problem is that there does not exist, in the ABA framework,@let-independent clear procedure to construct
(or even guess) such a representation, either for the Béihessscalar products or for the aforementioned
partition function, two quantities which are intimatelyaed.

In the antiperiodic SOS model, which can be solved by SOV [gB], the situation is somehow simpler.
First, the space of states of the (finite size) model is finiteethsional for generic crossing parameter, contrary
to what happens in the periodic case: this means in parntithéd, when performing a change of basis between
the canonical basis of the space of states and the eigehatite we only have to deal with finite sums. Second,
due to the eigenstate representation in terms of sepama#ibhes, determinant formulas for the corresponding
scalar products appear in a much more natural way, sometansin to the method [38]. We shall see in the
present paper that such formulas can quite naturally be@eteto the form factors.

The purpose of this paper is three-fold. First, we revisit study of [38] so as to slightly generalize it
to cases that correspond to different versions of the SOf&lslel model (se€_[29, 46]), related to different
possible values of the global shift of the dynamical paramef the model, and that will be useful for our
further study of the eight-vertex modél [41]. Second, wesparthe study of the spectrum, and discuss the
reformulation of the discrete SOV characterization in temih solutions of some homogeneous (respectively
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inhomogeneous) functional equation of Baxter’s type (amdcle of Bethe-type equations), a question that we
expect to be of primary importance for the considerationhefiomogeneous and thermodynamic limits: we
notably show that, in the case of a model with an even numbsited, the SOV characterization of the spectrum
is completely equivalent with a description in terms of jautr classes of solutions of the usual (homogeneous)
T-Q equation. Finally, we explicitly write determinant repeagations for the form factors of local spin and
height operators.

The article is organized as follows. In Sectidn 2, we inticalthe model and recall the algebraic framework
for its resolution. In Sectiolp 3, we construct a SOV basidefrepresentation space of the model. In Seéfion 4,
we diagonalize the commuting antiperiodic transfer matrion the subspace of the representation space which
corresponds to the actual space of states of the antipe!®fd8 model. We notably discuss the characterization
of the spectrum and eigenstates in terms of solutions oftifumal equations. Then, in Sectigh 5, we solve
the quantum inverse problem for local operators of the modidrms of the antiperiodic monodromy matrix
elements, and in particular in terms of the antiperiodiagfar matrix. This enables us, in Sectidn 6, to write
explicit determinant representations for the form factufrkocal spin and local height in the eigenstate basis of
the transfer matrix.

2 Thedynamical 6-vertex model

The dynamical 6-vertex model is associated with a dynanfieaiatrix of the form

a(M) 0 0 0
0 eiyn b()\|t) eiy)\ C()\|t) 0
R(AJt) = : ~ End(V; ® V; 21
i) 0 e ™\ —t) e\ —t) 0 € End(V1 ® V2), (2.1)
0 0 0 a(N)

with V; ~ C2. Throughout this papey, € {0,1} is fixed. The R-matrix[{2]1) depends on two parameters, a
spectral parameter € C and a dynamical parametee t, +nZ, wheret, will be specified later. The functions
a, b, c are given as

O(N) O(t +n)
o)

whered(\) = 0, (\|w) denotes the usual theta-function (see Appehdix A) with igpesodst andrw (Sw >

0). n € C is the crossing parameter of the model, which is supposeé geheric throughout this paper. The
R-matrix (2.1) with dynamical parameteis solution of the quantum dynamical Yang-Baxter equafidh/[L5]
onVi ® Vo ® Vs,

6(n) Ot + X)

ah) =60+ ). BOE) = O

c(At) = (2.2)

R172()\12‘t + 7]0’;) Rl,g()qg’t) R273()\23‘t + 770’%) = Rg,g()\gg‘t) Rl,g()qg’t + 770’5) Rl,g()\lglt). (23)

Here and in the following, the indices indicate as usual gaes of the tensor product on which the correspond-
ing operator acts non-trivially, ang* (o« = =, y, ) denotes the usual Pauli matrix acting G~ C2. Also we
have used the shorthand notativn = \; — ;.

As mentioned in Introduction, the matrix elements of fRenatrix (2.1) can be understood as the local
Boltzmann weights of an exactly solvable solid-on-soli®& model (see Figuid 1). In this framework, the
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dynamical parameter corresponds to the height variable, and the dynamical Bader equation[(2]3) is
simply the star-triangle relation of IRF tyge [6]. The sifift {+n}) of the height between two neighboring sites
can be understood in terms of a spin varialae{f-1}) on the corresponding link.

t + t+n t + t+n t — t—=n
+ + - - - +
t+n + t+2p t—n + t t—m + t
a(X) e b(At) e e(A|t)
t — t—=n t — t—nm t + t+n
— — + + + —
t—m — t—2p t+n — t t+n — t
a() e~ b —t) e WA (N —t)

Figure 1: The 6 different local configurations around a faue their associated local statistical weights.

Remark2.1. The casey = 1, which was not considered ih_[38], corresponds to a diagdwahmical gauge
transformation of thez-matrix of [38] of the form:

Riz(M2|t) = Ga(A2|t) Gr(Aa[t +105) [Riz(M2[t)] g Ga(Nelt +n0F) ™" G1(Mft) ™, (2.4)
with
1 eiy% 0
GONt) = e 3 " 2.5)
0 e ™2

This case is interesting since it enables us to consider a&hiodvhich the dynamical parameter is shifted
by half of the imaginary quasi-period (.69 € R + yZw, see Sectiof 212) so as to recover for instance the
Boltzmann weights considered in [29,/47]. It is also usefulthe consideration of particular quasi-periodic
boundary conditions for the 8-vertex model obtained from 80S model by vertex-IRF transformatiohsl|[41].

Remark2.2 It may be interesting to consider the trigonometric limit(@f1)-(2.2), which corresponds to the
limit w — +ioco. If g is of the formty = to + ygw, with to independent ofs (as considered in this paper,
see [(2.2P)), then one obtains different limits accordingvb@thery = 0 ory = 1. Up to normalization, the
trigonometric limit of the casg = 0 corresponds to the trigonometdynamicalé-vertex model, with

sin \ sin(t + n)
sint

sinn sin(t + \)
sint

a(X) =sin(A+1n), bAt) = . c(A\lt) = , (2.6)

whereas, in the case= 1, one simply recovers thB-matrix of theusual6-vertex (or XXZ) mod@.

*We use the fact thate ™" %0, (u|w) — sinw, and thatlWErele) __,  o+ilv=w) for 4y 4y ¢ Cand0 < € < 1.

w—+ico 01 (viemw|w) w—r+tico
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2.1 Thedynamical Yang-Baxter algebra

The elliptic quantum group associated with the dynamiahatrix (2.1) was introduced in_[15], and its rep-
resentations were studied n_[18], leadinglin/[17] to an latgie Bethe Ansatz for the corresponding periodic
SOS model. In this framework, the key object is the monodronagrix, which provides a representation of
the corresponding Yang-Baxter algebra. In the case of atgmeduct of fundamental representations that we
consider in this paper, it is defined as the following ordgremtiuct of R-matrices,
N—1
Mo()\‘t) = RO,N()\ — fN‘t +n Z O'z) s ROJ()\ — fl’t) S End(VO RVMR...® VN)
a=1
A(Alt)  B(Alt)
—\con pan )

HereN is the size of the model/, ~ C? for n € {0,1,...,N}, and¢,, n € {1,...,N}, are inhomogeneity
parameters. In this context, is usually called the auxiliary space aiWg, = ®N_,V;, the quantum space.
Commutation relations for the entridg \|t), B(A|t), C(A[t), D(\|t) € End(Vy) of the monodromy matrix
(2.1) are given by the following quadratic relation, whishaiconsequence &f (2.3),

2.7)

R0,0I(AOOI ’t + 775) MO()\O‘t) MO/()\O/ ‘t + 7’]0’8) = M(y()\o/ ’t) MO()\O‘t + 7’]0’8/) RO,O’()‘OO’ ’t), (28)

whereS is the totalz-component of the spin:

S=Y o (2.9)

To handle the shifts of the dynamical parameter induced dyelation [2.B), it is convenient to introduce, as in
[38], some dynamical operatorsand T which commute with local spin operatar§ and such that

TEr = (1 £9)TE. (2.10)

This enables us to define a new monodromy matrix incorpayatisse dynamical operators,
Mo(N) = Mg(A\7) TS = (A(A) BW) , (2.11)
(0]

whereMg(\|7) corresponds to the monodromy matfix (2.7) in which we hawssiuted the dynamical param-
etert by the operatot, and where

tor T 0
T 0= "7 ) 2.12
( 0 Ti)[o] ( )

The operator entriegl, B, C, D of the monodromy matriX(2.11) act on the space
Devoyn = VN @D, (2.13)

whereD is a representation space of the dynamical operators. Theimutation relations are now given by
the quadratic relation

Roor (Moo [T+ 1S) Mo(Ao) Mo (Aor) = Mo (o) Mo(Xo) Roo (Moo | 7), (2.14)
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which follows from [2.8) and from the zero-weight properfytlee R-matrix (2.1):
T T Ry (oo |7) TS T2 = R (Moo |7). (2.15)
We also recall the inversion formula for the monodromy mxatri

Theorem 2.1. The inverse of the monodromy matf&11)is given by the relation
o(7)
6(t +nS)
in terms of the quantum determinaiit, M (\). The latter is a central element of the dynamical Yang-Baxte

algebra defined as

Mo(N) - a8 Mo(A =)0 o = e det, M (N), (2.16)

det,M(\) = A(\)D(A — 1) = e 9(%7;75) (AN) DA =1n) = BA)C(A—n))
— ¢S 79(79;;75) (D(A) A\ — 1) — C(A) B(A — 1)), (2.17)
with
N
AN = J[er=&), bV =a(r-n). (2.18)

n=1

The algebraic Bethe Ansatz [17] consists in diagonalizhmyttansfer matrices of the periodic model, i.e.
the traces of the monodromy matrix (2.11),

T(A) = AN) +D(N), (2.19)

on the subspace of the representation spacel(2.13) assbuidh the zero eigenvalue of the spin operaor
(2.9). In this paper, we apply instead the SOV approach taatiperiodic model (or more generally to a
r-twisted antiperiodic model for some parametee C \ {0}), and therefore define the followingtwisted
antiperiodicmonodromy matrices:

Mo (M) = Xos Ma(Ar), Mg () = MG () T (2.20)
with X®) = diag(k, k). It is easy to see that, thanks to the following propertiethefR-matrix [Z1L),

oi 03 Ri2(At) o7 03 = Ri2(A| — t + ymw), (2.21)

X{ X8 Ry (M) XD XD = Ria(Al), (2.22)

the monodromy matriceg (2.20) satisfy the quadratic w@iati
Ro,o (owr| = 7 = 1S + ymw) Mg™ (Ao|7) TH Mg (g |7) T7 70
=M O I7) T2 M6 o) T Ry (howr|7), - (2.23)

Ry oy | =7 =15+ ymw) My (o) My’ ) = M (o) Mo (30) Roo oo |7): (2.24)
In the following, we will show how to diagonalize, in the SOkamework, the:-twisted antiperiodic transfer
matrices,

T = k1B + kCOV), (2.25)
on some subspace of the representation space (2.13) asdaogith a particular eigenvalue of the operator
S, =nS+ 27 (2.26)



2.2 Left and right representation spaces

In the following, we may particularize by a subscrip{respectivelyR) the left (respectively the right) represen-
tation spaces for the spin and dynamical operators. Heac#dtance, the operator entries of the monodromy
matrix (2.11) aﬁ to the right on the “ket” spad@%%VD)’N = Dsvp),n @nd to the left on its restricted dual space,

the “bra” spacd))(%VD),N.

DZ/R is an infinite dimensional representation space of the djcanoperators algebrd (2J10) with
eigenbasis left (covectors) and right (vectors) respelstidefined as

(t(a)| = O)TY,  [t(a)) =TZ[(0)),  Va€Z, (2.27)
such that
(t(a)|T = t(a){t(a)|, T|t(a)) = t(a)|t(a)), t(a) = —ma+ty, Va€Z, (2.28)

with the normalizationt(a)|t(b)) = das, Ya,b € Z. In this paper, we fix the value of to be
to = —gN n xg n ygw, with  x e {0,1}, (2.29)

L/R

such thatx,y) # (0,0) whenN is even. We denote the corresponding representation spaeéa = ID)(X DN

We respectively denote the left and right spin basFBf,ﬁ"{R as

(n,hnlo? = (1 —2h,){(n, hy|, oZln,hy) = (1 —2hy)|n, hy),  h, € {0,1}, (2.30)
with (n, hy, |0, b)) = 0y, 1y foranyn € {1,...,N}. Hence the states
(@not (s hal) @ (Ha)],  (@h_qln, ha)) @ [t(a)), (2.31)

obtained by tensoring common eigenstates of the commutiegatorsr ands?, 1 < n < N, provide left
and right dynamical-spin basis ID(%VD)N a”dDZ%vo),N’ respectively. The following scalar product is thereby
naturally induced in the linear spaE%%VD) N-

N
( ®y:1 |n> hn> ® |t(a)>a ®r’\z|:1|na h/n> ® |t(a,)>) = 5a,a/ H 6hn,h§l' (232)
n=1

Remark2.3 Inthe caséx,y) = (0,0) in (2.29), the corresponding representation of the dynahviang-Baxter
algebra is well defined only whéhis odd (to avoid singularities if.(2.2)); this case was anadyby SOV in the
paper [38] (see alsd [16]). The analysis that we presentwidiraddress both the caséodd for (x,y) = (0,0)

and the casé@l even and odd fofx,y) # (0,0). This enables us to consider more general SOS models (such
as for instance as in [29, 46]), and will be useful for our gtaithe eight-vertex model with different types of
quasi-periodic boundary conditioris [41].

*These notations may be confusing sim%/D%N corresponds in fact to a left-module (aD@VD)’N to a right-module) of the elliptic
quantum group, but they agree with some more physical cdiovealso used i [38].



The operato6, (2.28) defines a natural grading @%V%) N

L/R o0 (T L/R)
Dgvoyn = Er=—cD(svp) N2 (2.33)

where[D)Eg\%;z) is the2N-dimensional linear eigenspace corresponding to the eidi@e2r 1 + xm + yrw of S,.
In terms of the dynamical-spin basis the linear (covecmareﬂi)gg’\%)

are respectively generated by the elements

and the linear (vector) spa®6VD

(@n=1 (nhnl) © (trn|  With  (tn]| = (ton|T7, (2.34)
and
(@n=t Inyhn)) © [trn) Wit [t.n) = T [ton)- (2.35)
Here we have set
T s N
trn = —gsh £xG HyGway, with s, = ;(1 —2h) and h=(hy,...,hy). (2.36)

Proposition 2.1. For eachr € Z, the finite-dimensional vector spadE%6 ‘:/R are invariant under the action
of the operators

A(A|T), D(AIT), B(X), C(N). (2.37)

Proof. The commutation relations

[A(AIT),S] = [A(AlT), 7] = [D(A|T),S] = [D(A|7), 7] = 0, (2.38)

[B(A),S] = 2B()), [B(A), 7] = —nB(}), (2.39)

[C(A),S] = —2C(N), [C(A), 7] =nC(N), (2.40)
imply that

[A(AIT),S7] = [D(AI7),S7] = [B(A),S7] = [C(A),S-] = 0, (2.41)
which means thaif))gg’\%f& are invariant under the action of these operators. O

For a SOS model with free boundary conditions, the physjgats of states corresponds to the whole rep-
resentation spac®evp),n- If we impose different types of boundary conditions, thggtal space of states
will correspond only to a subspace Bfsyp) n- For instance, in the case of periodic boundary conditidns,
corresponds to the subspace[of (2.13) associated with thesigenvalue of, whereas in the case of antiperi-
odic boundary conditions that we consider in this papepitasponds to the subspace[of (2.13) associated with
the eigenvaluer + yrw of S, i.e. toID)Eg/D) In fact, we shall see in Sectidh 4 that the commutation of the
antiperiodictransfer matrices is ensured on this subspace only. N&lest the construction of the SOV basis

that we present in the next section holds in the whole reptaten spacé eyp) n

Remark2.4. In the case of periodic boundary conditions, the space t#sta the (finite-size) model is usually
infinite dimensional, which may be a technical inconvengefar the study of the model. In fact, due to this
reason, one usually deals with restricted models for whiehcrossing parameter is rational and the space of
states is finite dimensional (such as for instance in thar@igaper([5]). Let us stress that, for antiperiodic

boundary conditions, we do not have this problem since theespf stateﬁ)gﬁzm) has dimensiorN.



3 SOV basisin left and right representation spaces

For usual vertex models such as the 6-vertex madel [50, R3[| 40, 42], the SOV approach to diagonalize
the transfer matrix is based on the construction of a basiseogpace of states of the model which explicitly
diagonalizes the action of one particular generator of tuegyBaxter algebra. In the dynamical case, however,
the corresponding SOV basis for the antiperiodic transtatrisn[16,.38] only partially diagonalizes the operator
D(A) (or A(N)). In other words, the latter still acts as a shift operatosome “dynamical” part of the corre-
sponding basis, whereas the operat6(s) andC()\) act as a sum of shift operators on the “spin” part of the
basis. In this section, we present the explicit constractibthis SOV basis in the left and right representation
spaces of the model.

In each of the subspacéég\%n we define the followingeference states
[N [
<T’O| = N( ®n:1 <n> hn = 0|) ® <tT70|’ |1’T> = N(®n:l |TL, hn = 1>) ® |t7“,1>’ (31)
where we have used the notatidhss (h; =0,...,Ay =0)andl = (h; =1,...,hy = 1), and wherex is a

fixed normalization constant that will be specified lattéfs leasy to see that these references stated @)
andA(\|7)-eigenstates with eigenvalues given in terma 0f) andbp()\) (see [2.1B)),

(r, 0| ANT) = AN (0], (0| D(AI) :eianHEtH_ ;D( ) (r,0], 3.2)
D) [1,7) = A |1, 7), A(A\T)yl,m:ei“'ynag = ; DOV [1,7), (3.3)
r,1

and are annihilated by the action of the opera#®(a). Then, for eactN-tupleh = (hq,...,hy) € {0,1}N,
we construct a state-, h| € ]D) (6vp),N and a statéh, r) € ngvo),m as

(r,h| = (r, 0| H ( )hn, (3.4)

J )\ )
hr) =[] <7C(’5" ’7)> 1,7). (35)

n=1

Remark3.1 It is easy to see that,h € {0,1}N,

<T7 h‘ T = t?‘,h <7", h’v T ‘h7 T'> = tr,h ’hv T>7 (36)
(r,h[S = sp (r,h, S|h,r) =su|h,7), (3.7)

with ¢,.1, andsy, given by [2.36), which also implies that, h| € D 6\/3) y andjh,r) € Eg\%) N

We have the following result:
Theorem 3.1. LetI’ = 7Z + wwZ and let the inhomogeneity parametéis. . ., &y € C be such that
Vee {—1,0,1}, & —&+engD ifa#b. (3.8)
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Then the set of statggr, h|, h € {0, 1}N} defined by@3.4) form a basis ODEWD) . Similarly, the set of states

{|h,r),h € {0,1}N} defined by@3.5) form a basis oﬂ)gg\%’)’,\,. Moreover, the action oD()\) on the states

{r,hin Dévo),m (respectively on the statél, ) in ]D)Z%VD),N) is given by

<T’ h| D()\) = dr—l,h()‘) <T - 17 h|a (39)
D(A) |h,r) =dry1n(A) b7+ 1), (3.10)
where
5 9 N
drn(A) = ¢ 72 with £ = & — nhq. (3.11)
n=1

Proof. The action of the operatdP(\) on the stategr, h| and |h, r) can respectively be computed by means
of the following dynamical 6-vertex commutation relatiassued from[(2.14):

C(u) D) = | DA C(1) O(A — p+m)0(7)

= D()C) OO+ A )| g

e~ tyn
80— noir £ 0B = A+ MO C) DO

— e YE=N9m0(r — p+ X)) CN)D(p)|. (3.13)

D(N)C(n) =

Hence, using the fact that§,,) = A(¢, —n) =0,n =1,..., N, so that only the direct terms contribute in the
above relations, we obtain (3.9) and (3.10).

It remains to prove that the statésh|, h € {0, 1}V, form a set o2 independent states, i.e. a basis of

ID)EQ&D y (the fact that the stateh, r), h € {0,1}", form a basis oﬁ)gg\%) y €an be proven similarly). Let us

suppose that we have a relation of the form

> en{r,h =0, (3.14)

he{0,1}N

for some set of complex coefficientg € C, h € {0,1}N. Letk = (ki,...,kn) be any giverN-tuple in
{0,1}N. Then, by applying the product

[I &)y  with k. €{0,1}, kn=k,+1 mod?2, (3.15)
to (3.14), we get the identity

x Hdr nac(EF)) (r = N K| = 0. (3.16)

Sincedr_n,k(@(;”)) # 0,1 <n <N, and(r — N, k| # 0, this implies thate, = 0, which ends the proof of
Theoreni 311. O
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We want to determine the action of the remaining generatbtieoYang-Baxter algebra on the basis el-
ements[(314) and (3.5), and in particular of the operaRirs) andC(\) constituting the antiperiodic transfer
matrix. To do this, we shall rely on the following lemma:

Lemma3.1. D()), B(A\) = e ¥ B()\) andC(\) = e¥*C()) are entire functions of which satisfy the follow-
ing quasi-periodicity properties:

. . N
DA + ) = (~1)ND(N), D\ + mw) = (—e_QM_””’> 26 a(E-n/2+nS pry), (3.17)
~ ~ ~ . N . ~
B+ ) = (—1)N B, B\ + mw) = (—e*m*”ﬂ 20 En/)=iS By) (3.18)
~ ~ ~ N . N
CO+7) = (—DNEW), CON + mw) = (—e*m*W) €2 X1 (En—n/2)+iS7 Gy, (3.19)

Proof. The fact thatD(\), B(\) andC(\) are entire functions of is a simple consequence of the definition
of the dynamical 6-vertex monodromy matrix in terms of theayical 6-vertexkR-matrix (2.1). The quasi-
periodicity properties[(3.17) ab()\) follows directly from the explicit form[(319)[(3.10) (31} of its action

on the basiq (314) ot (3.5) and from the quasi-periodiciypprties of the usual theta functié\) = 6, (\|w).
The quasi-periodicity properties (3]119) 6{)\) can be deduced from the quasi-periodicity properfies 3017
D()) by comparing the quasi-periodicity propertiesiof the two members of the commutation relatibn (8.12)
rewritten in the form

y 0 —p) 0(r +n)
O —p+71)0(n)

—iy(A—p) 9()‘ —H— 77) 9(7—)

COVDl) =B 0N —p+7)6(n)

DA)C(p) —e

C(n) D(A).

Similarly, the quasi-periodicity properties &f(\) can be obtained froni {3.17) and from the commutation
relation

) OO\ — i+ ) 8(r +15)
0T +15 — X+ 1) 0(n)

zy()\ nw—n) 9()‘ M) H(T + 775 77)

— (A=
B(A\) D(p) = YO+ 0(1 + 1S — X+ ) 0(n)

B(p) D(A) -

D(A) B(w)-

O

Theorem 3.2. Under the hypothesi3.8) of Theoreni-3]1, the action of the operat@é\|7), D(\|7), B())
andC(A) on the basis elements, h| of]D(WD) v (respectively on the basis elemetfitsr) of]DEWD)) \) take
the following form:

I) Left representations:

N (ToeE) T
(r. B[ D) = dy1 (N (mor 11 (D%ﬂ) , (3:20)
o~ el e o0
(r,h| C(X giv(e—x) Oltrn p(0=a)) (-, T+, (3.21)
; O(trn) g f(eihe) — gy
N . (ha) _ ()
’I“ h|B Z Zy(g( a) Y t_n};(t )\"')5 ) H ()\a gb (hz) Ai;,?nh( C(Llfha)) <T‘, T;h|, (3.22)
a=1 —nh ba (€ -& ")

and the action oA (\|7) is completely determined by the quantum determinant axla@.17)
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II) Right representations:

N + _ —\ (1=hn)
DAl +n) [b,7) = dri1n(A) ( 11 (TT ggz — Z; LE: > !1,r>> : (3.23)

n=1

o — &™)

N (ha)
) a Ot,n— A+ &
C(A) |h,r) = E ezy(géh -3 (trn fa ") | |

¢)) [Toh 3.2
G(tr,h) bia 9(5& a) €l§hb)) D(&') | T, h,r), (3.24)

a=1
N (ha) (ho)
et 0t en = A+ &) 11 00=8") (b
BOV Ihyr) =3 e S e ) (€ [Tihr), (3.25)
a=1 - bta (6o — fb )

and the action oA(\|7) is uniquely determined by the quantum determinant relafZoht)

In the above expressions, we have used the defir@dd)of d, () andfé =) and we have set

TE(hy, ..., hn) = (b1, ha £ 1,..., hN), (3.26)
" = (—1)ytyhy 2iyrn Otrn £1) .
x,y,r,h()\) ( ) e H(tinh T 77) A )\) (3 )

Proof. The action [(3.20),[{3.23) dD(A|7) = D(A\) T} andD(A|r + n) = T D(A) on (r,h| and |h,r)
respectively follow directly from the formulag (3.9), (8)land from the commutation relations (2.10).

To determine the action & (\) andC(\) on a left statdr, h| (respectively on aright stath, r)) associated
with a givenN-tupleh = (hq,...,hy), we first compute these actions at tNespecial points\ = fﬁf‘"),
n = 1,...,N. From the definitions(314)[(3.5), and the fact that the pobd(&,,) C(&, — n) vanishes when
evaluated at one of the inhomogeneity parameigisee [(5.D)), we get

(r,h|C()) = p(€ ")) (r, TR, C(e™) h,r) = D(&™)) [T h,r) . (3.28)
The action of3( éh")) on the left and right statek (3.4) aimd (3.5) can be computeddnns of the dynamical
Yang-Baxter commutation relatiorls (2114) and the quantatardhinant relation$ (2.17). We obtain

0(7)
O(r +nS)’

_ i H(tr h — 77) -
— (1YY p(g(=hn)y g2iyrn 7m0~ 1) r, T h|, 3.29
(=1) & ") A (r, T, h (3.29)

(r B B(E)) = ~AE( ) (r, T b e S

n

and
i 0(7)

()Y 1h. ) = —A(gBn) iynS___ Y\')
BE™) Ihyr) = =A™ e S T

i e(trh+77)
= (=1 YDy a(glhn)y 2iyrn DR T D THp ) 3.30
(A Ay e g e T, ) (3.30)

in which we have used the quasi-periodicity properties efttieta function.

Finally, the action of3(\) andC(\) to the left [3.211){(3.22) and to the right (3]24)-(3.25) abtained from
(3.29) and[(3.30) and from Lemrha B.1 by means of interpaidtiomulae (sed_(Al6)). O

Th,7),

Remarlk3.2 Itis easy to check that the representations of the YangeBaenerators in the SOV basis coincide
with their representations in the so-callédbasis [33] as obtained inl[1]. Such a relation between thg¥ SO
construction and thé'-basis was first noticed in [53].
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The basis elementk (3.4) aid (3.5) have been constructedendently in the left and right representation
spaces respectively. It is nevertheless not difficult to pot@ their scalar product [38]:

Proposition 3.1. Under the hypothesi.8) of Theoreni 3]1, let us define, for edere {0,1}N andr € Z, the
N x N matrices©"?) of elements

N
r hy - . = 1
E) ’h)]ij = 19j_1(§i( ) &), with &, = N <; &k + tr,0> : (3.31)
where the functions; are defined as
950 = 3 etz PN 05 g < j <N -1 (3.32)
nez

Then, one can fix the normalization constan@) such thath, h € {0, 1}V, vr, 7 € Z,

O(ty1) e~ k=1
h,h 9(15071) dety [@(r’h)] .

(r,hjh,7) = 6,706 (3.33)

Proof. The fact that(r, h| and |h, 7) are both eigenstates 6f with respective eigenvalues- + xr + yrw
and2rn + xm + yrw implies that(r, h|h, 7) vanishes if- # 7. Similarly, from the consideration of the matrix
element

(r41,h|D(\) |h, ) (3.34)

and the explicit expressioh (3.9), (3110) and (8.11) of tt@a of D(\) to the left and to the right, one gets that
(r,h|h, 7) vanishes ifh # h. One also gets that

<7" + 1, h‘h7 T+ 1> H(tr’h) 9(t7«+171)

— . 3.35
R () Bl (339

Also, from the consideration of the matrix element
(r,h|C(&) [Toh,r) (3.36)

for any N-tuple h such thath, = 0, and the explicit expressiorls (3128), (3.24) of the actibé(q,) to the left
and to the right, one gets that

(r,TiR[Tihr) o 6(tn) H@( 2 — )

—e .
) O(t, 720) i 0(e8) — M)

(3.37)

Since{?;_1}1<j<n is a basis of the space of theta functions of ofdeand of norm0 (see AppendiX’A), we
can use[{Al7) to express the determinant of the m@fix") as

det [0 ] = ey 0(t,n) [0 — "), (3.38)
i<j
wherecy is a constant (i.e. it does not depend on the variaglesnr nor onh). Hence, it follows from[(3.35),
(3.37) that
e Xk=1hn (¢, 1)
dety [9(7"7}1)] ’

wherecy is a constant. O

(3.39)

<7°, h‘h7 T’> = EN
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It follows from Propositior 31 that

_ |h, 7)(r, h|
1= 2 Ghm (3:49)
rez
he{0,1}N

with normalization(r, h|h, r) given by [3.38), provides a decomposition of the identityttmwhole represen-

tation spacé))(t.)/vRD) . Similarly, for any givern- € Z,

e
bE 2 b (340
he{0,1}N

L/R

provides a decomposition of the identity on the subs;ﬂ%ﬁéé&z& of ]D(WD) N

4 Diagonalization of commuting antiperiodic transfer matrices

In this section, we diagonalize thetwisted antiperiodic transfer matricés (2.25) in the epakstatei)gg\%;z,\)l

of the antiperiodic model. As usual in the SOV framework, $pectrum and eigenstates are completely char-
acterized by a discrete system of equations involving therimogeneity parameters of the model. We explain
how to rewrite this discrete system in terms of functidhal) equations of Baxter’s type, so as to obtain a new
characterization of the spectrum and eigenstates in tefs@utions of Bethe-type equations.

4.1 The SOV discrete characterization of the spectrum and eigenstates

The diagonalization of the antiperiodic transfer matriknel@gg\fD/;z) has been performed in [1/6,138] in the case
(x,y) = (0,0) with N odd. The corresponding SOV procedure can easily be extdodbd more general cases

that we consider here, and we have the following result:

Theorem 4.1. For any fixeds € C\ {0}, thex-twisted antiperiodic dynamical 6-vertex transfer matTT&“)(A
(2.28)defines a one-parameter famlly of commuting operatorﬁ)gg(f/ R) Al these families are isospectral,
i.e. the set of the elgenvalues”o‘f (A) is the same for all the values &f € C \ {0} and we can denote it
with 3—. Moreover, for any fixetl-tuple of inhomogeneitie&, ..., ¢{n) € CN satisfying(3.8), the spectrum

ofT'(“)( A)in Dﬁgv‘i{f& is simple and =+ coincides with the set of functions of the form

0(to,0)

N
FA) = 3 et too — A+ ) H 6 f &), (E&),....T(&n) e CY, (4.1)
a=1

which satisfy the discrete system of equations

(&) t(Ey —m) = (=1)*YPY A(E,) D(E, — ), Va € {1,...,N}. 4.2)
The right 7" ())-eigenstatd v\")) e DE%\?D)),N and the leff7"” ())-eigenstate W™ | e DEZ’V%)’N associated
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with the eigenvalue(\) € Y- are respectively given by

ha
S H [( 1y %@))) qua)] et [0OM] [h,0), (4.3)

he{0,1}N a=1

H)’ _ Z H [ Rezyn ha qy;a)} dﬁt [@(Oyh)] (0, h|, (4.4)

he{0,1}N a=1

where the coefficient:é};“) are (up to an overall normalization) characterized by

Sta _Da=m) _ &) i A (a) = (—1YA(). (4.5)

O " Wea—m)  Any(Ed)

Proof. Let us first recall that, from Proposition 2.1, the actionha twisted antiperiodic transfer matﬂ_>'<(“)()\

preserves the subsp 2\%)7@ of Dé/\/%) v |t follows from (2.23) that

T-(K)()\l) T(H)()\Q) = tl‘lg |:R172()\12‘ — T — 775 + yww)fl M;ﬁ)()\g) ﬂgﬁ)()\l) R172()\12’T)]
= triz| B2l = 7 =05+ yrw) ™ My ol + 7o) My (4 [7) T T Ry o (a7
= tr12 |:R172()\12’T)R172()\12’ — T — 775 + yﬂw)*l ﬂ(;)()\g) M&H)()\l)} s (46)

where we have used both the cyclic property of the trace amdeaho-weight property (2.15) of the-matrix.
Hence,[(4.6) acts as

triz | M5 O02) M ()| = T 00) T () (.7)
on the left subspacﬁgﬁvg) of D(evo) n associated with the eigenvalue + yrw of S; = 7S + 27. Com-
mutativity on the right subspad@EWD)) y Of ID)%%VD) follows by inserting the decomposition of the identity

B.41). Hence, for any fixed € C, the s-twisted transfer matrice® (”)(A) define a one-parameter family of

commuting operators dﬂgg\fD/;R,\)l

It follows from the quasi-periodicity properties of the eg®rs;3(\) andC(\) (Lemmd3.1) that the restric-

tion 70 () of ¥ T (1) on DA/ R) is a theta function of ordeX and of norma; = SN &k + too (see

(6VD),N
AppendiXA8), which means that the actlon”D'f (\) on any vector oDEg\fD/;z,\)l is completely determined by its

action atN independent points with respectdg (see[A.6)). It also means that any eigenvalue functith)\)
of T (\) on D%/ takes the form

(6VD),N
B(too — N+ Ea) (- gb
(“ fa >\) 00 H)
: ), 4.8
;:16 6lto0) ||9 (&a) (4.8)
in terms of somé\-tuple of complex numberg®) (&), ..., t*)(&y)). The condition for a function) (\) of

the form [4.8) to be an eigenvalue ﬁ“)()\) on DE&/%),N is equivalent to the fact that there exists a non-zero
vector

(r) 0 h| 0,£)
he%}w o 0 (0,h[h,0) € Diovo) v (*:9)
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with ¢ (h) = (¥ |h, 0), such that
N (k)| 77(r) _ 1K) (%)
vhe {0,1}N, (@ T () m,0) =9 0) (W0, 0). (4.10)

By computing the action OT'(“)()\) on |h, 0) at theN independent pointsnh") by means of[(3.28)[(3.30), one
obtains that the conditioh (4.110) is equivalent to the sysbé equations

£ ey w9 (h) = k= (=1 APy B (T h) + £ D(EP) T (Toh), (4.12)

foranyn € {1,...,N} andh € {0,1}N. Taking into account the fact that(gﬁll)) = D(@(f])) = 0, one can
rewrite this system of equations as the following systemamhbgeneous equations:

E(n) (6(0 ) _K—l (_1)X+y+XyA(§T(ZO)) w(n)( ) 0
(_,{D( W) £ (D) o (T+1) 0 (4.12)

foranyn € {1,...,N} and anyh € {0,1}N such thath,, = 0. It follows that a functiort*) (\) of the form
(4.8) is an eigenvalue OT(”)( A) on DE6VI§) y If and only if this system admits a non-zero solution, i.eanf
only if the determinants of all x 2 matrices in[(4.12) vanish:

t (T (D) = (=1 Py pEl),  vne{l,...,N}. (4.13)

The condition for a function®) (\) of the form [4.8) to be an eigenvalueﬁ‘“)( A) on Dgg\@) can be written

similarly and one obtains the same system of equations)4 T3 announced isospectrality is then a trivial
consequence of the fact that the conditidns](4.8) andl(4d8}he same for all the values efe C \ {0}.
Hence, we can omit the upper indides and denote the eigenvalue functionSTf)(F)(A) simply byt(\).

Finally, it is easy to see that a given functiot\) of the form [4.8) satisfying[(4.13) corresponds to a
unique eigenvecto(\lfé“)| of 7_’(”)()\), so that the spectrum CY_F(“)( A) in ]DEWI%) n IS simple. Indeed, since

A(£§LO)) D( g)) # 0, the solution of[(4.12) is uniquely fixed (up to an overallmatization) by the requirement
rlzz)t (T+h) -1 x+y+xy"£t( ﬁLO))’
¥ (h) ael’)

foranyn € {1,...,N} and anyh € {0, 1}™ such that:,, = 0. In other words, it means that this eigenvector is
given by the factorized formul@ (4.4)- (4.5). The proof foe tright eigenstates is similar. O

(4.14)

As usual within the SOV approach, the eigenstates of thesfieammatrix are obtained aseparatestates
on the SOV basis, so that their scalar product can straigtefaly be expressed as a determinant issued from

(3.33):
)19y _ det [ e
(") = det [Fie] (4.15)

where; ¢ denotes thél x N matrix of elements

1
[Pl = 3 (e D’*(gy(f“;)) o) gl 9, 1 (€ — &) (4.16)

h=0

Such a representation can be obtained fort@hy, t'(\) € X=. Note that it does not depend on the value of the
twist k.
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4.2 On thereformulation of the SOV characterization of the spectrum in terms of solutions of
functional T-(@) equations. homogeneous ver susinhomogeneous equations

It follows from the previous study that the spectrii of 7 (\) is given as the set of all entire functiot(s\)
satisfying the quasi-periodicity properties

tA 4 7) = (DN E), (4.17)
Tt 4 mw) = (—e 2AImN 2%k G343 t(A), (4.18)

and such that, for each € {1, ..., N}, the matrix

z(¢(0) (0)
t n _Ax n

-b(&’)  t(&n)

is of rank one, i.e. that there exists a non-zero vector

(0)

Sk n

Aty = Ei) (4.20)
qf,n

which satisfiesDs ,, - gz , = 0 and which can be used to construct the corresponding eaessin other words,
the system of quadratic equations {4.2) which completefyatterizes, together with the functional fofm {4.1)
of the eigenvalues, the transfer matrix spectil is equivalent to the following condition:

vne{l,...,N},  3(ala))#(0,0)  suchthat
Vhy € {0,1},  E(el)) ") = Ay (€0) gl Y 4 p(elt)) gl (4.21)

Hence the system of equatioris (4.21) corresponds to a tdiseeesion of Baxter’'s famous functiondl-Q)
equation[[6]. However, in its present form, this charaesgion of the spectrum in terms of a discrete set of
equations which strongly depends on the inhomogeneitigeobystem (subject to the conditidn (3.8)) does
not seem very convenient for the study of physical quastitiethe model, since it does not allow for an easy
determination of the homogeneous and thermodynamic lindts the contrary, Baxter'd'-(Q equation in its
usual (i.e. functional) form is smooth with respect to thenbbgeneous limit and, thanks to the equivalence with
a system of Bethe equations, makes it possible to use somaasthtechniques to study the thermodynamic
properties of the model under consideration. It is theeeforportant to be able to pass from the discrete to the
continuous picture or, in other words, to find an equivalefanmulation of the SOV discrete characterization of
the transfer matrix spectrum and eigenstates in terms oé gamticular class of solutions on the whole complex
planeC of a functionalT’-Q) equation of Baxter’s type. Note that the existence of su@i@mulation has been
already proven for several integrable quantum models ddyeSOV [35] 36/ 2/1], notably for the antiperiodic
XXZ spin chain [42] which constitutes a limiting case of thegent model (see Remark12.2).

Hence, the problem one wants to solve can be formulated lasviol does it exist, for eacl{\) € ¥+, a
function@ () onC, in a class of analytic functions that has to be preciselgrdgihed, such thai\) andQ(\)
satisfy the continuous (functional) version bf (4.21):

t(A) Q) = Axy(A) QA =) +D(A) Q(A +1). (4.22)
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If moreover, for eachn € {1,...,N}, (Q(&), Q(& —n)) # (0,0), then this solutiorQ()) provides, through
the identificationqg;j) = Q( flh”)), all the vectors[(4.20) satisfying the conditién (4.21) amébling ones to
construct the corresponding eigenstates through (4.3)-(Brovided)()\) can be factorized in a generic form,
the determination of all eigenvalueg\) € = can therefore be reduced to the determination of the sebtd ro

of the corresponding solutia@ (), i.e. of the solution of a system of Bethe-type equations.

For any givent(A\) € Y=, the equation[(4.22) is a second-order finite-differencgagign which may in
principle admit two independent solutiog¥ \). The whole problem is therefore to determine what could be
the functional form of these solutions, and whether thisnffaloes or not depend on the particuték) € ¥
we consider (problem of theompletenessf the associated system of Bethe equations). In generalniéy
not be an easy task, since the functional form of@isolutions to this finite-difference equation may be quite
different from the functional form of its coefficients: fanstance, in the present case, it is obvious that [4.22)
cannot admit, fot(\) € X+, any solution of the type

M
Q) =coe* [T —%),  c@#0, MEN, a\,...,\m€eC, (4.23)
j=1

since the termg(\) Q(\), A(A) Q(A—n) andD(A) Q(A+n) would all have different quasi-periodicity properties
and would therefore be linearly independent. A possibld @uite usual) way to solve the problem would be to
explicitly construct the so-calle@-operator[4, [6] (see also for instance [45,[7,[3,8) 12]) and to deteentlire
functional form of its eigenvalues. This procedure may havdoe quite involved and, to our knowledge, has
never been performed in the case of the antiperiodic dyredrGigertex model.

It was recently suggested in the context of the so-callefidiaigonal Bethe Ansatz’ [10, 9] that one may
avoid these difficulties by considering, instead[of (#.229eneralized functional equation. The idea is to allow
some freedom in the rewriting of the discrete equations timocontinuous one, and in particular the presence
of an inhomogeneous (“off-diagonal”) term, so as to force Khtter to admit solutions of the forrh (4]23).
The equivalence of the discrete SOV characterization ofsgiextrum and the solutions of such generalized
functional T-() equation is then quite simple to prove, and it is probablysthgiest way, in the context of SOV,
to obtain a complete system of Bethe-type equations (saadtance([24], 42]). Concretely, in the present case,
such a reformulation would rely on two main ideas. The firs @nthat one can in fact allow, in the rewriting
of (4.21) into some functional finite-difference equatisome modification of the coefficientg A\) andb(\)
by a gauge transformation of the form

P .. bW

AN =AM, B = s, (4.24)
which leaves the produet(\) D(\ — 1) (and therefore the set of equatiohs {4.2)) unchanged. Onthegefore
choose the functiorfi() such that, for function§ () of the form [4.2B), the three ternaé\) Q(\), A(A) Q(A—
n) andD(\) Q(A + n) obey the same quasi-periodicity properties with respethégeriodsr and7w. The
second idea is that, in the rewriting of the discrete finifeetknce equations into a continuous (functional)
one, one can in fact allow the presence of an extra term asdsitlge later vanishes at each of the po"ﬁﬁ@%,
n € {1,...,N}, h € {0,1}, so that the discretized version of this equation effettieeincides with a gauge
transformed variant of (4.21). The resulting equation thién be of the form

_ B B D(A) B
t(A) Q) = fF(N) Axy(M) Q(A —n) + o QA +1n) — A(AN)DA)F(A). (4.25)
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In fact, there exist many possible rewriting of this formpeading on the functiorf (\) and the degre®! of
the class of solution®(\). A consistent choice fof (A\) and@(\) is for example:

M
1 _—igpn A=+ (M =N)n)
— £(8) — g—1,—iyA — ).
FN =170 =87e 70 n T io0) Q) jle Aj); (4.26)
in terms of some arbitrary complex parametémandy and of some roots, . .., Am. With such a choice with

fixed parameterg andy, it is natural to expect that the reformulation of the tranghatrix spectrum in terms
of the solutiong)(\) of degreeM of (4.28) is complete as soon & > N @ In the appendix B we explicitly
detail the cas® = N, whose result can be summarized as follows:

if M = N, for anﬁ fixedy € Candg € C\ {0}, thent()\) € ¥=if and only if there exists a functio@(\)
of the form [4.286), solution with(\) of the inhomogeneous functional equatibn (4.25)fok) = ,(f)()\)
given by [4.26), such thdQ(¢,), Q(&, — ) # (0,0) for eachn € {1,...,N} (see Theorem Bl1).

The functionF'(\) = F;E,c))()‘) in (4.28) is completely determined in terms pf\) = ELB)(A) andQ(\) by
imposing that the r.h.s. df (4.P5) is an elliptic polynomial

Such a functional equation reformulation of the transfetrinapectrum has the clear advantage to be
completely smooth with respect to the homogeneous limit liictv all parameters,, tend to the same value
(which was obviously not the case for the initial formulafio It moreover enables us to rewrite the transfer
matrix eigenstates obtained by SOV in a form very similar ®eghe vector, i.e. as some multiple action of
the operatord, evaluated at the roots of tlig-function (the “Bethe” roots), on some specified pseudasuat
state (see AppendixIB, Corollary B.1). Nevertheless, thesibdity to use it as an efficient tool to analyze also
the thermodynamic limit is still an open question. Indedgré is an important price to pay for the apparent
simplicity in the deriving of the functional equation: theepence of the inhomogeneous tefith\) makes the
resulting Bethe-type equations a priori much more diffibniolve than their homogeneous analog.

Hence, in the remaining part of this section, we turn backht gtudy of the homogeneous functional
equation[(4.2R2). We shall in particular explain how one cderithe expected form of th@-solutions to[(4.22)
from the quasi-periodicity properties of the coefficiemtsd we shall prove the completeness of these solutions
for t(A) € ¥+ in the case wherH is even.

4.3 Onthereformulation of the SOV characterization of the spectrum in terms of solutions of
an homogeneous functional 7-() equation: afew preliminary considerations

Before turning to more precise considerations about thi/@maroperties of the)-solutions to[(4.2P2), let us
precisely formulate at which conditions the knowledge ahsdunctionQ()) defines, through the equation
(4.22), a functiort(\) which is an eigenvalue of the transfer matrix.

®Note that it is a priori possible to lower the degriekof the considered class of solutiod¥)\) by allowing some unknown
parameters irff (\), as far as the total number of unknowns (i.e. of Bethe rostsjill at least equal tdl. For instance, with the choice
#.28), one may consider an equatibn (%.25)Namnknowns which would be the set of tMe— 1 roots of () andthe parameter of
f(X). We would then obtain Bethe equations of slightly differemtn coupling these two subsets of unknowns.

In fact, if n € R, they may be some additional restrictions on the set of parer®3 for which this assertion is valid (see
Theoren[BIl). Moreover, we also suppose thas such thaty + (N — M)p — &, u+ (N —M — 1)np — &, u — too — &,
w+n—too—§ ¢I,Vje {1,...,N}.
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Theorem 4.2. Let us suppose that the inhomogeneity paramelgrs . , &y of the model satisf{3.8), and let
t(A\) be an entire function such that the following conditions saéisfied:

1. there exists a functiof () such that(\) can be expressed as

Ay(N) QA — 1) + DN QA +1) |
20 ; (4.27)

2. the function® () of{d. is such that, for each € {1,...,N}, (Q(gn),Q(fn — n)) #(0,0);

t(\) =

3. t(\) satisfies the quasi-periodicity properti@&17)and (4.18)

Thent()) is an eigenvalue of the-twisted antiperiodic transfer matrix (i.e(\) € ¥=), with corresponding
eigenstates given in terms of the funct@t\) of[1. as

ha

he%:l}wanl [< gy @ ‘(Lha))] 4t 160" 1h,0) (4.28)

\Iléli)| - Z H [(“ eiyn)ha Q(éc(f‘“))] det [@(O,h)] (0, h|. (4.29)
he{0,1}N a=1 N

As discussed in the previous subsection, this theorem iseatdtorollary of the SOV characterization
of the antiperiodic transfer matrix spectrum and eigenstatf Theorenl 411, which can easily be proven by
particularizing the relatior (4.27) at tla& pointsé&,,, &, —n, 1 < n < N, so as to recovef (4.21). The whole
problem is therefore

(a) to characterize the functional form of the functi@\), preferably in a completely factorized form, so as
to rewrite the entireness condition fgr\) as a system of Bethe equations for the root§ 0% );

(b) to prove that, for each()\) € Y=, there indeed exists suchtasolution to the corresponding-Q equa-
tion, i.e. to prove the completeness of the aforementiotedacterization in terms of solutions to Bethe

equations.

Before turning to these more delicate points that we shallghly solve in the next subsections, we would like
to make a few remarks about the formulation of Thedrerh 4.2hwtan in fact be rewritten in slightly different
equivalent forms. For instance, it is easy to see that theliton[3. can be replaced by some equivalent

conditions on the functio®(\):

Proposition 4.1. For some given functio()\), we define a function(\) by the relation(4.27) Then

(i) the functiont()\) defined by{4.27)satisfies the quasi-periodicity proper@.17)if and only if the function
WS () = QA +m) QA —n) = (=1)Y QA+ — 1) Q(N) (4.30)
satisfies the relation

D)W (A +1) = (—17 a) WS (V) (4.31)
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(i) the functiont()\) defined by{4.27)satisfies the quasi-periodicity proper@.18)if and only if the function
W) = QA +7w) QA = 1) — (=17 e ™M QA + 7w — 1) Q(N) (4.32)
satisfies the relation

D) WS (A +1) = (1) e N a) WS (V). (4.33)

Hence the condition]3. in Theorém 4.2 can be replaced by theition:
3. the functionQ(\) of[1. satisfies the relation@.31)and (4.33)

Another remark comes from the fact that({\) satisfies[(4.22) for some functiaf)) satisfying [4.1F7)
and [4.18), the®)(\ + 7) andQ (X + mw) satisfy respectively the following equations:

tAN) QA +7) = (=1) Axy(N) QA + 7 — 1) + (=1)Y D(A) Q(A + 7 + 1),
t(A) QA +7w) = (1) e ™M A, (N) QA + 7w — 1) + (=1)* ™M D(X) QA + 7w + 1),

which means that we can in fact slightly relax the admissjbidondition[2. according to the following propo-
sition:

Proposition 4.2. If Q()\) is a solution to(4.22) for some functiort()\) satisfying (4.17) and (4.18) then
T QA + 1), ¢METN QA + mw) and N TOT TN QA 4 7 4+ mw) (With €1, e = +1) are also
solutions of(4.22)for the same functiomn(\). Hence the conditionl2. in Theorém#4.2 can be replaced by the
condition:

2'. the function@Q()\) of . is such that, for each € {1,...,N}, there exist{a,, 3,) € {0,1}? such that
(Q(En + anpm + ﬂnﬂ'w)v Q(gn + apm + Brpmw — 77)) # (07 0),

with corresponding eigenstates given by

yn ha . ™ mx\] ¢ (ha)
Z H [(6 Axy ga)) el[aa%+6a(N+?)}£a Q( 6(lha) +Oéa7r+ﬁaﬂ-w)

he{0,1}N a=1 D(& )
x det (0] |h,0), (4.34)
TTX (ha)
n)’ _ Z H [ Kezyn ha jilaa T +Ba (N+55)]Ea Q(féha) +Oéa7T+,3a7Tw)} dﬁt [9(07}1)] (0,h],
he{0,1}N a=1
(4.35)
instead of(4.28) (4.29)

Note finally that the relatiod (4.31) (respectively the tiela (4.33)) can be understood as some “wronskian-
. A . X
type” identity for the two solution§)()) ande™™ 7 Q(X + ) (respectivelyQ()) ande’ME7)* Q(\ + 7w))
of the functionall-Q equation[(4.22), as a particular case of the following vesyeagal property:
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Proposition 4.3. LetQ:(\) andQ2()) be two solutions of the functional equati@h22)for some given function
t(A). Then their quantum Wronskian,

Wia(A) = Q1(A =) Q2(A) — Q1(N) Q2(A — 1), (4.36)

satisfies the relation

D(A) Wia(A 4+ 1) = (=1)YY A(X) Wia(N). (4.37)
Hence
le()\) = f12()\) D()\), with f12()\ + ’I’]) = (—1)X+y+ny12()\). (438)

Remark4.1 If Q(\) satisfies the homogeneous functional equafion {4.22) foerachk € Z, ik Q)
also provides a solution to the function@l (4.22), whichas/bver not independent fro@(\) in the sense that
their guantum Wronskia (4.86) is identically zero.

4.4 Study of the homogeneous 7'-() functional equation: an Ansatz for the ()-solutions

As just announced, the periodicity properties of the caeffits of [4.22) fort(\) € Y= enable one to make a
reasonable guess about the functional form of its possitiieed)-solutions, i.e. the solutions that are suscep-
tible to lead to a system of Bethe equations. The idea is tstoam this equation, similarly as in [27], into a
difference equation with elliptic coefficients:

Q0+ 1)+ i) i Q) + ) i QA= 1) = (4.39)
Here we have set
A =gk AW =2 and Q)= (4.40

where P(\) has to be chosen appropriately so as to ensure that the e@#iof (4.39) are doubly-periodic.
Since the functiong;(\) exhibit different quasi-periodicity properties accoglito the values ok andy, we
shall now consider the three different cages 0, y = 0 andx = y separately. To this aim, it is convenient to
introduce shorthand notations for different variants & theta function that we shall use within the study of
these different cases. We therefore define the followingfoddtions of),

Beo(N) = 6, G ( g) (4.41)
Oy—o(N) = 01 (N | 2w), (4.42)
b,y (\) = % 6, (% w) by (””% ( w), (4.43)

which satisfy respectively the quasi-periodicity projmst

Oio(A + 27) = =0 (M), Or=o(A + Tw) = —e~ T f_g(N), (4.44)
Oy—o(A +m) = ~by—0(N), Oy=0(A + 2mw) = —e PAT2T G _4(N), (4.45)
Ox=y(A + 27) = —Ox=y (), Oy—y(A + 27w) = e~ BiA2imw Ox=y(N), (4.46)
ey (N £ + ) = ie™ AT Oy (V). (4.47)
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Thecasex = 0. Letus choosé’()\) in the form

N
= H ax:0(>‘ - Zj)’ (4'48)
j=1

for arbitraryz;, 1 < j < N. Then the coefficientg; (A )PI(DA(in and fa(\ ) Z; for the equation[(4.39) for

@()\) are elliptic functions of period3m andrw. Followmg [27], we may therefore look for the double-Bloch

solutions of[(4.3P), i.e. for the meromorphic solutloifg\(sk) Q(Ag such that

QO +2r)=B1Q(\), and Q(\+7w) = By Q(N), (4.49)

for some Bloch multipliersB;, Bs. It is easy to see [28] that any double-Bloch function of therf (4.49) can
be written in the form

M
O(\) = cg e 1_] % (4.50)

for some integeM, some complex parametarand some sets of zeroes and polesaind;, 1 < j < M. If

Q()\) of the form [4.5D) is solution of (4.89), thep(\) = P(\ )Q()\) is solution of [4.2R), and we expect the
latter to be entn% which means that it can be written in the form

N
Q) = cq e [ ] bxmo(X — A)), (4.51)
j=1

for some complex parameterand some set of roots;, 1 < j < N.

Note that, in the obtention of the Ansafz (4.51) éf)\), we have only used a weaker periodicity property
than (4.17) fort()\). Imposing that(\) strictly satisfies[(4.17) is equival the additional constrainf (4.31)
for the corresponding functioWél)()\) defined in term of)(\) as in [4.3D). It means that

wH ) = gM () o), (4.52)

whereg™M) ()) is n-periodic: gV (A + ) = gV ()). On the other hand, fap(\) of the form [4.51), it is easy to
see thawg)()\) satisfies the quasi-periodicity properties

Wégl)()‘ )= (_1)N+y+1 p2ma Wégl)()‘)7 (4.53)
Wél)()\ +w) = (_672i)\7i7Tou)N o2 A FiNnt2mwa Wégl)()\)’ (4.54)

which have to be compared to the quasi-periodicity progemifo(\). Henceg(!) (\) also satisfies the quasi-
periodicity properties:

gD A+ m) = (=1 e g (y), (4.55)
gD + mw) = 2 A+ En-T &) +2mwa gV (). (4.56)

8t is easy to see that, i()\) solution to [Z.2R) admits some pole;, then it should have an infinite number of poles of the
form p; + kn for an infinite number ok € Z, which is clearly not compatible with the forfa (4150) @f()\) (we suppose here that
n ¢ 7Q + mwQ@Q, and that the inhomogeneity parameters satisfy (3.8)).

®Indeed, ifQ()) of the form [451) is a solution t([(IIZZc)"“Q()\ + ) is another solution td (4.22) that we expect here to be
independent from the first one.
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It means that there exist two constaaﬁﬁ anda; such that
g(l)()\) = cg/) eO‘IA, (4.57)
and that there exist;, k2, ks € Z such that

a1 = 2miky,

arm =in(l —y) + 2ra + 27miks, (4.58)
) N .
QW = Zz{ZAJ + 577 — Zﬁk} + 2rwa + 2miks.
Hence, ifc%) = 0, one obtains the following sum rules:

-1
Oézi[y +klz—k52:|,
2 n

(4.59)

N N
N Tw
E_ 1:)‘j :;; 1fk— §U+(1—Y)7+k2ﬂw—k3m
= —

for someky, ko, k3 € Z.

Note that, if there indeed exists such a solution, it meaastttere exists such a solution for whikh = 0
andky, ks € {0,1} (this is due to Remark4.1, and to the quasi-periodicity progs of the functior,—y with
respect to a shift of one the roots by 27 or 7w). In fact, one can even be more precise, and formulate the
following Ansatz:

e if (x,y) = (0,1), we expect two independent solutions of the form

N
Q) = ] bx=o(x = A)), (4.60)
j=1
with
N N N
dDNi=D & Stk ke{0.1}, (4.61)
j=1 k=1
and
@()\) — 't QN+ 7); (4.62)

o) = el []0cor =), kedo,1}, (4.63)
with "

N N N 7w

;Aj:;gk—§n+7, (4.64)
and

Q) = QA + ). (4.65)
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Thecasey = 0. A similar reasoning can be made in this case, by chooBif of the form

N
=[] b=o(r — 2)), (4.66)
j=1

with arbitraryz;, 1 < j < N, so as to obtain elliptic coefficients with periogsand27w in (4.39). It leads to
the following Ansatz foiQ(\):
N
Q) = cq e [ ] by=o(A = N)), (4.67)
j=1
for some complex parameterand some set of roots;, 1 < j < N. The condition[(4.33), which is a necessary
and sufficient condition for the corresponding functib2{@.to satisfy [(4.18), results into the following sum

rules for [4.67):
a:i[kzlﬁ—kg},
n
(4.68)

N N
N m
j= =

for someky, ko, k3 € Z.

As previously, we can be more precise. Indeed, if such aieal@xists, then it is easy to see, from Re-
mark[4.1 and considerations about the quasi-periodicitpgties of the functiofl,—o with respect to a shift of
one of the roots\; by 7 or 27w, that there also exists a solution for whikh = 0 andk;, k, € {0,1}. Then
one can formulate the following Ansatz:

e if (x,y) = (1,0), we expect two independent solutions of the form

N
Q) = e M [ by=0(A = %),  ke{o1}, (4.69)
j=1
with
N N
dDNi=d & —77+k77w (4.70)
j=1 k=1
and
Q) = N QA + 7w):; 4.71)

e if (x,y) = (0,0) andN odd, we expect two independent solutions of the form

N
= T [ Oy=or — Ny). ke {0,1), 4.72)
with
N N
D= G- —n+ (4.73)
j=1 k=1
and
Q) = eMQ( + Tw). (4.74)
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Thecasex =y. Inthat case, the choice
N
P = [ bx=y(X = 2)), (4.75)
j=1

with arbitrary z;, 1 < j < N, leads to an equation (439) which has elliptic coefficiemith periodsmw + 7
andnw — m, and to the following Ansatz for the solutidp(\) of (4.22):

N
QM) = cq e [] bx—y(A = y), (4.76)

J=1

for some complex parameterand some set of roots;, 1 < j < N. Itis then easy to see that the conditions
(4.31) and[(4.33) result into the sﬁsum rules for the parameters entering (%.76), which can biewas

—1
Oézi[y +k‘1z—k?2],
2 U]
N N
N 1—y
;Aj_;gk—§n+(w+nw) <?+k2> + ks,

for k‘l, ko, ks € Z.

4.77)

Here again one can be more precise: if such a solution ekissasy to see that, due to Remarkl4.1 and
considerations about the quasi-periodicity propertiegheffunctiond,_, with respect to a shift of one of the
roots\; by 7 + mw or 2, it exists fork, = 0 andk;, k3 € {0,1}. Due to the existence of a second solution of
the form

eiy%)‘Q()\—Hr) o !N+ QA+ mw), (4.78)
one can finally formulate the following Ansatz:

e if (x,y) = (1,1), we expect two independent solutions of the form

N
QW) = [T oey(A = M), (4.79)
j=1
with
N N

jzl \j = Zlgk —gntkr ke{0.1}, (4.80)
and

Q) =€ QA+ 1) ' (NF 3N QN+ mw); (4.81)

In fact, forQ(\) of the form [ZZ6), one hald (A + 1) = (—1)**! (ie™ 773" )N ! Z A+ (mmea i (),
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e if (x,y) = (0,0) andN odd, we expect two independent solutions of the form

o) = elsr—3a IIexy (A=),  ke{01}, (4.82)
with
N N
=Yg oy T (4.89
j=1 k=1
and
@()\) =Q\+m) x eiNA QM + 7w). (4.84)

Remark4.2 The case(x,y) = (0,0) with N odd can be considered from three different viewpoints (as a
particular case of = 0, of y = 0 or of x = y), hence leading to three possible different systems ofpdeddent

solutions ((4.68) and (4.65), (4]72) and (4.74),[or (4.8%) &.84)).

In the previous study, we have exhibited possible formsHerentireQ-solutions of [4.2R), hence suscep-
tible to lead to a system of Bethe-type equations. One caacinlfe slightly more precise in our argument by
remarking that, if)(\) is a solution of the form(4.51), (4.67) or (4]76) to the homgous functional equation
(4.22) for some functiom(\) satisfying [4.1) and (4.18), then at least one of the twations [4.30) or[(4.32)
should be non identically vanishing. This means on the omel lat the sum rule$ (4.59), (4168) br (4.77)
should indeed be satisfied, so that we can indeed refine thedbt)(\) as in [4.60),[(4.63)[(4.69)[_(4.I72),
(4.79) or [4.8R) according to the case. This means on the bral that the conditioB’. of Propositiol 4.2 is
automatically satisfied. This is due to the following prdgioa and corollary:

Proposition 4.4. If Q()) is a non-zero solution of4.22)of the form(4.51), (4.67)or (4.76)to (4.22)for some
functiont(\) satisfying(4.17)and (4.18) then at least one of the two functioﬁég)()\) (4.30)and Wg)()\)

(4.32)is not identically zero.

Proof. Let us suppose that both functioﬁég)()\) andwg)()\) are identically zero, i.e. th@(\) satisfies the
relations

Q()‘ + Ww) — (_1)x e*iNW Q()‘)
QA + 7w —n) QA —n)
This means that the functloaQA(% is a double-Bloch function which can therefore be writtethi@ form
Q) BA — j1j)
7@()\ i =cpe H 79 — Vj) (4.86)

for some integeM, some complex parametgrand some sets of zeroes and pglesandv;, 1 < j < M.
It follows that Q(\) should be of the form[{4.23) which, as already mentioned,otscompatible with the
quasi-periodicity properties df (4.22). O

28



Corallary 4.1. Lett(\) satisfying(4.17)and (4.18)and let us suppose that there exists a functignh) solution
to the homogeneous functional equat{di2)associated with(\).

e If x = 0and ifQ()\) is of the form(4.51) thenWél)(A) is not identically zero and the sum rufé.59)is
satisfied. Moreover, for alt € {1,...N}, (Q(& — ), Q(& — n+m)) # (0,0).

e If y = 0andifQ()\) is of the form(4.61) thenwg)()\) is not identically zero and the sum rufd.68)is
satisfied. Moreover, for alb € {1,...N}, (Q(& — n), Q(& — n+ 7w)) # (0,0).

o If x=y =0andifQ(\) is of the form(4.76), thenWé;)()\) and Wg)()\) are not identically zero and the
sum rule@.71)is satisfied. Moreover, for atb € {1,...N}, (Q(& — 1), Q(& —n + ) # (0,0) and

Moreover, in all these caseg,\) is a transfer matrix eigenvalue.

Proof. Let us first consider the case= 0. The first part of the assertion is a direct consequence gid”ro
sition[4.4, of the fact thawg)()\) is identically zero forQ(\) of the form [4.51) and of the previous study.

Thereforewg)()\) = c%,) e D(\) with cg) # 0. This is clearly incompatible with the possibility thatrfo

somen € {1,...,N}, (Q(&—n), Q& —n+m)) = (0,0), since in that case we would haUég)(gn—n) =0.
Hence the second assertion follows.

The caseg = 0 andx = y can be proven similarly. O

It is also easy to see that, whenever such solutions exist ¥gre Y, they are unique, which means that
the characterization of a given eigenvalue (and correspgrelgenvector) of the antiperiodic transfer matrix in
terms of the corresponding type of solutions of Bethe equas uniquely determined (i.e the same eigenvalue
cannot be obtained by two different solutions of the same)typ

Proposition 4.5. For eacht()\) € X=, the equatior(4.22)admits
e at most one independent solution of the fdd®0)if (x,y) = (0, 1);
e at most one independent solution of the fd®9)if (x,y) = (1, 0);
e at most one independent solution of the fdY9)if (x,y) = (1, 1);
e at most one independent solution of the fqg©3) with the constraint{4.64) at most one independent

solution of the form{4.72), and at most one independent solution of the f¢f82) with the constraint
(@.83)if (x,y) = (0,0).

Proof. Let us suppose that there exists, fary) # (0,0) and for a givent(\) € Y=, two solutionsQ: ()
andQ,(\) of the form [4.6D) (respectively (4.69), respectivély @)7 Then their quantum Wronskialn (4136)
satisfies the periodicity property/;o(\ + 27) = Wia(A). HenceWiz(A) = fi2(A) D(A), where fi2()) is an
entire function with two incommensurable peridtls and 2 (we suppose thaj ¢ 7Q), i.e. it is a constant.
The latter is equal to zero {k,y) # (0,0) due to [4.38).

Let now(x,y) = (0,0) and let us suppose that, for a give\) € Y-, there exist two solution§;(A) and
Q2(X) of the form [4.68) with the constrairt (4164) (respectivefythe form [4.72), respectively of the form
(4.82) with the constrainf (4.83)). By considering the dqumesiodicity properties of their quantum Wronskian
(@.38)W12(\) = f12(\) D(X) with respect to shifts dir andww (respectively ofr and27w, respectively oRr
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and=+7 + mw), one obtains thafio()) is of the formfi2(\) = c12¢®12*, and one obtains some conditions on
aq2 if ¢12 # 0. These conditions are clearly incompatible with the supdderm of @, (\) andQ2(\), which
means here also that, = 0 and that the two solutions are not independent. O

We shall see in the next subsection that the reformulatioth@fspectral problem fo7 (\) in terms of
solutions of the forn{(4.60),(4.69) dr (4179) is effectiveluivalent to the SOV characterization of the spectrum
of Theoreni4l, at least in the casesven.

4.5 On thereformulation of the SOV characterization of the spectrum in terms of solutions of
an homogeneous functional T-@ equation: proof of the completenessfor N even

We shall now prove the converse of Theollen] 4.2 in the caseesf\and forQ(\) of the form [4.60),[(4.69)
or (4.79), i.e. the completeness of the solutions to theesponding Bethe equations. More precisely, we shall
prove the following result:

Theorem 4.3. Let us suppose that the inhomogeneity paramefers. ., ¢y satisfy (3.8) and lett(\) be an
eigenvalue of the antiperiodic transfer matfi(\) (i.e. t(A) € ¥=). Then, ifN is even, there exists a function
Q () of the form

N
Q) =[] ox(A = Ay, (4.87)
j=1

for some set of roota, ..., Ay, such that()\) and Q()\) satisfy the homogeneous functional equa(é22)
Here the notatiorfix () stands, respectively, for the functih4l)if (x,y) = (0,1), for the function(4.42)if

(x,y) = (1,0), or for the functiond.43)if (x,y) = (1,1).

From Propositio_4]5 we know that such a solution is uniqyetunormalization). We also know from
Corollary[4.]1 that this solution is such that conditidh of Proposition_4.R is satisfied. Hence, in the case
of evenN, it means that the discrete SOV characterization of thetspeds equivalentto the description in
terms of Bethe equations based on solutions of the form)(48he homogeneous functional equatibn (4.22).
The description of the eigenstates can then be obtained Hseloren{ 4.2, or more generally as in its variant
Propostiori 42. Note here that it is possible to rewrite teesponding eigenvectors in a form more similar
to what we have in the ABA framework, i.e. by multiple actiam a given reference state, of a product of
operators evaluated at the corresponding Bethe roots. Vmwdue to the fact that the functiap()\) (4.87)
is not a theta function of the same type (i.e. with the sameaieperiods) as the other functions defining the
model, and unlike what happens in the context of the refoatiar of AppendiXB (see Corollafy B.1), we do
not use the whole operat@? to construct the eigenstates, but only “parts” of this ofmerdn the present case,
the operatoD is split into a product of commuting operators, and theseterdéatter which are used to construct
the eigenstates. More precisely, for edttuple 3 = (51, ...,6n) € {0,1}N, let us define irEnd(Devp),n)
the following diagonal operator on the SOV basis given byvetors|h, r):

N
im(x+y—xy)hn | : (hn) Bn
DI@()\) ’h, 7°> _ H{ [CX . +yN y)h ,+z5y:0(>\*§nh )} Ox (}\ _ Eghn) 4 /Bnﬂ'x)} ‘h7 r>7 (488)

n=1
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04(0|w) if x = 0,
it =1 1e7 gy(0w) ify =0, (4.89)
3€77% 05(0lw) B3(0lw) 04 (0w)  if x =y,
iy = (1 = by—o) ™ + dy—o Tw. (4.90)
We have that
Dp(A) Dy_g(\) [,y = e "R X ﬁ o\ — £ |, 7, (4.91)
n=1

wherel — 3 stands for théN-tuple (1 — 51, ...,1 — fn). This means that
D(A) = Tp Dg(A) D1_g(N), (4.92)

whereTp is the shift operator defined on the SOV basis as

T |h, T‘> _ eiﬂ(XRY—Xy) Sh;SO e*i)”? S11;81 H(tr+1,h)
O(tri1,1)

Then one can formulate the following corollary:

lh,r 4 1). (4.93)

Corollary 4.2. Under the condition(3.8) and if N is even, there exists a one-to-one correspondence between
Y7 and the sebigag of different (up to the real quasi-period of the functigy) Bethe roots\ = {M,- ., AN}
such that

1. the function
QA —mn) QA +n)
Q) Q)
is entire and satisfies the quasi-periodicity properi{és7)(4.18)

Axy(N) + D()\) (4.94)

2. Vn € {1,...,N}, there exists3, € {0,1} such that)(¢, + B,my) # 0,

where@()) is defined in terms ok by (4.87) The eigenvalue()\) € Y- associated with\ € Ypag is then
given by the entire functiofd.94) For anyx € C \ {0}, the corresponding one-dimensional right and left

eigenspaces of the-twisted transfer matriﬁ'(“)( A) are the one-dimensional subspaceéD{ﬁ R/L) x Spanned
by all vectors of the type
H D()\) |9%),  respectively (U ()] H Dp(X (4.95)

for any N-tuple 3 € {0,1}N. In (4.98) the operatorsDg(\) are defined as if4.88), and the reference states
|Q*)) and ()| are

7 ha
ey = Y H< e Ay > det [0OM)] |n,0), (4.96)

he{0,1}N a=1

9= 3 H(mw") det [©M)] (0, hl. (4.97)

he{0,1}N a=1

31



The proof of Theorerm 413 is based on the following lemma:

Lemma 4.1. Let us suppose that the inhomogeneity paramegers. ., £y satisfy(3.8) and letN = 2M be
even. Then, for eac{)\) € ¥+, there existA € C and two non-zero entire functiori@, (\) and Q () with
the following quasi-periodicity properties:

Qe(A+m) = (£1) Q=(N), (4.98)
Q:I:()\ + 7Tw) _ (il)x (_672i>\7i7rw)|\/| e2iAfiM7rw Q:I:()‘)7 (499)
which satisfy the following system2ifl equations:
{E(Ej) Q+(&) = —A(§) Q-(§ —n), L<j<N. (4.100)
8§ —mQ-(§ —n) =b(§ —n) Q+(&),

Proof. On the one hand, sinag)\) € X= the system[(4.100) is equivalent to the following systemrdy i
equations:
t(&) Q+(§) = —A(E)Q-(§—n), 1<j<N. (4.101)

On the other hand, the entireness and quasi-periodicityepties of the two function® () are equivalent to
the fact that the functions

Q=) = e ME MG () (4.102)
are theta functions of of quasi-periodg =, 7w), of orderM and of norm
1Fx1 W
A2 =). 4.1
Ar=A-— (2+y2> (4.103)
This is also equivalent to the fact that the functichs(\) can be represented in the following form,
M M
Qi(N) =) e M8y 00 &y + 30 1&( A+) 96()\ — &) Q+ (&) (4.104)
k=1 Zz 160 —A4) gi}ﬁ (&ir, — i)

ZQZ(V JA=Eiy +m) O — &, + 1+ Zgﬂzlgiz —Mp—A_)
wzﬂﬁ@—Mn—A>

xII BAZGt1) o (6 ), (a105)
E’Lk gw )
P

in terms of some arbitrarl-tuples (Q (&, ), - .., Q+ (&) and (Q—(&, — 1), ..., Q— (&, — n)), provided
thatAy, — S0 &, ¢ TandA_ — ) &, + My ¢ T. Here, we have arbitrarily split the set of the
inhomogeneity parameters;,...,{n} into two disjoint subset§s;,, ..., &, } and {&,,, ,...,&,} of the
same cardinalityVl = N/2.

Hence, the systeri (4.701) far, (A\) and@_()) is equivalent to the following linear system for these two
M-tuples:

L HEy)
Q*(gzj n) = A(£ ) Q+(£z])
M Jj=1...,M, (4.106)
Z ]k: Q+ glk) - ’
k=1
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whereX;(A) is theM x M matrix of elements:

[‘XL(Q )] e—iM(ﬁia+M —&ip) M 9(£ia+M giz) 9(£ia+m &, + > 2/'71 §ip — Ay) E(&HM)
t ab | |
(=1

o0&, — &) H(Zyzl §ip — Ay) Al&ia i)

b

) Vi — i+ XL G — M — A ) B(&,) (4.107)
O &, —Mn— A ) A(Ss,)

The first line in [4.106) corresponds to the equatidns. . , i of (4.101), which completely fixe thil-tuple

(Q=(&, —m),-.-,Q—(&, — n)) in terms of theM-tuple (Q4(&,), ..., Q+(&,)), whereas the second line
in (4.108) corresponds to the equatiofg. 1, . .., iy Of (4.101), in which we have used the representations
(4.104) and[(4.105) that we have rewritten (by means of ts fiine of [4.106)) in terms of thél-tuple

(Q+(&1)s -, Q+(&y)) only.

Hence, this system admits a non-zero solution if and onlggfdeterminant of the matrix;(A) (4.107)
vanishes. Itis easy to see that this determinant is a qeaigielic function ofA with quasi-periodicity properties

d'\(/alt [G(A+m)] = d'\(/alt [X:(A)], (4.108)

ot [Xe(A + mw)] = ¢ e G 6 det [:(A)] (4.109)

so that, if not identically zero, itis a non-cons@‘ﬂunction of A which can be written in the form
1M 6(A - Ay)
O(Ay — Zyzl 'Sz‘z)M O(A- — Zyzl &, + M’?)'W

in terms of some root& ; which are not all equal to the roots appearing in the denaiminghis ends the proof
of Lemmd4.1. O

det [X:(A)] = cx (4.110)

Proof of Theoremh 4]3Let t(\) € ¥ andN = 2M be even. Then Lemnia 4.1 implies that there exists
two non-zero entire function§_ (\) which satisfy the quasi-periodicity propertiés (4.989@) and the system
(4.100) for someA € C. This implies that there exist two entire functioffis (\), with quasi-periodicity
properties

feA+m) = (£1)7 fe(N), (4.111)
f:l:()‘ + 7Tw) _ (il)x (_e—Qi)\—iﬂw)M eZiA—iMﬂ'w f:l:()\)7 (4112)
which satisfy together with the functiordg.. (\) the following system of functional equations:
{tu) Q+(\) = —AN) Q- (A = n) + D) f-(A +1),
t(A) Q—(A) = —=A(A) f+-(A = 1) + D(A) Q+ (A +n).

Particularizing the first line of(4.113) at the poirgts— n, j = 1,..., N, and the second line at the poirgts
J =1,...,N, and using the fact that\) € ¥=, we obtain that

(4.113)

Q+(&—mQ-(&) =f+(§G—m f-(&), 1<j<N (4.114)

Mat least for some adequate splitting{d, . .., én}-
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Note that the functio® (A — n) Q_(X) and the functionf. (A — n) f_(\) satisfy the same quasi-periodicity
properties:

Fr (A +7)=Fy_(\), (4.115)

Fy_ ()\ + m,u) _ (_672i)\7i7TW)N 64iA+iN777iN7rw Fy_ ()\), (4.116)
so thatF'; _ () is a theta function of orded and of norm2A + Mn — Mrw, whereF, _(\) stands either for
the function@ . (A — n) Q_(A) or for the functionf (A — n) f—(A). Hence[(4.114) implies that the identity is
in fact valid at the functional level, i.e. for anye C:

Qr(A=n)Q-(A) = f+(A=n) f-(N). (4.117)
One can therefore eliminafe (A — n) in the system((4.113), and we obtain the following functisystem for
the functionf_(\):

tA) Q+(A) = —A(N) Q- (A —n) + D(A) f~ (A +n),

— 4.118
() Q- () = ~a) CLBEE 00y, (14 1

Note that the ratio in the second line bf (4.118) is in fact atire function due to(4.117). This systems implies
that

A(N) f1(A) =D(A) fo(A + 1), (4.119)
in which we have set

O =Q (-1 @ () - Q“AJZ_’Z;)Q SCOP NN (4.120)

L2 =f-(N)Q-(A—n) = Q+(N) Q+(A —n). (4.121)

f1(A) and f2(\) are two entire functions ok which are both theta functions of ordlr, and therefore the
relation [4.11D) implies that there exists two constants, € C such that

fl()\) =C D()\),

fg()\ + 77) = C9 A()\), i.e. fl()\) = fg()\) = D()\) (4.122)
C1 = Cg,
Hence
f-(N) =Q-(N), and  fi(A) =Q+(N), (4.123)

which means tha) _ (\) and@ . (\) satisfy the following system:

{tw Q+(N) = —AN) Q-(\ =) + () Q- (A +1), @124
EN)Q-(A) = AN @+ (A — 1) + (V) Q1 (A +1). '

Let us now define the entire functions

Q) = Q+(N)+Q-(N) and  O(\) = Q+(N) —Q-(\) (4.125)
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with quasi-periodicity properties

QA +m) =1 -y)Q\) +yQ(W), (4.126)

QA + mw) = (—e ZATITM 2iA=Mmw T(1 ) Q) +xQ(N)] (4.127)
and

QA +m) =(1—-y)Q(\) +yQ(\), (4.128)

QN + mw) = (—e 2ATITW)M ZiA—iMmw [(1=x)Q(\) +xQ(N)] . (4.129)

From these quasi-periodicity relations, it is easy to se¢ ¢(\) and Q()\) are both (up to a constant nor-
malization factor) of the form(4.87). Moreover they satitie following respective homogeneous functional
equations:

t(A) QN = —A(N) QA —n) +D(A) Q(A +n), (4.130)
BN Q) = AN QO — 1) — D) QA + ). (4.131)
This ends the proof of Theordm #.3. O

5 Local operatorsand dynamical Yang-Baxter algebra

In the next section, we shall compute determinant repratens for form factors of local operators in the
Dgg’\%;?,\)l—basis of the eigenstates of thawisted transfer matrix. As in the algebraic Bethe Ansadrmfework
[26,,[30], such representations are based on the solutiomeojiantum inverse problem, i.e. on the fact that
one can reconstruct the local operators we consider in tefrtiee generators of the Yang-Baxter algebra. A
particularly crucial point in this respect comes from thetfthat the positions on the lattice of these local
operators are given in terms of propagators written as tsdaf transfer matrices, so that their action on the

corresponding eigenstates merely contributes as simpierical coefficients.

For the dynamical 6-vertex model that we consider in thispahe local operators of interest are essentially
of two types: locakpinoperators and locéddeightoperators. In our framework, local spin operators corredpo
to elementary operators acting non-trivially on only onetda of the space tensor produét, = ®N_,V;, and
can be expressed in terms of the usual basis of elementarjce:xa{E,ij; i, € {+,-}H1<n< N} of
End(Vy) defined by

EY = (5“ Ot Ot 5‘”’) i,je{+, -}1<n<N, (5.1)
d_id0p; 0—;0_; -

whereas the local height operators are dynamical operatirsy non-trivially on the dynamical spafe In

the physical context of classical SOS face models, the mpadators that we should especially consider for the
computation of correlation functions are the followinggder instance Section 3 df [32]): the spin operators
Ef*T andE, ~, which are associated with the values of the classical smilable ¢+ or —) on then-th vertical
bond of a given vertical line of the lattice, and the Iocalghnaioperator@j), t € tg + nZ, which are associated
with the valuest of the local height variable on thgth site of a given vertical line of the lattice. Note in
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particular that the local height operat@@ at site 1 (the reference site) have the following simpleoactin the
dynamical-spin basi§ (2.B1):

(@N_y (1, hu]) @ ()] 01 = S0y (V=i (1, ) @ (H(a)], (5.2)
8 (N1, ) @ [£(0)) = 80y (@M=l hn)) © [E(a)). (5.3)

Its action on the SOV basis (3.4)-(B.5) hence simply folldwesn (3.6):
<T7 h| 8\151) = 6t7tr,h <T7 h|7 8\151) |h7 T> = 6t7tr,h |h7 T>' (5-4)

In the following, we shall denote this operator%@ = 6¢(7).

Reconstruction of local spin operators in terms of the etl@mef the dynamical periodic monodromy matrix
(2.11) has been obtained in [30], generalizing to the dynahaiase the proof of [26, 34]. In this paper, we need
instead to express these operators in terms of the elemettie s-twisted antiperiodic monodromy matrix
(2.20) (using in particular propagators given in terms efdktwisted transfer matriX{2.25)) so as to be able to
easily compute their action on the eigenstdied (4.3)-(4.4)

So as to remain as general as possible and to present a pabds thalid in both periodic and antiperiodic
cases, we shall instead consider a quasi-periodic mongadneeitrix of the form

M) = Yo Mo(N), (5.5)

where M is given by [2.111) and” stands for any numerical invertible matrix (thetwisted antiperiodic case
corresponding to the particular choite= X (*)¢*). The corresponding quasi-periodic transfer matrix wall b
denoted by7 ¥ (\) = trg [M(()Y)()\)]. The aim is therefore to express local operators in termsebperator
entries of [5.5). As in the periodic case, this reconstoucts based on the following lemma:

Lemma5.1. [30] We have the following identity between products of nivomy matrices:

H %

m k—1 m k—1 m
HMak,l___N(gkngazl) = [IMekbr N or e (Ek!TJrnZUern ) azl), (5.6)
k=1 1=1 k=1 I=1

I=k+1
m m

in which the symbolg ] (respectively]] ) means that the product is ordered frdnto m (respectively fromn
k=1 k=1

to 1). In this expressionV,, i k+1..N a; as...a),_, d€NOtes the monodromy matrix of a chaimosites labelled in
this order byk, k + 1,... N, a1, as,...ai—1 wWith inhomogeneity parametefs, £x11, - .- &N, &1, 82, - - - &1

We will also use the following result:

Lemma5.2. The trace of the inverse of the quasi-periodic monodromyirm@@.5) evaluated at some inhomo-

geneity parametef,,, n € {1,...,N}, is equal to the inverse of the quasi-periodic transfer ixawaluated at
&ny e,
() 171 _ 7(v) -1 5.7
tro [Mo (gn) ] =T (gn) . (5.7)

36



Proof. For any given numerical matrices and Z, we independently compute the two trame(;;[Zo Mo(gn)]
andtrg [Mo(gn)—l ZO] as products ofR-matrices or of inversdz-matrices, using the fact that thie-matrix
(2.7) becomes proportional to the permutation oper&emwhen evaluated at = 0: R12(0|7) = a(0)Pi2. On
the one hand, we obtain

N k-1
tro[Zo Mo(&,)] = tro| Zo H Rog <§n —&lm+n Z Uf) -a(0) Pon
k=n+1 =1
%
n—1 k—1
< [ Box <£n — &l + nZai) T#]
k=1 =1
H
n—1 k—1
= HRnk <£n - £k|7_ + UZUIZ> TZ"
k=1 =1
N k—1
xtro|Zo ] Rox <§n = &kl + UZO'ZZ> - a(0)Pon
k=n+1 g;l

AR k-1 N k-1
:a<o>HRnk(§n—§krT+nZaf> 7 2, HRnk(gn—skrwnZaf),
k=1 =1 =1

k=n-+1 =
l#n

where we have used the zero-weight property of Bmatrix, namely[R,,;, o7 + of] = 0, as well as the
commutation relatior{ (2.10). The second trace can be cadmimilarly, leading to

) . N k—1 ) - k—1
tro[Mo(&n) ™" Zo] = a0 | RS <£n —&lT+n) af) Zn T [ Rk <£n —&lm+n) af) :
k=n+1 f;l k=1 =1
n
hence theresultfaf = Z- 1 =Y. 0

Remarks.1 It follows from Lemmd5.R and from the inversion relationI@) that

TENTE)) _ >0 TOENTOE) 5o 59
ae)p(e)) 0 +s) A p(ED) 0(7 +11S)

Similarly, building on the inversion relatiof {2]16) and thie proof of Lemma&5]2 for different choices &f Z,
one can deduce several other useful identities, such agdtarice the following cancellation identities, analog
to those obtained in [23] in the non-dynamical case:

Mii(E0) M(€) =0, Vi, jk =+ (5.9)

Remarks.2 By using similar arguments as in the proof of Lenima 5.2, omeatso easily show that

N (Y) N
TE) _ ok,
e - .10
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Let us now formulate the solution of the quantum inverse larlfor the quasi-periodic monodromy matrix

G.3).

Theorem 5.1. The local spin operatorEij (5.1), understood as operators acting Bieyp) N, can be expressed
in terms of the entries of the quasi-periodic monodromy m#5.5) or of its inverse in the following way:

— —
Ejl = HT (MG, ﬁ[T(Y’(ﬁk)]*l- T, (5.11)
- o
= 17" @) - MY &), TTHIT @] - T (5.12)
k=1 k=1

Remarks.3. The reconstructions of Theorémb.1 are valid on the wholeesgmtation spad@ sy p), n, on which
the transfer matrices do natpriori commute. Hence, we have to pay attention to the order in thresmonding
products.

Remark5.4. In [30] was only formulated the analog 6f (5111) in the peitochse. The relation (5.112) is instead
useful to express local operators in terms of elements ofrtbeodromy matrix with shifted inhomogeneity

parameters. In fact, using the inversion relation (2.16)fe monodromy matrix, the relation (5]12) can, in the
periodic or antiperiodic case, be respectively rewritten a

59 - (= [ 76y 4G 2 s 2 ) E Tl 549
" o AED o) LA T |
H -
=l i . —h—J iynS "‘) T 5.14
kgl &) = o ) p(el) ( f:[ e

Proof. Let us first show[(5.11) forn = 1. The proof is based, as usual (se€ [26, 34] and the proof ofam?2),
on the crucial fact that th&-matrix (2.1) becomes proportional to the permutation afger”;» when evaluated
atA = 0. Expressing as in Lemn@.Z the matrix elenfgvtt®) (¢;)]; as a tracerg [Méy) (&1) Ef)]] over some
auxiliary space 0, representu:i\‘z;l0 (51) in terms of a product oR?-matrices and moving in this expression the
operatorE? from right to left, using successively thaf’ £ = EZ TS/ thatPy EY = EY Py, and that
(T +no?)EV TS = BEVTY (7 + no?), we get

(M), = BV T TV (&), (5.15)

The general case can be deduced from the pase 1 by means of Lemma5.1. Let us express part of the
product in the left hand side df(5.111) as a multiple trace ailiary spaces:

-—
HTY’ &) - MO = taran.ar H(Yak Moy (617) T ) Bl
L k=1

= trala2~~~an HYak HMak <£k|7—_|_nz az) HT ak Ezg
L k=1
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in which we have used (2.110). The product of monodromy medra@an now be rewritten as in Lemmal5.1, and
reorganized thanks tb (2]10) such that

n—1 n—1
HT(Y) (gk) ’ [M(Y) (gn)]ﬂ =1trajas...an 1 HYak
k=1 k=1

1

n—
v O.gn ..
X tran |:Mgzn,)nn+1...Na1a2...an_1 <£n|7— + n Z JlZ) TT Eé«‘ZL:|

H

n—1 .
X HMak,kk-‘rl Najaz...ap_ 1<§k|7'+77201 +7 Z > HT:%] (516)

I=k+1 k=1

The trace ovet,, can now be explicitly computed similarly as [n_(5.15):

Y Tan 1]
tran M((zn)nn-i-l .Naias...an—1 <§n‘7' + n Z Ulz> TT E(ZLJn:|

n—1
= Eilj Tg’ g tran |:M£Ln,)nn+1...Na1a2...an_1 <£n|7— + n Z le> TT :| ) (517)
=1

so that the producE? T4 can be moved out of the trace from the leftin(5.16). The remgimultiple trace
can then be re-expressed as a product of transfer matrisieg @gain Lemma5bl.1), leading fo (5.11).
The proof of [5.1P) can be performed in a similar way. Consiggfirst the case: = 1 we obtain, as in
(.15), that
tro (B¢ MY (61) 1] = tro M (€)1 THI B = T (&)1 T B, (5.18)
where we have used Lemials.2. The general case can be provesamg of Lemma 5.1 and Lemial5.2, by
computing

(_
n

n—1 N o? -1
MO &) TTITE] " = taaan | BE ] <Yak May, (&5I7) T) ] (5.19)
k=1 k=1

Reorganizing the product inside the trace and using ideiB) for inverse monodromy matrices, we obtain,
by a similar reasoning as in the previous case, that

1
(M) TLITY Htrak )T B
k=1
= H ()] T B, (5.20)
which ends the proof of Theoremb.1. O

As a consequence, one gets
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Corollary 5.1. The local spin operator&;t+, E, —, and the local height operato[i,f”) 1 < n <N, admitin

ID)EEVLD/)R) the following reconstruction in terms of the entries of thewisted antiperiodic monodromy matrix:

n—1 n
Eft =TI 7" @) we) - TT T ) (5.21)
k=1 k=1
_ - (k) "iilB(fn — 77) o —(k) -1
= _kng &) g mME 11 [T (5.22)
n—1 n
E, =~ = H T(K)(fk) . fle(ﬁn) . H [7_-(#6)(&6)] 717 (5.23)
k=1 k=1
R 0 KC(En —1) T =) 1
= —kl;[lT (k) - Tt MEn) 11 [T ()] (5.24)
n—1 n—1
5 = T 7™ (&) - oulr) - TT [T (€] (5.25)
k=1 k=1

Proof. The representations (5]21)-(5124) follow directly frandd(®)-(5.12) taking into account Remark}5.4 and

the fact that we restrict ourselves]ﬁig;%;z,\)l. The relation[(5.25) follows, as in Theorem 3.2 [of|[32], fram

trivial recursion o using the fact that

P Nl Onm Sl Ot (5.26)
and the solution of the inverse problem f6f *; andE, . O

6 Form factors of local operators

We are now in position to compute matrix elements of locaratpes (spin and height) between eigenstates of
the k-twisted antiperiodic transfer matrix. We obtain the fallng result:
Theorem 6.1. The matrix elements df;"* and E,, ~ between generi¢\11§“)| and |\If§/“)> left and right eigen-

states ofT'(”)( A)on Dﬁgv‘ﬁ/f,ﬂ admit the following determinant representations:

(&)t gy Lle=1 (&) - HZ 1 H(&p) detnpr [Sf’,f(gn - 77)]
WeIE I = 1 ) 9 [Ste (&) Il detyM(&,) (6.1)
n—1¢
(k) ey (1 Lo t(€p) / _ JIp, t(&) detvya (St (&n —n)]
<\I]f |En |\I]f’ >_ 2:1 E/(gb) gf_t [St (gn)] - Hn 1t, ) detq M(fn) ’ (62)

whereSg ¢ (gﬁf)), e € {0,1},isan(N + 1) x (N + 1) matrix which corresponds to the matt# ¢ (4.16)of the
scalar product{4.15)with one additional line and one additional column:

[Seer (6] 0y = [Few)ap for a,be{1,...,N}, (6.3)
[See (€8] s = €75 Axy(Ea) arn al, for ae{l,...,N}, (6.4)
[Sf,f/(gg@)]NH’b: vt Dp_1(€l9 — &),  for be{l,...,N}, (6.5)
(St (65 s nes = O (6.6)
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The representations (6.1) and (6.2) straightforwardlipWolfrom the solution of the quantum inverse prob-

lem (5.21){(5.24), which enables us to write

. IS EE) T B(&) (7 B —n) [ ¥”)
(WPNET ) = ¥(6) (w7 C(e) 107) = () et ME)
(0| B [y — Iy t(&) (| B(en) |90 — Hb 1 t(&) (W[CE —n) vl

[To—: (&) ’ H (&) dety M(&n) 7
and from the following lemma:

Lemma 6.1. The matrix elements of the operatdséc'”) andC (&), € € {0,1}, between eigenstatéﬁf%“)\
and |\If§/“)> of the antiperiodic transfer matrix are given by the follogyideterminants:

(B [97) = det [Sea(el))].  (WPlCE) W) = w7 det [Sex(6)]. (67

whereSg ¢ (e)) e € {0,1}, isthe(N + 1) x (N + 1) matrix with element$6.3)-(6.6).

Proof. From [4.4),[(3.2l1), one can easily compute the actioﬁ(@ff)), e=0,1,ona Ieft7_'(“)—eigenstate:

() Z 3 Siviedhe) ¢y Oton — O 4 glha)y Bl — )
ha h
a=1 he{0,1}N H(to,h) e O (ha) _ 515 b))

a=

g =m) TT (e w' o) det (0] (0, T hl. (6.8)
b=1

Then, using[(413) and{3.B2), one gets

B W) =Y Y et a(g) o) o)
a= 1he{0 13N
=0
eV Ay
H[( o j;’)) q§b>q§f‘“] D)V det [O0RE)] . 69)

In this expression, the x N matrix @fg’,}\h)( (e)) is obtained from®(©:?) by eliminating thes-th row (contalnlng

the elementﬁb_l(géh“) —£&0), 1 < b < N)and inserting a new row at positidhwith eIementa?b_l(fn — &),
1 < b < N. Indeed, it follows from[(A.lV) that

O(to — £ 4 glha) (') _ glho)
(~D)V* det [O[24 (69 = Gon = £ ) T =8 ) ek [o0), (6.10)
[@N] 9(7507}1) bt 9( ((lha) _ géhb)) N

It remains to notice that the sum in_(6.9) corresponds pegci® the development of the determinant of the

(N+1) x (N + 1) matrix Sg ¢ (57(5)) w.r.t. the columnN + 1. The proof for the other formula in(6.7) is
similar. O
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Theorem 6.2. The matrix elements of local heights opera@@ fixing the value of the heighte {to +ns;§ €
{0,1,...,N}} at a given siten between generi«;\IfE“)] and ]\IIE"‘)> left and right eigenstates d_F(“)()\) on

ID)ESV%/)R) can be written as the following sum Bf+ 1 determinants:

(w50 |wle)y —

N
j(s—tp)
Z 6727TZ]77(N+(1)) dNet []:E(JE?] (6.11)
=0

x| =+
—_—
A
oS
\_/\_/

—_

N+1

where]-"f(g istheN x N matrix with elements

(]) omidh ( jyn Ax y(ga) " (h) (h) (n) _ £
EE’ Z N+1 etyn m U o v, a (f —&o)- (6.12)
Proof. Using (5:25),[@33),[]21]4) an@ (3.83), one obtains
<\II%E)’ 5sn) ’\Ilé E Z 55 »to,h H [( Wi (Zy(ga))> qéaa) qE,h;)] dﬁt [@(O,h)] . (613)
b=1 he{O N a=1 a

Noticing thatty , € {to +nk; k € {0,1,.. N}} one can rewrité as

5,t0,h

N . N . N
1 _onil—ton) 1 _onpiits—t0.0) 2mijhg
Ositom = NT1 Z e n(N+) = NI Z e n(N+1) H e N+ (6.14)
7=0 7=0 a=1
which leads to[(6.11)-(6.12). O

To conclude this section, let us briefly comment about theselts. Although the matrix elements of local
spin operators can quite straightforwardly be expresstatins of a single determinant as in Theotenh 6.1, hence
generalizing the simpler (non-dynamical) six-vertex d893, the situation seems slightly more complicated for
the matrix elements of local height operators. The lattarr@vertheless be expressed as a sum of determinants
as in Theoren 6]2. The number of terms of this sum being cekatehe sizeN of the model, this may (or
may not, depending on the behavior of the different termsy peoblem for the study of the thermodynamic
limit. Note however that our study concerns tarestrictedSOS model, for which the heightsarea priori
allowed to take an infinite number of vaI@s In the literature, one usually considestrictedmodels, such
as the ABF model]?2] or the CSOS model [29] 46], for which thessing parametey of the model is rational
(n = r/L) and the heights are only allowed to take a finite numbek)(of values. Our present study does
not directly apply to the ABF case (which corresponds to theedor which there may be poles in_(2.2)) but
could easily be adapted to the study of the CSOS case. Inttee ¢tase, the matrix elements of local height
probabilities would be reduced to the sum of ofilyerms. Although the structure of the determinants at stake
area priori quite different, the situation is somehow similar to whapens for the periodic model, which can
be studied by means of ABA: matrix elements of local spin afmes between Bethe eigenstates of the transfer
matrix can be expressed (at least in the case of the CSOS hasdelksingle determinant [30], but it seems that
matrix elements of local height operators, related to lbegdht probabilities, can only be expressed as sums of
determinants [32].

2| fact, due to the antiperiodic boundary conditions thaiaesider here, the heights of the model are only allowedk®Xa+ 1

values. The consideration of such boundary conditionsdddeduces the actual space of states of the model to thedinitensional
@(0.L/R)

subspacé )\ of the whole representation spd@évm N
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7 Conclusion

We have here studied the antiperiodic dynamical 6-vertedahio the SOV framework, for different configura-
tions of the representation space corresponding to therdiff possible values of the global shifof the heights

of the model by half of the periods of the theta function, aiged with a couple of parametdss y) € {0, 1}2.

We have diagonalized the corresponding antiperiodic teamsatrix, hence obtaining a complete characteriza-
tion of all eigenvalues and eigenstates in terms of a sysfaiisorete equations involving the inhomogeneity
parameters of the model. We have discussed the rewritingiotharacterization in terms of functional equa-
tions of Baxter’s type, and notably in terms of certain adsssef solutions of the usual homogeneous function
T-@ equations. We have also obtained determinant represamdtr the form factors of the model.

Several interesting problems remain to be solved. Forrncstawe have shown the complete equivalence
between the SOV discrete characterization of the spectnaregyenstates and the reformulation in terms of
solutions of the homogeneods-@) equation (i.e. in terms of Bethe-type equations) in the adsan even
number of sites only. We plan to consider the case of an oddauof sites in a further study. We also expect
to be able to use this reformulation so as to consider the gememus and thermodynamic limit of the form
factors formulas that we have obtained here, similarly aat\luhs been recently done in the XXX cdse [25].

Finally, we would like to mention that our results can be ugestudy, in the SOV framework, the XYZ (or
eight-vertex) model with various types of quasi-perioditibdary conditions (related to the valuesandy).
This interesting problem will be the subject of the papei].[41
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A Thetafunctions, eliptic polynomials and useful identities

In this paperf(\) = 6, (\|w) denotes the usual theta-function [20} 54] with quasi-girioandrw (Sw > 0),

9(2) = 4 Z (_1)k€i7rw(k+%)2621‘(19—}—%)2, (A.1)
k=—o00
— 26“1—% sin z H (1 _ eQi(nﬂw—z)) (1 _ 622‘(n7rz,u-|—z)) (1 _ €2in7rw)’ (A.2)
n=1
which satisfies
0(z+7m) =—-0(2), 0(z + Tw) = —e ™ 722 (). (A.3)

Throughout the paper, we use the following terminology A& [44].

Letl = I'™™) = 77 + mwZ. Letx : I' — C* be a group homomorphism. We say that a functjoof
z € Cis a theta function of quasi-periods, 7w), of ordern and charactex if f is a holomorphic function
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satisfying the quasi-periodicity properties
fle+m) =x(m) f(2),  flz+mw) = x(mw)e ") f(2), (A.4)

We say thatf is a theta function (or an elliptic polynomial) of quasi-joeis (7, 7w), of ordern and norma
if fis a theta function of orden and character given by(r) = (—1)" and x(mw) = (—1)"e%*?s. This is
equivalent to the fact that there exist constants .., A, andC with A\; 4 ... + X\, = a; such that

n

flz)=C]0Gz- ). (A.5)

k=1
We have the following properties (see for instance [16,:44])

1. LetO{ ™ be the space of theta functions of quasi-perigelstw), of ordern € N and of norma. Then

dim ©\77) = n.

2. Letf,g € @%’f&”“) which coincide at pointszy, ..., z, € C: f(z;) = g(z;), 1 <j <n. fzy,... 2,
are independent (i.e. if; —z; ¢ I' and Z?Zl zj —a ¢ I')then f = g¢. It means that there exists a
unique theta function (elliptic polynomial) of quasi-p®is (7, 7w), of ordern and of norma with values
f(x1),..., f(x,) atthe respective independent points. . ., z,. Itis given by the following interpolation
formula:

N - 0(a—zzzlxk+x]——)\) a H(A—wk) o
f) = ; Tosiam) Lo, 7@ (A-6)
k#j

3. Let{d;}1<j<n be a basis 0B, Then, for any(x1,...,z,) € C", the determinant of the matrix
(ﬁj (wz‘))lgi,jén is of the form

153‘%” [0(;)] :C-H(;xl —a) g@(wz —zj), (A7)
whereC is some constant.

We also recall Frobenius determinant formula, for anyuples (x1,...,x,), (y1,...,yn) € C" (with
x; —y; ¢ I',Vi,j) and anyt € C (with ¢ ¢ T'):

O(x; — Y; + t) ] 9( Z?:l(xj - yj) + t) H1§i<j§n 0(w; — ﬂCj) H(yj - Yi)

0z —y;)0(6)] . (A-8)

det [ (1) szzl 0(z; —y;)

1<i,j<n

B Inhomogeneous Baxter equation asreformulation of SOV spectrum

In this appendix we explain how one can show the equivalefidheoSOV discrete characterization of the

spectrum of Theorerm_ 4.1 with the description in terms ofp#illi polynomial solutions, with quasi-periods
(m, mw), of some particular functional-@Q equations with an extra inhomogenous term.
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As explained in Section 4.2, one can modify the functionalagign with respect td (4.22) so as to force
this equation to admit elliptic polynomial solutions withagi-periodg =, 7w). This means introducing some
gauge transformation as in_(4124), so as to adjust the gueaiidicity properties of the three termig\) Q(\),
A(N) Q(A —n) andd(\) Q(A + n) for t(\) satisfying [4.117){(4.18). A possible (and somehow minjmady to
do it is to choose the functiofi(\) = f,(f)()\) as in [4.26) in terms of two parametetsand .. Of course, the
sum of the aforementioned three terms does not in generakkao that one should also add to the equation
an inhomogeneous term asfin (4.25). As explained in Selcirtts still enables ones to recover the condition
(4.2) as long as this inhomogeneous term cancels at all$@<i’ﬁt), n € {1,...,N}, i.e. contains the factor
A(AN)D(A).

For the class of)(\) of the form [4.26) withM = N, the functionF'(\) = F;E,Bq)z()‘) appearing in the
inhomogeneous equatidn (4125) is defined in terms, @f andQ(\) as

FO) () = BT e (o) QU — 0 — too) 0N — 1 — ag + 30, & — N)

e O(too + g — > & +Nn)  D(u—too) O(\ — p+to0)
BeYOH g(tg0) Q(u) O\ —p+n+yrw—too—ag+> .5 —Nn)
O(ymw —to0 — aq + D &k — Nn) A(u —n) O(A—p+n)

(B.1)

with ag = z;'zl A; being the norm of the theta functiép(\) of orderN. Note that[(4.25)E(BJ1) foM = N can

be seen as an elliptic generalization of the trigonomettiomogeneous functional equation that was obtained
in [42]. Indeed, under some simple assumptions on the fomatidependence of the zeros of #ig) € X,
when taking the XXZ limitw — +ico (see Remark 212), one indeed recovers the equation of Tieéuk of
[42]. The elliptic analog of Theorem 4.1 6f [42] can then barfalated as follows:

Theorem B.1. Let us suppose that the inhomogeneity parameters . , &y satisfy(3.8)and let us seM = N.
Then the following two propositions are equivalent:

1. t(\) is an eigenvalue function of the antiperiodic transfer maff () (i.e. t(\) € ¥=);

2. t(\) is an entire function o and, for somes € C \ {0}, there exists a functio®(\) of the form(4.26)
such that(Q(¢;),Q(& — n)) # (0,0), 1 < j < N, and thatt(\) and Q(\) satisfy the inhomogeneous
functional equatior{4.25)(4.26)B.1).

If n € C\ R, these propositions are also equivalent to:

3. t(A) is an entire function ok and, for any5 € C \ {0}, there exists a functio@()\) of the form(4.28)
such that(Q(&;), Q(&; — n)) # (0,0), 1 < j < N, and thatt(\) and Q(\) satisfy the inhomogeneous
functional equatior(4.25)(4.26 }(B.1).

Proof of Theoreri Bl10Obviouslyi3 implies2
So as to prove th@. impliesl, let us suppose that, for somiec C\ {0}, there exists an elliptic polynomial
Q(A) of orderN such that the function(\) defined as

i) = B W AN QO = + [£70 +gz] ) D) QA +1) ~ AN B F (M) 62
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is an entire function ok. Then the functior”* t()) is a theta function of orded and of normn; = Z,’Ll €+

to,0. Moreover, the particularization df (B.2) at tA8l points¢; and§; —n, 1 < j < N, gives

D(& — 1)
&)

for eachj € {1,...,N} which, provided tha{Q(¢;), Q(&; — 1)) # (0,0), means that the matrik{4119) has

zero determinant and therefore thex) satisfies[(42). Hencg\) € ¥

Let us now prove thdfl impliesl2 and, inthe casg ¢ R,[3 Lets € C\ {0} and lett(\) € X5. For any
elliptic polynomialQ(\) of degreeN andFﬁ%(A) defined in terms of)(\) by (B.1), the function

QENUE) — FPE) Ay (&) QG —m) =0, Q& —mE& —n) — Q&) =0, (B.3)

D(A)
B0+
is a theta function of ordetN and of normY_\_, & + to.0 + ag, Whereag = Z?‘;l Aj is the sum of the roots

of the elliptic polynomiall(\). Then the equation (4.25) is satisfied f@mnd@ if (and only if) it is satisfied in
N independent points, hamely

{t(A) Q) — FPN) Ay (N QA — 1) — QA +1) + AN D(N) Fﬁ%(»} (B.4)

e forA=¢;, i =1,...N: ©&)0(& — p+too) Q&) = B e YA,y (&) 0(& — 1) Q&5 — ),
e forA=¢ —nj=1,...N: (& —n0(& —p) Q& —n) =BeYD(& —n) (& — 1+ too) Q(E),

provided that

N
D &ttoo—agél. (B.5)

Sincet(\) € Y= satisfies[(4.2), the above system is therefore equivalghetfllowing system oN equations:

(&) 0(5 — p+to0) Q&) = B e ™y (6)0(6 — ) Q& —n),  j=1,...,N. (B.6)

In general, an elliptic polynomial of ordé¢ and of normay, is completely characterized by its valueshat
independent points. Hence it can be written in the followfomgn:

ON— &+ 08— O(A — &
Q) = ;; 05 & o) H 96— &) Q) (B.7)
é;ék

provided) , & — ag ¢ I'. Hence, the syster (B.6) is in fact a systenNofiomogeneous linear equations in
theN unknownsQ (&), n € {1, ..., N}, which can be written as:

WE

[Ce(B.0q)] ;, Q&) =0,  j=1,...,N, (B.8)
1

T

whereCk (8, ag) is theN x N matrix of elements

B t(&,) 06— 11+ too) O(€a — ﬁb nt 2.8 = aq) HN )
. s 0) . (B.9
[Ce(B, Q)] " Ay (&) 0(&a — 1) 02208 — Q) (=1 o
0£b
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Note that, using Frobenius determinant formila {A.8) aralftimula for the determinant of the sum of two
matrices, one can express the determinant of the mairi} {BtBe form

N

0 & — ag —nn)
det |Cs(5,a0)| = —1)ngN-" £
t a(ga—M‘FtO 0) 9(€a—€b+77)
| { i¥éa 211 . (B.10)
Pc{l,...N}ag¢P Axy g“) 0(8a — 1) beP 00 — &)
#P=n
where the second summation [n(B.10) runs over all subBetkthe set{1, ..., N} with cardinalityn.

The system[(Bl8) admits some non-zero squt@Q){&), . ,Q(g,\,)) if and only if the determinant of the
matrix (B.9) is zero. A3 = 0, this determinant simplifies into

C _ N O(ag =D &+ Nn)
dﬁt [C:(0,aq)] = (-1) Boo -5 6) (B.11)
so that
det [C2(0,0Q)] =0 « 3(k1, k) € Z% ag =Y _ & — N+ mhy + mwhy, (B.12)

)4
0 dety [Cf(ﬁ, OéQ)]
80[Q aQ :ZZ ﬁ[*Nn+7rk1 +7rwkso
B=0

(B.13)

Hence we can apply the implicit function theorem for holoptoc functions:V(k1, ko) € Z2, there exist some
open vicinitiesUy,, i,y andV(, 1,y of 0 and ofa =Y ,& — Nn + 7k + mwk; respectively, and there

exists a unique holomorphic functieny, ) : U(kl,,ﬁ) = Vi ko) With (g, 1,)(0) = agg) k) such that

{(5,0@) € Ulky k) X Vi ko) | det [C:(8,0q)] = 0} = {(ﬁ,a(kl,m)(ﬁ)) | B € U(k1,k2)}' (B.14)

Hence the system

N
Z Ct /Bva(kl,kg (ﬂ))]]k‘ qr = 07 ] = 17 veey N7 (815)
k=1

admits, for all € Uy, ,), @ non-zero solutiofqi, . .. ,gn). Due to the form of[((B.T5), one can choose this
solution such that alf; = ¢;(3) are continuous function ¢f in U, 1,)-

Note that, at3 = 0, we haveg;(0) # 0 for all j € {1,...,N} (it is clear from the systen_(B.6) that
all the roots of the solutior®)(\) are, up toI'-periodicity, at the pointg; — 7, 1 < j < N, wheng =
0). Hence it is always possible to choo&g,, ,) such thatg;(3) # 0 forall j € {1,...,N} and for all
Bin U, ky)- Moreover, sincex, 1,y(0) — >, & ¢ T andag, 4,)(0) — >, & — too ¢ T, and since the
function o, 1,)(3) is holomorphic, one can also chodSg,, 1,y such thatoy, 1,y (8) — >, & ¢ T and that
Aoy o) (B) — 2_p &0 — too ¢ T forany g € U, 1,). Hence we have shovith

Let us now notice that, up to a similarity transformatiore thatrixCs (3, cg + mw) is proportional to the
matrix Ct(8e?™, ag). Hence the systeri (B.8) admits a non-zero solutioriforg ) if and only if it is the case
for the system corresponding {6e*"", ag + nmw) (Vn € Z).
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Let 3 € C\ {0}, and let us suppose moreover tha¢ R. Hence, there exists € Z such that3 e**" ¢
Uo,0), SO that the system associated W{tbe®"", o(q o) (3¢*™")) admits a non-zero solution such that each
unknown (i.e. eacld)(¢;) solution to this system) is itself non-zero. It follows frafre previous remark that
the system foX 3, a (g ) (Be*"") — nw) admits also a hon-zero solution which is such thég;) # 0 for each
j €{1,...,N}. Hence we have shovi O

The inhomogeneous functional equatibn (4.25)-(4.P6EBr M = N is not the only functional equation
that can be considered in this framework. For instance,atss possible to completely characterize the SOV
spectrum in terms of a functional equation of the same typk @sing (4.26) to define the gauge function
f(A) in terms of some arbitrary parametey but for an elliptic polynomial) () of degreeM = N + 1 and
arbitrary normag. Of course the inhomogeneous term has to be adapted aagigrdind it appears slightly
more complicated in this case. In that way, increasing tlygegeof the elliptic polynomiad)(\) corresponds
to increasing the number of free parameters in the inhonemenequation: apart from the gauge parameter
B, we have one free parameter (the paramgjdor the degred\, and two free parameterg @ndag) for the
degreeN + 1. Hence, the choice of the degrie- 1 for Q(\) seems to be the minimal possible if one considers
equations of the forni_(4.25)-(4.26): in that case we havkeMNtunknown parameters which are the parameter
w appearing in the definition (4.26) gf(\), as well as thél — 1 roots of @Q(\), and there does not remain any
free parameter (excep), cf. footnote 6.

It is interesting to remark that, if we have a complete desicm of the transfer matrix spectrum in terms
of the elliptic polynomial solutiong)(\) of degreeM of some inhomogeneous functional equation of the form
(4.25) with associated functiofi(\), it is possible to rewrite the transfer matrix eigenvectora generalized
Bethe form, in terms of the roots of the corresponding etlipplynomial Q(\). More precisely, defining the
states,

ha
_ Y I (BY"A” 16) et (600 fn, M) (8.16)
he{o, 1}Na 1 ) N
= 3 H (;wly"f ) "det [0C] (M, . (B.17)
he{0,1}N a=1

we have the following result:

Corallary B.1. Lett(\) be an eigenvalue of the-twisted antiperiodic transfer matrix (i.e(\) € ¥7), and let

M
=[[ox-») (B.18)
j=1

be such that(\) and Q(\) satisfy the functional equatio@.28)for some functiory (\). Then theT (\)- left
and right eigenstates with eigenvaltie\) can be represented as

M

M
o) =TT [ o poWIoN), @ = @ T [P() o) 7], (B.19)
a=1

a=1

where the order of the operators in each bracket| has to be kept as it appears.

In other words, iff (\) is fixed, which is the case for the complete characterizasithe transfer spectrum
that we have obtained in Theor€mB.1 in terms of elliptic polyials solutions of (4.25)-(4.26) fél = N, then

48



(B.18) and[(B.1I7) have to be understood as some fixed pseamain states. The corresponding eigenstates
are then obtained by multiple action, on these pseudo-vacstates, of the (slightly dressed) operafdi\)
evaluated at the roots of the Bethe equations, i.e. in a f@m similar to what happens in the context of ABA.

Let us finally insist on the fact that the possibility to wriggach an ABA-type representation for the SOV
transfer matrix eigenstates is very general for modelsesbby SOV, as soon as we have some characterization
of the transfer matrix spectrum in terms of (generalizedypamial solutions to some (homogeneous or inho-
mogeneous) -Q functional equation. It is not restricted to reformulasasf the SOV spectrum by inhomoge-
neous Baxter equations; indeed, we can construct similamnelations, using multiple action of some slightly
different operator, in the framework of the character@atin terms of the solutions of the homogene@us)
equation as obtained in Sectidn 4. It is not restricted taribdel under consideration; indeed, a similar rewrit-
ing is possible for all the integrable models so far solvethemSOV framework [43, 37, 21, 114,113,139] 40| 42]
as soon as we have a characterization of the SOV spectrum hiyeasfystem of (generalized) Bethe equations.
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