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Abstract

We pursue our study of the antiperiodic dynamical 6-vertex model using Sklyanin’s separation of variables
approach, allowing in the model new possible global shifts of the dynamical parameter. We show in particular
that the spectrum and eigenstates of the antiperiodic transfer matrix are completely characterized by a system
of discrete equations. We prove the existence of different reformulations of this characterization in terms of
functional equations of Baxter’s type. We notably considerthe homogeneous functionalT -Q equation which
is the continuous analog of the aforementioned discrete system and show, in the case of a model with an even
number of sites, that the complete spectrum and eigenstatesof the antiperiodic transfer matrix can equivalently
be described in terms of a particular class of itsQ-solutions, hence leading to a complete system of Bethe equa-
tions. Finally, we compute the form factors of local operators for which we obtain determinant representations
in finite volume.
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1 Introduction

This paper is a continuation of a previous work of one of the authors [38], in which the study of the antiperiodic
dynamical 6-vertex model was initiated by means of the Separation of Variable (SOV) method introduced by
Sklyanin [49, 50, 51, 52].

The dynamical 6-vertex model is constructed from anR-matrix satisfying the dynamical (or modified) Yang-
Baxter equation [19, 15]. In the context of exactly solvablemodels of statistical mechanics, it is the archetype
of interaction-round-faces(IRF) models [6], which describe the interactions of a localvariable around faces of
a two-dimensional square lattice. This is notably the case of the exactly solvable solid-on-solid (SOS) model
[5, 2, 11, 29, 46], which models the growth of a surface (for instance in the context of a crystal-vapor interface)
with respect to a flat reference surface. In this context, a height variable is attached to each site of the lattice,
and the local Boltzmann weights describing the probabilityof a height configuration around each face of the
lattice correspond to the non-zero entries of the dynamicalR-matrix. This model plays a crucial role in Baxter’s
solution [5] of the famous eight-vertex model.

The fact that theR-matrix of the model depends on an extra parameter, the so-called dynamicalparameter
(related to the height variable in the language of SOS model), results into a modification of the algebraic structure
underlying integrability compared to what happens in usualvertex models such as the six-vertex model [15,
18, 17]. In particular, as mentioned above, theR-matrix of the model no longer satisfies the usual quantum
Yang-Baxter equation, but instead a modified version of thisequation, in which the dynamical parameter gets
shifted by an element of the Cartan. As a consequence, the corresponding Yang-Baxter algebra incorporates
some additional operator structure acting on the dynamicalvariable [18, 17]. In practice, the appearance of the
dynamical shifts may be a problem for actual computations ofphysical quantities of the model. For instance,
the partition function of the model with domain wall boundary conditions does not seem to be expressible in
the form of a single determinant [48, 44] as in the six-vertexcase [22]. As a consequence, the study of the form
factors and correlation functions of the periodic model in the algebraic Bethe Ansatz (ABA) framework happens
to be slightly more complicated than in the six-vertex case [30, 31, 32]. In fact, the latter relies on the use of
a compact formula, preferably in the form of a single determinant, for the scalar products of Bethe states. The
problem is that there does not exist, in the ABA framework, a model-independent clear procedure to construct
(or even guess) such a representation, either for the Bethe states scalar products or for the aforementioned
partition function, two quantities which are intimately related.

In the antiperiodic SOS model, which can be solved by SOV [16,38], the situation is somehow simpler.
First, the space of states of the (finite size) model is finite dimensional for generic crossing parameter, contrary
to what happens in the periodic case: this means in particular that, when performing a change of basis between
the canonical basis of the space of states and the eigenstatebasis, we only have to deal with finite sums. Second,
due to the eigenstate representation in terms of separate variables, determinant formulas for the corresponding
scalar products appear in a much more natural way, somehow intrinsic to the method [38]. We shall see in the
present paper that such formulas can quite naturally be extended to the form factors.

The purpose of this paper is three-fold. First, we revisit the study of [38] so as to slightly generalize it
to cases that correspond to different versions of the SOS solvable model (see [29, 46]), related to different
possible values of the global shift of the dynamical parameter of the model, and that will be useful for our
further study of the eight-vertex model [41]. Second, we pursue the study of the spectrum, and discuss the
reformulation of the discrete SOV characterization in terms of solutions of some homogeneous (respectively
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inhomogeneous) functional equation of Baxter’s type (and hence of Bethe-type equations), a question that we
expect to be of primary importance for the consideration of the homogeneous and thermodynamic limits: we
notably show that, in the case of a model with an even number ofsites, the SOV characterization of the spectrum
is completely equivalent with a description in terms of particular classes of solutions of the usual (homogeneous)
T -Q equation. Finally, we explicitly write determinant representations for the form factors of local spin and
height operators.

The article is organized as follows. In Section 2, we introduce the model and recall the algebraic framework
for its resolution. In Section 3, we construct a SOV basis of the representation space of the model. In Section 4,
we diagonalize the commuting antiperiodic transfer matrices on the subspace of the representation space which
corresponds to the actual space of states of the antiperiodic SOS model. We notably discuss the characterization
of the spectrum and eigenstates in terms of solutions of functional equations. Then, in Section 5, we solve
the quantum inverse problem for local operators of the modelin terms of the antiperiodic monodromy matrix
elements, and in particular in terms of the antiperiodic transfer matrix. This enables us, in Section 6, to write
explicit determinant representations for the form factorsof local spin and local height in the eigenstate basis of
the transfer matrix.

2 The dynamical 6-vertex model

The dynamical 6-vertex model is associated with a dynamicalR-matrix of the form

R(λ|t) =




a(λ) 0 0 0

0 eiyη b(λ|t) eiyλ c(λ|t) 0

0 e−iyλ c(λ| − t) e−iyη b(λ| − t) 0

0 0 0 a(λ)


 ∈ End(V1 ⊗ V2), (2.1)

with Vi ≃ C2. Throughout this paper,y ∈ {0, 1} is fixed. The R-matrix (2.1) depends on two parameters, a
spectral parameterλ ∈ C and a dynamical parametert ∈ t0+ηZ, wheret0 will be specified later. The functions
a, b, c are given as

a(λ) = θ(λ+ η), b(λ|t) =
θ(λ) θ(t+ η)

θ(t)
, c(λ|t) =

θ(η) θ(t+ λ)

θ(t)
, (2.2)

whereθ(λ) ≡ θ1(λ|ω) denotes the usual theta-function (see Appendix A) with quasi-periodsπ andπω (ℑω >
0). η ∈ C is the crossing parameter of the model, which is supposed to be generic throughout this paper. The
R-matrix (2.1) with dynamical parametert is solution of the quantum dynamical Yang-Baxter equation [19, 15]
onV1 ⊗ V2 ⊗ V3,

R1,2(λ12|t+ ησz3)R1,3(λ13|t)R2,3(λ23|t+ ησz1) = R2,3(λ23|t)R1,3(λ13|t+ ησz2)R1,2(λ12|t). (2.3)

Here and in the following, the indices indicate as usual the space of the tensor product on which the correspond-
ing operator acts non-trivially, andσαi (α = x, y, z) denotes the usual Pauli matrix acting onVi ≃ C2. Also we
have used the shorthand notationλij ≡ λi − λj .

As mentioned in Introduction, the matrix elements of theR-matrix (2.1) can be understood as the local
Boltzmann weights of an exactly solvable solid-on-solid (SOS) model (see Figure 1). In this framework, the
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dynamical parametert corresponds to the height variable, and the dynamical Yang-Baxter equation (2.3) is
simply the star-triangle relation of IRF type [6]. The shift(∈ {±η}) of the height between two neighboring sites
can be understood in terms of a spin variable (∈ {±1}) on the corresponding link.

t t+ η

t+ 2ηt+ η

+

+

+ +

a(λ)

t t− η

t− 2ηt− η

−

−

− −

a(λ)

t t+ η

tt− η

+

+

− −

eiyη b(λ|t)

t t− η

tt+ η

−

−

+ +

e−iyη b(λ| − t)

t t− η

tt− η

−

+

− +

eiyλ c(λ|t)

t t+ η

tt+ η

+

−

+ −

e−iyλ c(λ| − t)

Figure 1: The 6 different local configurations around a face and their associated local statistical weights.

Remark2.1. The casey = 1, which was not considered in [38], corresponds to a diagonaldynamical gauge
transformation of theR-matrix of [38] of the form:

R12(λ12|t) = G2(λ2|t)G1(λ1|t+ ησz2)
[
R12(λ12|t)

]
y=0

G2(λ2|t+ ησz1)
−1G1(λ1|t)

−1, (2.4)

with

G(λ|t) = e−iy t
2

(
eiy

λ
2 0

0 e−iy λ
2

)
. (2.5)

This case is interesting since it enables us to consider a model in which the dynamical parameter is shifted
by half of the imaginary quasi-period (i.e.t0 ∈ R + yπ

2ω, see Section 2.2) so as to recover for instance the
Boltzmann weights considered in [29, 47]. It is also useful for the consideration of particular quasi-periodic
boundary conditions for the 8-vertex model obtained from this SOS model by vertex-IRF transformations [41].

Remark2.2. It may be interesting to consider the trigonometric limit of(2.1)-(2.2), which corresponds to the
limit ω → +i∞. If t0 is of the formt0 = t̃0 + yπ

2ω, with t̃0 independent ofω (as considered in this paper,
see (2.29)), then one obtains different limits according towhethery = 0 or y = 1. Up to normalization, the
trigonometric limit of the casey = 0 corresponds to the trigonometricdynamical6-vertex model, with

a(λ) = sin(λ+ η), b(λ|t) =
sinλ sin(t+ η)

sin t
, c(λ|t) =

sin η sin(t+ λ)

sin t
, (2.6)

whereas, in the casey = 1, one simply recovers theR-matrix of theusual6-vertex (or XXZ) model4.

4We use the fact that1
2
e−iπ ω

4 θ1(u|ω) −→
ω→+i∞

sin u, and thatθ1(u±ǫπω|ω)
θ1(v±ǫπω|ω)

−→
ω→+i∞

e±i(v−u) for u, v ∈ C and0 < ǫ < 1.
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2.1 The dynamical Yang-Baxter algebra

The elliptic quantum group associated with the dynamicalR-matrix (2.1) was introduced in [15], and its rep-
resentations were studied in [18], leading in [17] to an algebraic Bethe Ansatz for the corresponding periodic
SOS model. In this framework, the key object is the monodromymatrix, which provides a representation of
the corresponding Yang-Baxter algebra. In the case of a tensor product of fundamental representations that we
consider in this paper, it is defined as the following orderedproduct ofR-matrices,

M0(λ|t) ≡ R0,N(λ− ξN|t+ η
N−1∑

a=1

σza) · · ·R0,1(λ− ξ1|t) ∈ End(V0 ⊗ V1 ⊗ . . .⊗ VN)

≡

(
A(λ|t) B(λ|t)

C(λ|t) D(λ|t)

)

[0]

. (2.7)

HereN is the size of the model,Vn ≃ C2 for n ∈ {0, 1, . . . ,N}, andξn, n ∈ {1, . . . ,N}, are inhomogeneity
parameters. In this context,V0 is usually called the auxiliary space andVN ≡ ⊗

N
n=1Vn the quantum space.

Commutation relations for the entriesA(λ|t), B(λ|t), C(λ|t), D(λ|t) ∈ End(VN) of the monodromy matrix
(2.7) are given by the following quadratic relation, which is a consequence of (2.3),

R0,0′(λ00′ |t+ ηS)M0(λ0|t)M0′(λ0′ |t+ ησz0) = M0′(λ0′ |t)M0(λ0|t+ ησz0′)R0,0′(λ00′ |t), (2.8)

whereS is the totalz-component of the spin:

S =
N∑

n=1

σzn. (2.9)

To handle the shifts of the dynamical parameter induced by the relation (2.8), it is convenient to introduce, as in
[38], some dynamical operatorsτ andT±

τ which commute with local spin operatorsσαn and such that

T±
τ τ = (τ ± η)T±

τ . (2.10)

This enables us to define a new monodromy matrix incorporating these dynamical operators,

M0(λ) ≡ M0(λ|τ)T
σz
0

τ ≡

(
A(λ) B(λ)

C(λ) D(λ)

)

[0]

, (2.11)

whereM0(λ|τ) corresponds to the monodromy matrix (2.7) in which we have substituted the dynamical param-
etert by the operatorτ , and where

T
±σz

0
τ ≡

(
T±
τ 0

0 T∓
τ

)

[0]

. (2.12)

The operator entriesA,B, C,D of the monodromy matrix (2.11) act on the space

D(6VD),N ≡ VN ⊗ D, (2.13)

whereD is a representation space of the dynamical operators. Theircommutation relations are now given by
the quadratic relation

R0,0′(λ00′ |τ + ηS)M0(λ0)M0′(λ0′) =M0′(λ0′)M0(λ0)R0,0′(λ00′ |τ), (2.14)
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which follows from (2.8) and from the zero-weight property of theR-matrix (2.1):

T
−σz

0
τ T

−σz
0′

τ R0,0′(λ00′ |τ)T
σz
0

τ T
σz
0′

τ = R0,0′(λ00′ |τ). (2.15)

We also recall the inversion formula for the monodromy matrix:

Theorem 2.1. The inverse of the monodromy matrix(2.11)is given by the relation

M0(λ) · σ
y
0M0(λ− η)

t0 σy0 = e−iyηS θ(τ)

θ(τ + ηS)
detqM(λ), (2.16)

in terms of the quantum determinantdetqM(λ). The latter is a central element of the dynamical Yang-Baxter
algebra defined as

detqM(λ) = A(λ) D(λ− η) = eiyηS
θ(τ + ηS)

θ(τ)

(
A(λ)D(λ− η)− B(λ) C(λ− η)

)

= eiyηS
θ(τ + ηS)

θ(τ)

(
D(λ)A(λ− η)− C(λ)B(λ− η)

)
, (2.17)

with

A(λ) ≡

N∏

n=1

a(λ− ξn), D(λ) ≡ A(λ− η). (2.18)

The algebraic Bethe Ansatz [17] consists in diagonalizing the transfer matrices of the periodic model, i.e.
the traces of the monodromy matrix (2.11),

T (λ) = A(λ) +D(λ), (2.19)

on the subspace of the representation space (2.13) associated with the zero eigenvalue of the spin operatorS

(2.9). In this paper, we apply instead the SOV approach to theantiperiodic model (or more generally to a
κ-twisted antiperiodic model for some parameterκ ∈ C \ {0}), and therefore define the followingκ-twisted
antiperiodicmonodromy matrices:

M
(κ)
0 (λ|τ) ≡ X

(κ)
0 σx0 M0(λ|τ), M

(κ)
0 (λ) ≡ M

(κ)
0 (λ|τ)T

σz
0

τ , (2.20)

with X(κ) ≡ diag(κ, κ−1). It is easy to see that, thanks to the following properties ofthe R-matrix (2.1),

σx1 σ
x
2 R1,2(λ|t)σ

x
1 σ

x
2 = R1,2(λ| − t+ yπω), (2.21)

X
(κ)
1 X

(κ)
2 R1,2(λ|t)X

(κ−1)
1 X

(κ−1)
2 = R1,2(λ|t), (2.22)

the monodromy matrices (2.20) satisfy the quadratic relations

R0,0′(λ00′ | − τ − ηS+ yπω)M
(κ)
0 (λ0|τ)T

σz
0

τ M
(κ)
0′ (λ0′ |τ)T

−σz
0

τ

= M
(κ)
0′ (λ0′ |τ)T

σz
0′

τ M
(κ)
0 (λ0|τ)T

−σz
0′

τ R0,0′(λ00′ |τ), (2.23)

R0,0′(λ00′ | − τ − ηS+ yπω)M
(κ)
0 (λ0)M

(κ)
0′ (λ0′) =M

(κ)
0′ (λ0′)M

(κ)
0 (λ0)R0,0′(λ00′ |τ). (2.24)

In the following, we will show how to diagonalize, in the SOV framework, theκ-twisted antiperiodic transfer
matrices,

T
(κ)

(λ) = κ−1B(λ) + κ C(λ), (2.25)

on some subspace of the representation space (2.13) associated with a particular eigenvalue of the operator

Sτ ≡ ηS+ 2τ. (2.26)
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2.2 Left and right representation spaces

In the following, we may particularize by a subscriptL (respectivelyR) the left (respectively the right) represen-
tation spaces for the spin and dynamical operators. Hence, for instance, the operator entries of the monodromy
matrix (2.11) act5 to the right on the “ket” spaceDR

(6VD),N ≡ D(6VD),N and to the left on its restricted dual space,

the “bra” spaceDL
(6VD),N.

DL/R is an infinite dimensional representation space of the dynamical operators algebra (2.10) withτ -
eigenbasis left (covectors) and right (vectors) respectively defined as

〈t(a)| ≡ 〈t(0)|T−a
τ , |t(a)〉 ≡ Ta

τ |t(0)〉, ∀a ∈ Z, (2.27)

such that

〈t(a)|τ = t(a)〈t(a)|, τ |t(a)〉 = t(a)|t(a)〉, t(a) ≡ −ηa+ t0, ∀a ∈ Z, (2.28)

with the normalization〈t(a)|t(b)〉 = δa,b, ∀a, b ∈ Z. In this paper, we fix the value oft0 to be

t0 = −
η

2
N+ x

π

2
+ y

π

2
ω, with x ∈ {0, 1}, (2.29)

such that(x, y) 6= (0, 0) whenN is even. We denote the corresponding representation space asDL/R ≡ D
L/R
(x,y),N.

We respectively denote the left and right spin basis inV
L/R
n as

〈n, hn|σ
z
n = (1− 2hn)〈n, hn|, σzn|n, hn〉 = (1− 2hn)|n, hn〉, hn ∈ {0, 1}, (2.30)

with 〈n, hn|n, h′n〉 = δhn,h′
n

for anyn ∈ {1, . . . ,N}. Hence the states

(⊗N
n=1〈n, hn|)⊗ 〈t(a)|, (⊗N

n=1|n, hn〉)⊗ |t(a)〉, (2.31)

obtained by tensoring common eigenstates of the commuting operatorsτ andσzn, 1 ≤ n ≤ N, provide left
and right dynamical-spin basis inDL

(6VD),N andDR
(6VD),N, respectively. The following scalar product is thereby

naturally induced in the linear spaceDR
(6VD),N:

(
⊗N

n=1 |n, hn〉 ⊗ |t(a)〉,⊗
N
n=1|n, h

′
n〉 ⊗ |t(a

′)〉
)
= δa,a′

N∏

n=1

δhn,h′
n
. (2.32)

Remark2.3. In the case(x, y) = (0, 0) in (2.29), the corresponding representation of the dynamical Yang-Baxter
algebra is well defined only whenN is odd (to avoid singularities in (2.2)); this case was analyzed by SOV in the
paper [38] (see also [16]). The analysis that we present herewill address both the caseN odd for(x, y) = (0, 0)

and the caseN even and odd for(x, y) 6= (0, 0). This enables us to consider more general SOS models (such
as for instance as in [29, 46]), and will be useful for our study of the eight-vertex model with different types of
quasi-periodic boundary conditions [41].

5These notations may be confusing sinceDR
(6VD),N corresponds in fact to a left-module (andDL

(6VD),N to a right-module) of the elliptic
quantum group, but they agree with some more physical convention also used in [38].
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The operatorSτ (2.26) defines a natural grading onDL/R
(6VD),N:

D
L/R
(6VD),N = ⊕∞

r=−∞D̄
(r,L/R)
(6VD),N, (2.33)

whereD̄(r,L/R)
(6VD),N

is the2N-dimensional linear eigenspace corresponding to the eigenvalue2rη+ xπ+ yπω of Sτ .

In terms of the dynamical-spin basis the linear (covector) spaceD̄(r,L)
(6VD),N and the linear (vector) spacēD(r,R)

(6VD),N

are respectively generated by the elements
(
⊗N

n=1 〈n, hn|
)
⊗ 〈tr,h| with 〈tr,h| ≡ 〈t0,h|T

r
τ , (2.34)

and
(
⊗N

n=1 |n, hn〉
)
⊗ |tr,h〉 with |tr,h〉 ≡ T−r

τ |t0,h〉. (2.35)

Here we have set

tr,h ≡ −
η

2
sh + x

π

2
+ y

π

2
ω + rη, with sh ≡

N∑

k=1

(1− 2hk) and h ≡ (h1, . . . , hN). (2.36)

Proposition 2.1. For eachr ∈ Z, the finite-dimensional vector spacesD̄
(r,L/R)
(6VD),N are invariant under the action

of the operators

A(λ|τ), D(λ|τ), B(λ), C(λ). (2.37)

Proof. The commutation relations

[A(λ|τ),S] = [A(λ|τ), τ ] = [D(λ|τ),S] = [D(λ|τ), τ ] = 0, (2.38)

[B(λ),S] = 2B(λ), [B(λ), τ ] = −ηB(λ), (2.39)

[C(λ),S] = −2C(λ), [C(λ), τ ] = ηC(λ), (2.40)

imply that

[A(λ|τ),Sτ ] = [D(λ|τ),Sτ ] = [B(λ),Sτ ] = [C(λ),Sτ ] = 0, (2.41)

which means that̄D(r,L/R)
(6VD),N are invariant under the action of these operators.

For a SOS model with free boundary conditions, the physical space of states corresponds to the whole rep-
resentation spaceD(6VD),N. If we impose different types of boundary conditions, the physical space of states
will correspond only to a subspace ofD(6VD),N. For instance, in the case of periodic boundary conditions,it
corresponds to the subspace of (2.13) associated with the zero eigenvalue ofS, whereas in the case of antiperi-
odic boundary conditions that we consider in this paper, it corresponds to the subspace of (2.13) associated with
the eigenvaluexπ + yπω of Sτ , i.e. toD̄(0)

(6VD),N. In fact, we shall see in Section 4 that the commutation of the
antiperiodictransfer matrices is ensured on this subspace only. Nevertheless, the construction of the SOV basis
that we present in the next section holds in the whole representation spaceD(6VD),N.

Remark2.4. In the case of periodic boundary conditions, the space of states of the (finite-size) model is usually
infinite dimensional, which may be a technical inconvenience for the study of the model. In fact, due to this
reason, one usually deals with restricted models for which the crossing parameter is rational and the space of
states is finite dimensional (such as for instance in the original paper [5]). Let us stress that, for antiperiodic
boundary conditions, we do not have this problem since the space of states̄D(0)

(6VD),N has dimension2N.
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3 SOV basis in left and right representation spaces

For usual vertex models such as the 6-vertex model [50, 51, 43, 21, 39, 40, 42], the SOV approach to diagonalize
the transfer matrix is based on the construction of a basis ofthe space of states of the model which explicitly
diagonalizes the action of one particular generator of the Yang-Baxter algebra. In the dynamical case, however,
the corresponding SOV basis for the antiperiodic transfer matrix [16, 38] only partially diagonalizes the operator
D(λ) (orA(λ)). In other words, the latter still acts as a shift operator onsome “dynamical” part of the corre-
sponding basis, whereas the operatorsB(λ) andC(λ) act as a sum of shift operators on the “spin” part of the
basis. In this section, we present the explicit construction of this SOV basis in the left and right representation
spaces of the model.

In each of the subspaces̄D(r,L/R)
(6VD),N, we define the followingreference states:

〈r,0| ≡
1

N

(
⊗N

n=1 〈n, hn = 0|
)
⊗ 〈tr,0|, |1, r〉 ≡

1

N

(
⊗N

n=1 |n, hn = 1〉
)
⊗ |tr,1〉, (3.1)

where we have used the notations0 ≡ (h1 = 0, . . . , hN = 0) and1 ≡ (h1 = 1, . . . , hN = 1), and whereN is a
fixed normalization constant that will be specified latter. It is easy to see that these references states areD(λ|τ)

andA(λ|τ)-eigenstates with eigenvalues given in terms ofA(λ) andD(λ) (see (2.18)),

〈r,0|A(λ|τ) = A(λ) 〈r,0|, 〈r,0|D(λ|τ) = e−iNyη θ(tr,0 − η)

θ(tr,1 − η)
D(λ) 〈r,0|, (3.2)

D(λ|τ) |1, r〉 = A(λ) |1, r〉, A(λ|τ) |1, r〉 = e−iNyη θ(t−r,0 − η)

θ(t−r,1 − η)
D(λ) |1, r〉, (3.3)

and are annihilated by the action of the operatorsB(λ). Then, for eachN-tupleh ≡ (h1, . . . , hN) ∈ {0, 1}
N,

we construct a state〈r,h| ∈ DL
(6VD),N and a state|h, r〉 ∈ DR

(6VD),N as

〈r,h| ≡ 〈r,0|

N∏

n=1

(
C(ξn)

D(ξn − η)

)hn

, (3.4)

|h, r〉 ≡
N∏

n=1

(
C(ξn − η)

D(ξn − η)

)(1−hn)

|1, r〉. (3.5)

Remark3.1. It is easy to see that,∀h ∈ {0, 1}N,

〈r,h| τ = tr,h 〈r,h|, τ |h, r〉 = tr,h |h, r〉, (3.6)

〈r,h|S = sh 〈r,h|, S |h, r〉 = sh |h, r〉, (3.7)

with tr,h andsh given by (2.36), which also implies that〈r,h| ∈ D̄
(r,L)
(6VD),N and|h, r〉 ∈ D̄

(r,R)
(6VD),N.

We have the following result:

Theorem 3.1. LetΓ = πZ+ πωZ and let the inhomogeneity parametersξ1, . . . , ξN ∈ C be such that

∀ǫ ∈ {−1, 0, 1}, ξa − ξb + ǫη /∈ Γ if a 6= b. (3.8)
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Then the set of states{〈r,h|,h ∈ {0, 1}N} defined by(3.4) form a basis of̄D(r,L)
(6VD),N. Similarly, the set of states

{|h, r〉,h ∈ {0, 1}N} defined by(3.5) form a basis of̄D(r,R)
(6VD),N. Moreover, the action ofD(λ) on the states

〈r,h| in DL
(6VD),N (respectively on the states|h, r〉 in DR

(6VD),N) is given by

〈r,h| D(λ) = dr−1,h(λ) 〈r − 1,h|, (3.9)

D(λ) |h, r〉 = dr+1,h(λ) |h, r + 1〉, (3.10)

where

dr,h(λ) ≡ e
−iyη

sh−s1
2

θ(tr,h)

θ(tr,1)

N∏

n=1

θ(λ− ξ(hn)
n ), with ξ(ha)

a = ξa − ηha. (3.11)

Proof. The action of the operatorD(λ) on the states〈r,h| and|h, r〉 can respectively be computed by means
of the following dynamical 6-vertex commutation relationsissued from (2.14):

C(µ)D(λ) =
[
D(λ) C(µ) θ(λ− µ+ η)θ(τ)

− D(µ) C(λ) eiy(λ−µ)θ(η)θ(τ + λ − µ)
] eiyη

θ(λ− µ)θ(τ − η)
, (3.12)

D(λ) C(µ) =
e−iyη

θ(µ− λ)θ(τ + η)

[
θ(µ− λ+ η)θ(τ) C(µ)D(λ)

− e−iy(µ−λ)θ(η)θ(τ − µ + λ) C(λ)D(µ)
]
. (3.13)

Hence, using the fact thatD(ξn) = A(ξn − η) = 0, n = 1, . . . , N , so that only the direct terms contribute in the
above relations, we obtain (3.9) and (3.10).

It remains to prove that the states〈r,h|, h ∈ {0, 1}N, form a set of2N independent states, i.e. a basis of
D̄
(r,L)
(6VD),N (the fact that the states|h, r〉, h ∈ {0, 1}N, form a basis of̄D(r,L)

(6VD),N can be proven similarly). Let us
suppose that we have a relation of the form

∑

h∈{0,1}N

ch 〈r,h| = 0, (3.14)

for some set of complex coefficientsch ∈ C, h ∈ {0, 1}N. Let k = (k1, . . . , kN) be any givenN-tuple in
{0, 1}N. Then, by applying the product

N∏

n=1

D(ξ(k̄n)n ) with k̄n ∈ {0, 1}, k̄n = kn + 1 mod 2, (3.15)

to (3.14), we get the identity

ck

N∏

n=1

dr−n,k(ξ
(k̄n)
n ) 〈r − N,k| = 0. (3.16)

Sincedr−n,k(ξ
(k̄n)
n ) 6= 0, 1 ≤ n ≤ N, and〈r − N,k| 6= 0, this implies thatck = 0, which ends the proof of

Theorem 3.1.
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We want to determine the action of the remaining generators of the Yang-Baxter algebra on the basis el-
ements (3.4) and (3.5), and in particular of the operatorsB(λ) andC(λ) constituting the antiperiodic transfer
matrix. To do this, we shall rely on the following lemma:

Lemma 3.1. D(λ), B̃(λ) ≡ e−iyλB(λ) and C̃(λ) ≡ eiyλC(λ) are entire functions ofλ which satisfy the follow-
ing quasi-periodicity properties:

D(λ+ π) = (−1)ND(λ), D(λ+ πw) =
(
−e−2iλ−iπω

)N
e2i

∑N
n=1(ξn−η/2)+iηS D(λ), (3.17)

B̃(λ+ π) = (−1)N B̃(λ), B̃(λ+ πw) =
(
−e−2iλ−iπω

)N
e2i

∑N
n=1(ξn−η/2)−iSτ B̃(λ), (3.18)

C̃(λ+ π) = (−1)N C̃(λ), C̃(λ+ πw) =
(
−e−2iλ−iπω

)N
e2i

∑N
n=1(ξn−η/2)+iSτ C̃(λ). (3.19)

Proof. The fact thatD(λ), B(λ) andC(λ) are entire functions ofλ is a simple consequence of the definition
of the dynamical 6-vertex monodromy matrix in terms of the dynamical 6-vertexR-matrix (2.1). The quasi-
periodicity properties (3.17) ofD(λ) follows directly from the explicit form (3.9), (3.10), (3.11) of its action
on the basis (3.4) or (3.5) and from the quasi-periodicity properties of the usual theta functionθ(λ) ≡ θ1(λ|ω).
The quasi-periodicity properties (3.19) ofC̃(λ) can be deduced from the quasi-periodicity properties (3.17) of
D(λ) by comparing the quasi-periodicity properties inλ of the two members of the commutation relation (3.12)
rewritten in the form

C(λ)D(µ) = e−iy(λ−µ−η) θ(λ− µ) θ(τ + η)

θ(λ− µ+ τ) θ(η)
D(λ) C(µ) − e−iy(λ−µ) θ(λ− µ− η) θ(τ)

θ(λ− µ+ τ) θ(η)
C(µ)D(λ).

Similarly, the quasi-periodicity properties of̃B(λ) can be obtained from (3.17) and from the commutation
relation

B(λ)D(µ) = eiy(λ−µ) θ(λ− µ+ η) θ(τ + ηS)

θ(τ + ηS− λ+ µ) θ(η)
B(µ)D(λ)−eiy(λ−µ−η) θ(λ− µ) θ(τ + ηS− η)

θ(τ + ηS− λ+ µ) θ(η)
D(λ)B(µ).

Theorem 3.2. Under the hypothesis(3.8) of Theorem 3.1, the action of the operatorsA(λ|τ), D(λ|τ), B(λ)
andC(λ) on the basis elements〈r,h| of D̄(r,L)

(6VD),N (respectively on the basis elements|h, r〉 of D̄(r,R)
(6VD),N) take

the following form:

I) Left representations:

〈r,h|D(λ|τ) = dr−1,h(λ)

(
〈r,0|

N∏

n=1

(
T−
τ C(ξn)T

+
τ

D(ξn − η)

)hn
)
, (3.20)

〈r,h| C(λ) =
N∑

a=1

eiy(ξ
(ha)
a −λ) θ(tr,h − λ+ ξ

(ha)
a )

θ(tr,h)

∏

b6=a

θ(λ− ξ
(hb)
b )

θ(ξ
(ha)
a − ξ

(hb)
b )

D(ξ(1−ha)
a ) 〈r,T+

a h| , (3.21)

〈r,h| B(λ) =

N∑

a=1

eiy(ξ
(ha)
a −λ) θ(t−r,h − λ+ ξ

(ha)
a )

θ(t−r,h)

∏

b6=a

θ(λ− ξ
(hb)
b )

θ(ξ
(ha)
a − ξ

(hb)
b )

A
(−)
x,y,r,h(ξ

(1−ha)
a ) 〈r,T−

a h| , (3.22)

and the action ofA(λ|τ) is completely determined by the quantum determinant relations(2.17).
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II) Right representations:

D(λ|τ + η) |h, r〉 = dr+1,h(λ)

(
N∏

n=1

(
T+
τ C(ξn − η)T

−
τ

D(ξn − η)

)(1−hn)

|1, r〉

)
, (3.23)

C(λ) |h, r〉 =
N∑

a=1

eiy(ξ
(ha)
a −λ) θ(tr,h − λ+ ξ

(ha)
a )

θ(tr,h)

∏

b6=a

θ(λ− ξ
(hb)
b )

θ(ξ
(ha)
a − ξ

(hb)
b )

D(ξ(ha)
a ) |T−

a h, r〉 , (3.24)

B(λ) |h, r〉 =

N∑

a=1

eiy(ξ
(ha)
a −λ) θ(t−r,h − λ+ ξ

(ha)
a )

θ(t−r,h)

∏

b6=a

θ(λ− ξ
(hb)
b )

θ(ξ
(ha)
a − ξ

(hb)
b )

A
(+)
x,y,r,h(ξ

(ha)
a ) |T+

a h, r〉 , (3.25)

and the action ofA(λ|τ) is uniquely determined by the quantum determinant relation(2.17).

In the above expressions, we have used the definition(3.11)of dr,h(λ) andξ(ha)
a , and we have set

T±
a (h1, . . . , hN) = (h1, . . . , ha ± 1, . . . , hN), (3.26)

A
(±)
x,y,r,h(λ) = (−1)x+y+xy e2iyrη

θ(tr,h ± η)

θ(t−r,h ± η)
A(λ). (3.27)

Proof. The action (3.20), (3.23) ofD(λ|τ) = D(λ)T+
τ andD(λ|τ + η) = T+

τ D(λ) on 〈r,h| and |h, r〉
respectively follow directly from the formulae (3.9), (3.10) and from the commutation relations (2.10).

To determine the action ofB(λ) andC(λ) on a left state〈r,h| (respectively on a right state|h, r〉) associated
with a givenN-tuple h = (h1, . . . , hN), we first compute these actions at theN special pointsλ = ξ

(hn)
n ,

n = 1, . . . ,N. From the definitions (3.4), (3.5), and the fact that the product C(ξn) C(ξn − η) vanishes when
evaluated at one of the inhomogeneity parametersξn (see (5.9)), we get

〈r,h| C(ξ(hn)
n ) = D(ξ(1−hn)

n ) 〈r,T+
n h| , C(ξ(hn)

n ) |h, r〉 = D(ξ(hn)
n ) |T−

nh, r〉 . (3.28)

The action ofB(ξ(hn)
n ) on the left and right states (3.4) and (3.5) can be computed bymeans of the dynamical

Yang-Baxter commutation relations (2.14) and the quantum determinant relations (2.17). We obtain

〈r,h| B(ξ(hn)
n ) = −A(ξ(1−hn)

n ) 〈r,T−
n h| e

−iyηS θ(τ)

θ(τ + ηS)
,

= (−1)x+y+xy A(ξ(1−hn)
n ) e2iyrη

θ(tr,h − η)

θ(t−r,h − η)
〈r,T−

nh| , (3.29)

and

B(ξ(hn)
n ) |h, r〉 = −A(ξ(hn)

n ) e−iyηS θ(τ)

θ(τ + ηS)
|T+

nh, r〉 ,

= (−1)x+y+xy A(ξ(hn)
n ) e2iyrη

θ(tr,h + η)

θ(t−r,h + η)
|T+

nh, r〉 , (3.30)

in which we have used the quasi-periodicity properties of the theta function.

Finally, the action ofB(λ) andC(λ) to the left (3.21)-(3.22) and to the right (3.24)-(3.25) areobtained from
(3.29) and (3.30) and from Lemma 3.1 by means of interpolation formulae (see (A.6)).

Remark3.2. It is easy to check that the representations of the Yang-Baxter generators in the SOV basis coincide
with their representations in the so-calledF -basis [33] as obtained in [1]. Such a relation between the SOV
construction and theF -basis was first noticed in [53].
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The basis elements (3.4) and (3.5) have been constructed independently in the left and right representation
spaces respectively. It is nevertheless not difficult to compute their scalar product [38]:

Proposition 3.1. Under the hypothesis(3.8)of Theorem 3.1, let us define, for eachh ∈ {0, 1}N andr ∈ Z, the
N× N matricesΘ(r,h) of elements

[
Θ(r,h)

]
ij
= ϑj−1(ξ

(hi)
i − ξ̄r), with ξ̄r =

1

N

(
N∑

k=1

ξk + tr,0

)
, (3.31)

where the functionsϑj are defined as

ϑj(λ) =
∑

n∈Z

eiπNω(n+ 1
2
− j

N
)2+2iN(n+ 1

2
− j

N
)(λ−π

2
), 0 ≤ j ≤ N− 1. (3.32)

Then, one can fix the normalization constant in(3.1)such that,∀h, h̃ ∈ {0, 1}N, ∀r, r̃ ∈ Z,

〈r,h|h̃, r̃〉 = δr,r̃ δh,h̃
θ(tr,1)

θ(t0,1)

e−iyη
∑N

k=1 hk

detN
[
Θ(r,h)

] . (3.33)

Proof. The fact that〈r,h| and |h̃, r̃〉 are both eigenstates ofSτ with respective eigenvalues2rη + xπ + yπω

and2r̃η + xπ + yπω implies that〈r,h|h̃, r̃〉 vanishes ifr 6= r̃. Similarly, from the consideration of the matrix
element

〈r + 1,h| D(λ) |h̃, r〉 (3.34)

and the explicit expression (3.9), (3.10) and (3.11) of the action ofD(λ) to the left and to the right, one gets that
〈r,h|h̃, r̃〉 vanishes ifh 6= h̃. One also gets that

〈r + 1,h|h, r + 1〉

〈r,h|h, r〉
=
θ(tr,h) θ(tr+1,1)

θ(tr,1) θ(tr+1,h)
. (3.35)

Also, from the consideration of the matrix element

〈r,h| C(ξa) |T
+
a h, r〉 (3.36)

for anyN-tupleh such thatha = 0, and the explicit expressions (3.28), (3.24) of the action of C(ξa) to the left
and to the right, one gets that

〈r,T+
a h|T

+
a h, r〉

〈r,h|h, r〉
= e−iyη θ(tr,h)

θ(tr,T+
a h

)

∏

b6=a

θ(ξ
(0)
a − ξ

(hb)
b )

θ(ξ
(1)
a − ξ

(hb)
b )

. (3.37)

Since{ϑj−1}1≤j≤N is a basis of the space of theta functions of orderN and of norm0 (see Appendix A), we
can use (A.7) to express the determinant of the matrixΘ(r,h) as

det
[
Θ(r,h)

]
= cN θ(tr,h)

∏

i<j

θ
(
ξ
(hi)
i − ξ

(hj)
j

)
, (3.38)

wherecN is a constant (i.e. it does not depend on the variablesξi, onr nor onh). Hence, it follows from (3.35),
(3.37) that

〈r,h|h, r〉 = c̃N
e−iyη

∑N
k=1 hk θ(tr,1)

detN
[
Θ(r,h)

] , (3.39)

wherec̃N is a constant.
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It follows from Proposition 3.1 that

I ≡
∑

r∈Z
h∈{0,1}N

|h, r〉〈r,h|

〈r,h|h, r〉
, (3.40)

with normalization〈r,h|h, r〉 given by (3.33), provides a decomposition of the identity onthe whole represen-
tation spaceDL/R

(6VD),N. Similarly, for any givenr ∈ Z,

Ir ≡
∑

h∈{0,1}N

|h, r〉〈r,h|

〈r,h|h, r〉
, (3.41)

provides a decomposition of the identity on the subspaceD̄
(r,L/R)
(6VD),N of DL/R

(6VD),N.

4 Diagonalization of commuting antiperiodic transfer matrices

In this section, we diagonalize theκ-twisted antiperiodic transfer matrices (2.25) in the space of states̄D(0,L/R)
(6VD),N

of the antiperiodic model. As usual in the SOV framework, thespectrum and eigenstates are completely char-
acterized by a discrete system of equations involving the inhomogeneity parameters of the model. We explain
how to rewrite this discrete system in terms of functionalT -Q equations of Baxter’s type, so as to obtain a new
characterization of the spectrum and eigenstates in terms of solutions of Bethe-type equations.

4.1 The SOV discrete characterization of the spectrum and eigenstates

The diagonalization of the antiperiodic transfer matricesin D̄
(0,L/R)
(6VD),N

has been performed in [16, 38] in the case
(x, y) = (0, 0) with N odd. The corresponding SOV procedure can easily be extendedto the more general cases
that we consider here, and we have the following result:

Theorem 4.1. For any fixedκ ∈ C\{0}, theκ-twisted antiperiodic dynamical 6-vertex transfer matrixT
(κ)

(λ)

(2.25)defines a one-parameter family of commuting operators onD̄
(0,L/R)
(6VD),N. All these families are isospectral,

i.e. the set of the eigenvalues ofT
(κ)

(λ) is the same for all the values ofκ ∈ C \ {0} and we can denote it
with ΣT . Moreover, for any fixedN-tuple of inhomogeneities(ξ1, . . . , ξN) ∈ CN satisfying(3.8), the spectrum

of T
(κ)

(λ) in D̄
(0,L/R)
(6VD),N

is simple andΣT coincides with the set of functions of the form

t̄(λ) =

N∑

a=1

eiy(ξa−λ) θ(t0,0 − λ+ ξa)

θ(t0,0)

∏

b6=a

θ(λ− ξb)

θ(ξa − ξb)
t̄(ξa),

(̄
t(ξ1), . . . , t̄(ξN)

)
∈ CN, (4.1)

which satisfy the discrete system of equations

t̄(ξa) t̄(ξa − η) = (−1)x+y+xy A(ξa) D(ξa − η), ∀a ∈ {1, . . . ,N}. (4.2)

The rightT
(κ)

(λ)-eigenstate|Ψ(κ)
t̄ 〉 ∈ D̄

(0,R)
(6VD),N and the leftT

(κ)
(λ)-eigenstate〈Ψ(κ)

t̄ | ∈ D̄
(0,L)
(6VD),N associated
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with the eigenvaluēt(λ) ∈ ΣT are respectively given by

|Ψ
(κ)
t̄
〉 =

∑

h∈{0,1}N

N∏

a=1

[(
κ−1eiyη

Ax,y(ξa)

D(ξa − η)

)ha

q
(ha)
t̄,a

]
det
N

[
Θ(0,h)

]
|h, 0〉, (4.3)

〈Ψ
(κ)
t̄ | =

∑

h∈{0,1}N

N∏

a=1

[(
κ eiyη

)ha
q
(ha)
t̄,a

]
det
N

[
Θ(0,h)

]
〈0,h|, (4.4)

where the coefficientsq(ha)
t̄,a are (up to an overall normalization) characterized by

q
(1)
t̄,a

q
(0)
t̄,a

=
D(ξa − η)

t̄(ξa − η)
=

t̄(ξa)

Ax,y(ξa)
, with Ax,y(λ) ≡ (−1)x+y+xyA(λ). (4.5)

Proof. Let us first recall that, from Proposition 2.1, the action of the twisted antiperiodic transfer matrixT
(κ)

(λ)

preserves the subspaceD̄(0,L/R)
(6VD),N of DL/R

(6VD),N. It follows from (2.24) that

T
(κ)

(λ1)T
(κ)

(λ2) = tr12

[
R1,2(λ12| − τ − ηS+ yπω)−1M

(κ)
2 (λ2)M

(κ)
1 (λ1)R1,2(λ12|τ)

]

= tr12

[
R1,2(λ12| − τ − ηS+ yπω)−1 M

(κ)
2 (λ2|τ + ησz2)M

(κ)
1 (λ1|τ)T

σz
1

τ T
σz
2

τ R1,2(λ12|τ)
]

= tr12

[
R1,2(λ12|τ)R1,2(λ12| − τ − ηS+ yπω)−1M

(κ)
2 (λ2)M

(κ)
1 (λ1)

]
, (4.6)

where we have used both the cyclic property of the trace and the zero-weight property (2.15) of theR-matrix.
Hence, (4.6) acts as

tr12

[
M

(κ)
2 (λ2)M

(κ)
1 (λ1)

]
= T

(κ)
(λ2)T

(κ)
(λ1) (4.7)

on the left subspacēD(0,L)
(6VD),N of DL

(6VD),N associated with the eigenvaluexπ + yπω of Sτ = ηS + 2τ . Com-

mutativity on the right subspacēD(0,R)
(6VD),N of DR

(6VD),N follows by inserting the decomposition of the identityI0

(3.41). Hence, for any fixedκ ∈ C, theκ-twisted transfer matricesT
(κ)

(λ) define a one-parameter family of
commuting operators on̄D(0,L/R)

(6VD),N.

It follows from the quasi-periodicity properties of the operatorsB(λ) andC(λ) (Lemma 3.1) that the restric-

tion T̃ (κ)(λ) of eiyλ T
(κ)

(λ) on D̄
(0,L/R)
(6VD),N is a theta function of orderN and of normαt̄ ≡

∑N
k=1 ξk + t0,0 (see

Appendix A), which means that the action ofT
(κ)

(λ) on any vector of̄D(0,L/R)
(6VD),N is completely determined by its

action atN independent points with respect toαt̄ (see (A.6)). It also means that any eigenvalue functiont̄(κ)(λ)

of T
(κ)

(λ) on D̄(0,L/R)
(6VD),N takes the form

t̄(κ)(λ) =
N∑

a=1

eiy(ξa−λ) θ(t0,0 − λ+ ξa)

θ(t0,0)

∏

b6=a

θ(λ− ξb)

θ(ξa − ξb)
t̄(κ)(ξa), (4.8)

in terms of someN-tuple of complex numbers
(̄
t(κ)(ξ1), . . . , t̄

(κ)(ξN)
)
. The condition for a function̄t(κ)(λ) of

the form (4.8) to be an eigenvalue ofT
(κ)

(λ) on D̄
(0,L)
(6VD),N is equivalent to the fact that there exists a non-zero

vector

〈Ψ
(κ)
t̄
| =

∑

h∈{0,1}N

ψ
(κ)
t̄

(h)
〈0,h|

〈0,h|h, 0〉
∈ D̄

(0,L)
(6VD),N, (4.9)
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with ψ(κ)
t̄ (h) ≡ 〈Ψ

(κ)
t̄ |h, 0〉, such that

∀h ∈ {0, 1}N, 〈Ψ
(κ)
t̄
| T

(κ)
(λ) |h, 0〉 = t̄(κ)(λ) 〈Ψ

(κ)
t̄
|h, 0〉. (4.10)

By computing the action ofT
(κ)

(λ) on |h, 0〉 at theN independent pointsξ(hn)
n by means of (3.28), (3.30), one

obtains that the condition (4.10) is equivalent to the system of equations

t̄(κ)(ξ(hn)
n )Ψ

(κ)
t̄ (h) = κ−1 (−1)x+y+xy A(ξ(hn)

n )Ψ
(κ)
t̄ (T+

nh) + κ D(ξ(hn)
n )Ψ

(κ)
t̄ (T−

nh), (4.11)

for anyn ∈ {1, . . . ,N} andh ∈ {0, 1}N. Taking into account the fact thatA(ξ
(1)
n ) = D(ξ

(0)
n ) = 0, one can

rewrite this system of equations as the following system of homogeneous equations:
(

t̄(κ)(ξ
(0)
n ) −κ−1 (−1)x+y+xy A(ξ

(0)
n )

−κ D(ξ
(1)
n ) t̄(κ)(ξ

(1)
n )

)(
ψ
(κ)
t̄

(h)

ψ
(κ)
t̄ (T+

nh)

)
=

(
0

0

)
, (4.12)

for anyn ∈ {1, . . . ,N} and anyh ∈ {0, 1}N such thathn = 0. It follows that a function̄t(κ)(λ) of the form

(4.8) is an eigenvalue ofT
(κ)

(λ) on D̄
(0,L)
(6VD),N if and only if this system admits a non-zero solution, i.e. ifand

only if the determinants of all2× 2 matrices in (4.12) vanish:

t̄(κ)(ξ(0)n ) t̄(κ)(ξ(1)n ) = (−1)x+y+xy A(ξ(0)n ) D(ξ(1)n ), ∀n ∈ {1, . . . ,N}. (4.13)

The condition for a function̄t(κ)(λ) of the form (4.8) to be an eigenvalue ofT
(κ)

(λ) on D̄(0,R)
(6VD),N can be written

similarly and one obtains the same system of equations (4.13). The announced isospectrality is then a trivial
consequence of the fact that the conditions (4.8) and (4.13)are the same for all the values ofκ ∈ C \ {0}.

Hence, we can omit the upper indices(κ) and denote the eigenvalue functions ofT
(κ)

(λ) simply by t̄(λ).

Finally, it is easy to see that a given functiont̄(λ) of the form (4.8) satisfying (4.13) corresponds to a

unique eigenvector〈Ψ(κ)
t̄
| of T

(κ)
(λ), so that the spectrum ofT

(κ)
(λ) in D̄

(0,L)
(6VD),N is simple. Indeed, since

A(ξ
(0)
n ), D(ξ

(1)
n ) 6= 0, the solution of (4.12) is uniquely fixed (up to an overall normalization) by the requirement

ψ
(κ)
t̄

(T+
nh)

ψ
(κ)
t̄

(h)
= (−1)x+y+xyκ t̄(ξ

(0)
n )

A(ξ
(0)
n )

, (4.14)

for anyn ∈ {1, . . . ,N} and anyh ∈ {0, 1}N such thathn = 0. In other words, it means that this eigenvector is
given by the factorized formula (4.4)- (4.5). The proof for the right eigenstates is similar.

As usual within the SOV approach, the eigenstates of the transfer matrix are obtained asseparatestates
on the SOV basis, so that their scalar product can straightforwardly be expressed as a determinant issued from
(3.33):

〈Ψ
(κ)
t̄
|Ψ

(κ)
t̄′
〉 = det

N

[
Ft̄,̄t′

]
, (4.15)

whereFt̄,̄t′ denotes theN× N matrix of elements

[
Ft̄,̄t′

]
a,b

=
1∑

h=0

(
eiyη

Ax,y(ξa)

D(ξa − η)

)h
q
(h)
t̄,a q

(h)
t̄′,a ϑb−1(ξ

(h)
a − ξ̄0). (4.16)

Such a representation can be obtained for anyt̄(λ), t̄′(λ) ∈ ΣT . Note that it does not depend on the value of the
twist κ.
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4.2 On the reformulation of the SOV characterization of the spectrum in terms of solutions of
functional T -Q equations: homogeneous versus inhomogeneous equations

It follows from the previous study that the spectrumΣT of T
(κ)

(λ) is given as the set of all entire functionst̄(λ)
satisfying the quasi-periodicity properties

t̄(λ+ π) = (−1)N+y t̄(λ), (4.17)

t̄(λ+ πω) = (−e−2iλ−iπω)N e2i[
∑N

k=1 ξk−
N
2
η+xπ

2
] t̄(λ), (4.18)

and such that, for eachn ∈ {1, . . . ,N}, the matrix

Dt̄,n ≡

(
t̄(ξ

(0)
n ) −Ax,y(ξ

(0)
n )

−D(ξ
(1)
n ) t̄(ξ

(1)
n )

)
(4.19)

is of rank one, i.e. that there exists a non-zero vector

qt̄,n ≡


q

(0)
t̄,n

q
(1)
t̄,n


 (4.20)

which satisfiesDt̄,n ·qt̄,n = 0 and which can be used to construct the corresponding eigenstates. In other words,
the system of quadratic equations (4.2) which completely characterizes, together with the functional form (4.1)
of the eigenvalues, the transfer matrix spectrumΣT , is equivalent to the following condition:

∀n ∈ {1, . . . ,N}, ∃ (q
(0)
t̄,n, q

(1)
t̄,n) 6= (0, 0) such that

∀hn ∈ {0, 1}, t̄(ξ(hn)
n ) q

(hn)
t̄,n = Ax,y(ξ

(hn)
n ) q

(hn+1)
t̄,n + D(ξ(hn)

n ) q
(hn−1)
t̄,n . (4.21)

Hence the system of equations (4.21) corresponds to a discrete version of Baxter’s famous functionalT -Q
equation [6]. However, in its present form, this characterization of the spectrum in terms of a discrete set of
equations which strongly depends on the inhomogeneities ofthe system (subject to the condition (3.8)) does
not seem very convenient for the study of physical quantities of the model, since it does not allow for an easy
determination of the homogeneous and thermodynamic limits. On the contrary, Baxter’sT -Q equation in its
usual (i.e. functional) form is smooth with respect to the homogeneous limit and, thanks to the equivalence with
a system of Bethe equations, makes it possible to use some standard techniques to study the thermodynamic
properties of the model under consideration. It is therefore important to be able to pass from the discrete to the
continuous picture or, in other words, to find an equivalent reformulation of the SOV discrete characterization of
the transfer matrix spectrum and eigenstates in terms of some particular class of solutions on the whole complex
planeC of a functionalT -Q equation of Baxter’s type. Note that the existence of such a reformulation has been
already proven for several integrable quantum models solved by SOV [35, 36, 21], notably for the antiperiodic
XXZ spin chain [42] which constitutes a limiting case of the present model (see Remark 2.2).

Hence, the problem one wants to solve can be formulated as follows: does it exist, for each̄t(λ) ∈ ΣT , a
functionQ(λ) onC, in a class of analytic functions that has to be precisely determined, such that̄t(λ) andQ(λ)

satisfy the continuous (functional) version of (4.21):

t̄(λ)Q(λ) = Ax,y(λ)Q(λ− η) + D(λ)Q(λ+ η). (4.22)
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If moreover, for eachn ∈ {1, . . . ,N},
(
Q(ξn), Q(ξn − η)

)
6= (0, 0), then this solutionQ(λ) provides, through

the identificationq(hn)
t̄,n ≡ Q(ξ

(hn)
n ), all the vectors (4.20) satisfying the condition (4.21) andenabling ones to

construct the corresponding eigenstates through (4.4)-(4.3). ProvidedQ(λ) can be factorized in a generic form,
the determination of all eigenvaluest̄(λ) ∈ ΣT can therefore be reduced to the determination of the set of roots
of the corresponding solutionQ(λ), i.e. of the solution of a system of Bethe-type equations.

For any given̄t(λ) ∈ ΣT , the equation (4.22) is a second-order finite-difference equation which may in
principle admit two independent solutionsQ(λ). The whole problem is therefore to determine what could be
the functional form of these solutions, and whether this form does or not depend on the particulart̄(λ) ∈ ΣT

we consider (problem of thecompletenessof the associated system of Bethe equations). In general, this may
not be an easy task, since the functional form of theQ-solutions to this finite-difference equation may be quite
different from the functional form of its coefficients: for instance, in the present case, it is obvious that (4.22)
cannot admit, for̄t(λ) ∈ ΣT̄, any solution of the type

Q(λ) = cQ e
αλ

M∏

j=1

θ(λ− λj), cQ 6= 0, M ∈ N, α, λ1, . . . , λM ∈ C, (4.23)

since the terms̄t(λ)Q(λ), A(λ)Q(λ−η) andD(λ)Q(λ+η) would all have different quasi-periodicity properties
and would therefore be linearly independent. A possible (and quite usual) way to solve the problem would be to
explicitly construct the so-calledQ-operator[4, 6] (see also for instance [45, 7, 3, 8, 12]) and to determine the
functional form of its eigenvalues. This procedure may however be quite involved and, to our knowledge, has
never been performed in the case of the antiperiodic dynamical 6-vertex model.

It was recently suggested in the context of the so-called “off-diagonal Bethe Ansatz” [10, 9] that one may
avoid these difficulties by considering, instead of (4.22),a generalized functional equation. The idea is to allow
some freedom in the rewriting of the discrete equations intothe continuous one, and in particular the presence
of an inhomogeneous (“off-diagonal”) term, so as to force the latter to admit solutions of the form (4.23).
The equivalence of the discrete SOV characterization of thespectrum and the solutions of such generalized
functionalT -Q equation is then quite simple to prove, and it is probably theeasiest way, in the context of SOV,
to obtain a complete system of Bethe-type equations (see forinstance [24, 42]). Concretely, in the present case,
such a reformulation would rely on two main ideas. The first one is that one can in fact allow, in the rewriting
of (4.21) into some functional finite-difference equation,some modification of the coefficientsA(λ) andD(λ)

by a gauge transformation of the form

Ā(λ) ≡ f(λ) A(λ), D̄(λ) ≡
D(λ)

f(λ+ η)
, (4.24)

which leaves the productA(λ) D(λ− η) (and therefore the set of equations (4.2)) unchanged. One can therefore
choose the functionf(λ) such that, for functionsQ(λ) of the form (4.23), the three termst̄(λ)Q(λ), Ā(λ)Q(λ−

η) and D̄(λ)Q(λ + η) obey the same quasi-periodicity properties with respect tothe periodsπ andπω. The
second idea is that, in the rewriting of the discrete finite-difference equations into a continuous (functional)
one, one can in fact allow the presence of an extra term as longas the later vanishes at each of the pointsξ

(h)
n ,

n ∈ {1, . . . ,N}, h ∈ {0, 1}, so that the discretized version of this equation effectively coincides with a gauge
transformed variant of (4.21). The resulting equation willthen be of the form

t̄(λ)Q(λ) = f(λ) Ax,y(λ)Q(λ− η) +
D(λ)

f(λ+ η)
Q(λ+ η)− A(λ)D(λ)F (λ). (4.25)
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In fact, there exist many possible rewriting of this form, depending on the functionf(λ) and the degreeM of
the class of solutionsQ(λ). A consistent choice forf(λ) andQ(λ) is for example:

f(λ) ≡ f (β)µ (λ) = β−1e−iyλ θ(λ− µ+ (M− N)η)

θ(λ− µ+ t0,0)
, Q(λ) =

M∏

j=1

θ(λ− λj), (4.26)

in terms of some arbitrary complex parametersβ andµ and of some rootsλ1, . . . , λM. With such a choice with
fixed parametersβ andµ, it is natural to expect that the reformulation of the transfer matrix spectrum in terms
of the solutionsQ(λ) of degreeM of (4.25) is complete as soon asM ≥ N 6. In the appendix B we explicitly
detail the caseM = N, whose result can be summarized as follows:

if M = N, for any7 fixedµ ∈ C andβ ∈ C\{0}, then̄t(λ) ∈ ΣT if and only if there exists a functionQ(λ)

of the form (4.26), solution with̄t(λ) of the inhomogeneous functional equation (4.25) forf(λ) ≡ f
(β)
µ (λ)

given by (4.26), such that
(
Q(ξn), Q(ξn − η)

)
6= (0, 0) for eachn ∈ {1, . . . ,N} (see Theorem B.1).

The functionF (λ) ≡ F
(β)
µ,Q(λ) in (4.25) is completely determined in terms off(λ) ≡ f

(β)
µ (λ) andQ(λ) by

imposing that the r.h.s. of (4.25) is an elliptic polynomial.

Such a functional equation reformulation of the transfer matrix spectrum has the clear advantage to be
completely smooth with respect to the homogeneous limit in which all parametersξn tend to the same value
(which was obviously not the case for the initial formulation). It moreover enables us to rewrite the transfer
matrix eigenstates obtained by SOV in a form very similar to aBethe vector, i.e. as some multiple action of
the operatorsD, evaluated at the roots of theQ-function (the “Bethe” roots), on some specified pseudo-vacuum
state (see Appendix B, Corollary B.1). Nevertheless, the possibility to use it as an efficient tool to analyze also
the thermodynamic limit is still an open question. Indeed, there is an important price to pay for the apparent
simplicity in the deriving of the functional equation: the presence of the inhomogeneous termF (λ) makes the
resulting Bethe-type equations a priori much more difficultto solve than their homogeneous analog.

Hence, in the remaining part of this section, we turn back to the study of the homogeneous functional
equation (4.22). We shall in particular explain how one can infer the expected form of theQ-solutions to (4.22)
from the quasi-periodicity properties of the coefficients,and we shall prove the completeness of these solutions
for t̄(λ) ∈ ΣT̄ in the case whereN is even.

4.3 On the reformulation of the SOV characterization of the spectrum in terms of solutions of
an homogeneous functional T -Q equation: a few preliminary considerations

Before turning to more precise considerations about the analytic properties of theQ-solutions to (4.22), let us
precisely formulate at which conditions the knowledge of some functionQ(λ) defines, through the equation
(4.22), a function̄t(λ) which is an eigenvalue of the transfer matrix.

6Note that it is a priori possible to lower the degreeM of the considered class of solutionsQ(λ) by allowing some unknown
parameters inf(λ), as far as the total number of unknowns (i.e. of Bethe roots) is still at least equal toN. For instance, with the choice
(4.26), one may consider an equation (4.25) forN unknowns which would be the set of theM− 1 roots ofQ(λ) andthe parameterµ of
f(λ). We would then obtain Bethe equations of slightly differentform coupling these two subsets of unknowns.

7In fact, if η ∈ R, they may be some additional restrictions on the set of parametersβ for which this assertion is valid (see
Theorem B.1). Moreover, we also suppose thatµ is such thatµ + (N − M)η − ξj , µ + (N − M − 1)η − ξj , µ − t0,0 − ξj ,
µ+ η − t0,0 − ξj /∈ Γ, ∀j ∈ {1, . . . ,N}.
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Theorem 4.2. Let us suppose that the inhomogeneity parametersξ1, . . . , ξN of the model satisfy(3.8), and let
t̄(λ) be an entire function such that the following conditions aresatisfied:

1. there exists a functionQ(λ) such that̄t(λ) can be expressed as

t̄(λ) ≡
Ax,y(λ)Q(λ− η) + D(λ)Q(λ+ η)

Q(λ)
; (4.27)

2. the functionQ(λ) of 1. is such that, for eachn ∈ {1, . . . ,N},
(
Q(ξn), Q(ξn − η)

)
6= (0, 0);

3. t̄(λ) satisfies the quasi-periodicity properties(4.17)and (4.18).

Thent̄(λ) is an eigenvalue of theκ-twisted antiperiodic transfer matrix (i.e.̄t(λ) ∈ ΣT ), with corresponding
eigenstates given in terms of the functionQ(λ) of 1. as

|Ψ
(κ)
t̄
〉 =

∑

h∈{0,1}N

N∏

a=1

[(
κ−1eiyη

Ax,y(ξa)

D(ξa − η)

)ha

Q(ξ(ha)
a )

]
det
N

[
Θ(0,h)

]
|h, 0〉, (4.28)

〈Ψ
(κ)
t̄
| =

∑

h∈{0,1}N

N∏

a=1

[(
κ eiyη

)ha Q(ξ(ha)
a )

]
det
N

[
Θ(0,h)

]
〈0,h|. (4.29)

As discussed in the previous subsection, this theorem is a direct corollary of the SOV characterization
of the antiperiodic transfer matrix spectrum and eigenstates of Theorem 4.1, which can easily be proven by
particularizing the relation (4.27) at the2N pointsξn, ξn − η, 1 ≤ n ≤ N, so as to recover (4.21). The whole
problem is therefore

(a) to characterize the functional form of the functionQ(λ), preferably in a completely factorized form, so as
to rewrite the entireness condition fort̄(λ) as a system of Bethe equations for the roots ofQ(λ);

(b) to prove that, for each̄t(λ) ∈ ΣT , there indeed exists such aQ-solution to the correspondingT -Q equa-
tion, i.e. to prove the completeness of the aforementioned characterization in terms of solutions to Bethe
equations.

Before turning to these more delicate points that we shall partially solve in the next subsections, we would like
to make a few remarks about the formulation of Theorem 4.2, which can in fact be rewritten in slightly different
equivalent forms. For instance, it is easy to see that the condition 3. can be replaced by some equivalent
conditions on the functionQ(λ):

Proposition 4.1. For some given functionQ(λ), we define a function̄t(λ) by the relation(4.27). Then

(i) the function̄t(λ) defined by(4.27)satisfies the quasi-periodicity property(4.17)if and only if the function

W
(1)
Q (λ) ≡ Q(λ+ π)Q(λ− η)− (−1)yQ(λ+ π − η)Q(λ) (4.30)

satisfies the relation

D(λ)W
(1)
Q (λ+ η) = (−1)x+xy A(λ)W

(1)
Q (λ); (4.31)
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(ii) the functiont̄(λ) defined by(4.27)satisfies the quasi-periodicity property(4.18)if and only if the function

W
(2)
Q (λ) ≡ Q(λ+ πω)Q(λ− η)− (−1)x e−iNη Q(λ+ πω − η)Q(λ) (4.32)

satisfies the relation

D(λ)W
(2)
Q (λ+ η) = (−1)y+xy e−iNη A(λ)W

(2)
Q (λ). (4.33)

Hence the condition 3. in Theorem 4.2 can be replaced by the condition:

3’. the functionQ(λ) of 1. satisfies the relations(4.31)and (4.33).

Another remark comes from the fact that, ifQ(λ) satisfies (4.22) for some function̄t(λ) satisfying (4.17)
and (4.18), thenQ(λ+ π) andQ(λ+ πω) satisfy respectively the following equations:

t̄(λ)Q(λ + π) = (−1)y Ax,y(λ)Q(λ + π − η) + (−1)y D(λ)Q(λ + π + η),

t̄(λ)Q(λ + πω) = (−1)x e−iNη Ax,y(λ)Q(λ+ πω − η) + (−1)x eiNη D(λ)Q(λ+ πω + η),

which means that we can in fact slightly relax the admissibility condition2. according to the following propo-
sition:

Proposition 4.2. If Q(λ) is a solution to(4.22) for some function̄t(λ) satisfying (4.17) and (4.18), then

e±iπy λ
η Q(λ + π), ei(N±πx

η
)λQ(λ + πω) and ei(N+ǫ1

πx
η
+ǫ2

πy
η
)λQ(λ + π + πω) (with ǫ1, ǫ2 = ±1) are also

solutions of(4.22) for the same function̄t(λ). Hence the condition 2. in Theorem 4.2 can be replaced by the
condition:

2’. the functionQ(λ) of 1. is such that, for eachn ∈ {1, . . . ,N}, there exists(αn, βn) ∈ {0, 1}
2 such that(

Q(ξn + αnπ + βnπω), Q(ξn + αnπ + βnπω − η)
)
6= (0, 0),

with corresponding eigenstates given by

|Ψ
(κ)
t̄ 〉 =

∑

h∈{0,1}N

N∏

a=1

[(
eiyηAx,y(ξa)

κ D(ξa − η)

)ha

e
i[αa

πy
η
+βa(N+πx

η
)]ξ

(ha)
a Q(ξ(ha)

a + αaπ + βaπω)

]

× det
N

[
Θ(0,h)

]
|h, 0〉, (4.34)

〈Ψ
(κ)
t̄
| =

∑

h∈{0,1}N

N∏

a=1

[(
κ eiyη

)ha e
i[αa

πy
η
+βa(N+πx

η
)]ξ

(ha)
a Q(ξ(ha)

a + αaπ + βaπω)

]
det
N

[
Θ(0,h)

]
〈0,h|,

(4.35)

instead of(4.28), (4.29).

Note finally that the relation (4.31) (respectively the relation (4.33)) can be understood as some “wronskian-

type” identity for the two solutionsQ(λ) ande±iπy λ
η Q(λ + π) (respectivelyQ(λ) andei(N±πx

η
)λQ(λ + πω))

of the functionalT -Q equation (4.22), as a particular case of the following very general property:

22



Proposition 4.3. LetQ1(λ) andQ2(λ) be two solutions of the functional equation(4.22)for some given function
t̄(λ). Then their quantum Wronskian,

W12(λ) = Q1(λ− η)Q2(λ)−Q1(λ)Q2(λ− η), (4.36)

satisfies the relation

D(λ)W12(λ+ η) = (−1)x+y+xy A(λ)W12(λ). (4.37)

Hence

W12(λ) = f12(λ) D(λ), with f12(λ+ η) = (−1)x+y+xyf12(λ). (4.38)

Remark4.1. If Q(λ) satisfies the homogeneous functional equation (4.22) then,for eachk ∈ Z, e2πik
λ
η Q(λ)

also provides a solution to the functional (4.22), which is however not independent fromQ(λ) in the sense that
their quantum Wronskian (4.36) is identically zero.

4.4 Study of the homogeneous T -Q functional equation: an Ansatz for the Q-solutions

As just announced, the periodicity properties of the coefficients of (4.22) for̄t(λ) ∈ ΣT enable one to make a
reasonable guess about the functional form of its possible entireQ-solutions, i.e. the solutions that are suscep-
tible to lead to a system of Bethe equations. The idea is to transform this equation, similarly as in [27], into a
difference equation with elliptic coefficients:

Q̃(λ+ η) + f1(λ)
P (λ)

P (λ+ η)
Q̃(λ) + f2(λ)

P (λ− η)

P (λ+ η)
Q̃(λ− η) = 0. (4.39)

Here we have set

f1(λ) = −
t̄(λ)

D(λ)
, f2(λ) =

Ax,y(λ)

D(λ)
, and Q̃(λ) =

Q(λ)

P (λ)
, (4.40)

whereP (λ) has to be chosen appropriately so as to ensure that the coefficients of (4.39) are doubly-periodic.
Since the functionsfi(λ) exhibit different quasi-periodicity properties according to the values ofx andy, we
shall now consider the three different casesx = 0, y = 0 andx = y separately. To this aim, it is convenient to
introduce shorthand notations for different variants of the theta function that we shall use within the study of
these different cases. We therefore define the following oddfunctions ofλ,

θx=0(λ) ≡ θ1

(λ
2

∣∣∣ ω
2

)
, (4.41)

θy=0(λ) ≡ θ1(λ | 2ω), (4.42)

θx=y(λ) ≡ e
iλ
2 θ1

(λ
2

∣∣∣ω
)
θ1

(λ+ π + πω

2

∣∣∣ω
)
, (4.43)

which satisfy respectively the quasi-periodicity properties:

θx=0(λ+ 2π) = −θx=0(λ), θx=0(λ+ πω) = −e−iλ−iπω
2 θx=0(λ), (4.44)

θy=0(λ+ π) = −θy=0(λ), θy=0(λ+ 2πω) = −e−2iλ−2iπω θy=0(λ), (4.45)

θx=y(λ+ 2π) = −θx=y(λ), θx=y(λ+ 2πω) = −e−2iλ−2iπω θx=y(λ), (4.46)

θx=y(λ± π + πω) = ±ie−iλ−iπω
2 θx=y(λ). (4.47)
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The case x = 0. Let us chooseP (λ) in the form

P (λ) =

N∏

j=1

θx=0(λ− zj), (4.48)

for arbitraryzj , 1 ≤ j ≤ N. Then the coefficientsf1(λ)
P (λ)

P (λ+η) andf2(λ)
P (λ−η)
P (λ+η) for the equation (4.39) for

Q̃(λ) are elliptic functions of periods2π andπω. Following [27], we may therefore look for the double-Bloch
solutions of (4.39), i.e. for the meromorphic solutionsQ̃(λ) = Q(λ)

P (λ) such that

Q̃(λ+ 2π) = B1 Q̃(λ), and Q̃(λ+ πω) = B2 Q̃(λ), (4.49)

for some Bloch multipliersB1, B2. It is easy to see [28] that any double-Bloch function of the form (4.49) can
be written in the form

Q̃(λ) = cQ e
αλ

M∏

j=1

θx=0(λ− λj)

θx=0(λ− µj)
(4.50)

for some integerM, some complex parameterα and some sets of zeroes and polesλj andµj, 1 ≤ j ≤ M. If
Q̃(λ) of the form (4.50) is solution of (4.39), thenQ(λ) = P (λ) Q̃(λ) is solution of (4.22), and we expect the
latter to be entire8, which means that it can be written in the form

Q(λ) = cQ e
αλ

N∏

j=1

θx=0(λ− λj), (4.51)

for some complex parameterα and some set of rootsλj , 1 ≤ j ≤ N.

Note that, in the obtention of the Ansatz (4.51) forQ(λ), we have only used a weaker periodicity property
than (4.17) for̄t(λ). Imposing that̄t(λ) strictly satisfies (4.17) is equivalent9 to the additional constraint (4.31)
for the corresponding functionW (1)

Q (λ) defined in term ofQ(λ) as in (4.30). It means that

W
(1)
Q (λ) = g(1)(λ) D(λ), (4.52)

whereg(1)(λ) is η-periodic:g(1)(λ+ η) = g(1)(λ). On the other hand, forQ(λ) of the form (4.51), it is easy to
see thatW (1)

Q (λ) satisfies the quasi-periodicity properties

W
(1)
Q (λ+ π) = (−1)N+y+1 e2παW

(1)
Q (λ), (4.53)

W
(1)
Q (λ+ πω) = (−e−2iλ−iπω)N e2i

∑
λj+iNη+2πωαW

(1)
Q (λ), (4.54)

which have to be compared to the quasi-periodicity properties ofD(λ). Henceg(1)(λ) also satisfies the quasi-
periodicity properties:

g(1)(λ+ π) = (−1)y+1 e2πα g(1)(λ), (4.55)

g(1)(λ+ πω) = e2i
[∑

λj+
N
2
η−

∑
ξk

]
+2πωα g(1)(λ). (4.56)

8It is easy to see that, ifQ(λ) solution to (4.22) admits some poleµj , then it should have an infinite number of poles of the
form µj + kη for an infinite number ofk ∈ Z, which is clearly not compatible with the form (4.50) of̃Q(λ) (we suppose here that
η /∈ πQ+ πωQ, and that the inhomogeneity parameters satisfy (3.8)).

9Indeed, ifQ(λ) of the form (4.51) is a solution to (4.22),ei
πy
η

λQ(λ + π) is another solution to (4.22) that we expect here to be
independent from the first one.
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It means that there exist two constantsc(1)W andα1 such that

g(1)(λ) = c
(1)
W eα1λ, (4.57)

and that there existk1, k2, k3 ∈ Z such that




α1η = 2πik1,

α1π = iπ(1 − y) + 2πα+ 2πik2,

α1πω = 2i
[∑

λj +
N

2
η −

∑
ξk

]
+ 2πωα+ 2πik3.

(4.58)

Hence, ifc(1)W 6= 0, one obtains the following sum rules:




α = i

[
y − 1

2
+ k1

π

η
− k2

]
,

N∑

j=1

λj =
N∑

k=1

ξk −
N

2
η + (1− y)

πω

2
+ k2πω − k3π,

(4.59)

for somek1, k2, k3 ∈ Z.

Note that, if there indeed exists such a solution, it means that there exists such a solution for whichk2 = 0

andk1, k3 ∈ {0, 1} (this is due to Remark 4.1, and to the quasi-periodicity properties of the functionθx=0 with
respect to a shift of one the rootsλj by 2π or πω). In fact, one can even be more precise, and formulate the
following Ansatz:

• if (x, y) = (0, 1), we expect two independent solutions of the form

Q(λ) =

N∏

j=1

θx=0(λ− λj), (4.60)

with
N∑

j=1

λj =

N∑

k=1

ξk −
N

2
η + kπ, k ∈ {0, 1}, (4.61)

and

Q̂(λ) = e
iπ
η
λ
Q(λ+ π); (4.62)

• if (x, y) = (0, 0) andN odd, we expect two independent solutions of the form

Q(λ) = e
i
[
kπ
η
− 1

2

]
λ

N∏

j=1

θx=0(λ− λj), k ∈ {0, 1}, (4.63)

with
N∑

j=1

λj =

N∑

k=1

ξk −
N

2
η +

πω

2
, (4.64)

and

Q̂(λ) = Q(λ+ π). (4.65)

25



The case y = 0. A similar reasoning can be made in this case, by choosingP (λ) of the form

P (λ) =

N∏

j=1

θy=0(λ− zj), (4.66)

with arbitraryzj , 1 ≤ j ≤ N, so as to obtain elliptic coefficients with periodsπ and2πω in (4.39). It leads to
the following Ansatz forQ(λ):

Q(λ) = cQ e
αλ

N∏

j=1

θy=0(λ− λj), (4.67)

for some complex parameterα and some set of rootsλj , 1 ≤ j ≤ N. The condition (4.33), which is a necessary
and sufficient condition for the corresponding function (4.27) to satisfy (4.18), results into the following sum
rules for (4.67):





α = i

[
k1
π

η
− k2

]
,

N∑

j=1

λj =
N∑

k=1

ξk −
N

2
η + (1− x)

π

2
+ k2πω − k3π,

(4.68)

for somek1, k2, k3 ∈ Z.

As previously, we can be more precise. Indeed, if such a solution exists, then it is easy to see, from Re-
mark 4.1 and considerations about the quasi-periodicity properties of the functionθy=0 with respect to a shift of
one of the rootsλj by π or 2πω, that there also exists a solution for whichk3 = 0 andk1, k2 ∈ {0, 1}. Then
one can formulate the following Ansatz:

• if (x, y) = (1, 0), we expect two independent solutions of the form

Q(λ) = e−ikλ
N∏

j=1

θy=0(λ− λj), k ∈ {0, 1}, (4.69)

with
N∑

j=1

λj =
N∑

k=1

ξk −
N

2
η + kπω, (4.70)

and

Q̂(λ) = e
i(N+π

η
)λ
Q(λ+ πω); (4.71)

• if (x, y) = (0, 0) andN odd, we expect two independent solutions of the form

Q(λ) = ei
kπ
η
λ

N∏

j=1

θy=0(λ− λj), k ∈ {0, 1}, (4.72)

with
N∑

j=1

λj =
N∑

k=1

ξk −
N

2
η +

π

2
, (4.73)

and

Q̂(λ) = eiNλQ(λ+ πω). (4.74)
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The case x = y. In that case, the choice

P (λ) =

N∏

j=1

θx=y(λ− zj), (4.75)

with arbitraryzj , 1 ≤ j ≤ N, leads to an equation (4.39) which has elliptic coefficientswith periodsπω + π

andπω − π, and to the following Ansatz for the solutionQ(λ) of (4.22):

Q(λ) = cQ e
αλ

N∏

j=1

θx=y(λ− λj), (4.76)

for some complex parameterα and some set of rootsλj , 1 ≤ j ≤ N. It is then easy to see that the conditions
(4.31) and (4.33) result into the same10 sum rules for the parameters entering (4.76), which can be written as





α = i

[
y − 1

2
+ k1

π

η
− k2

]
,

N∑

j=1

λj =

N∑

k=1

ξk −
N

2
η + (π + πω)

(
1− y

2
+ k2

)
+ k3π,

(4.77)

for k1, k2, k3 ∈ Z.

Here again one can be more precise: if such a solution exists,it is easy to see that, due to Remark 4.1 and
considerations about the quasi-periodicity properties ofthe functionθx=y with respect to a shift of one of the
rootsλj by π + πω or 2π, it exists fork2 = 0 andk1, k3 ∈ {0, 1}. Due to the existence of a second solution of
the form

ei
yπ
η
λQ(λ+ π) ∝ ei(N+ xπ

η
)λQ(λ+ πω), (4.78)

one can finally formulate the following Ansatz:

• if (x, y) = (1, 1), we expect two independent solutions of the form

Q(λ) =

N∏

j=1

θx=y(λ− λj), (4.79)

with

N∑

j=1

λj =

N∑

k=1

ξk −
N

2
η + kπ, k ∈ {0, 1}, (4.80)

and

Q̂(λ) = ei
π
η
λQ(λ+ π) ∝ ei(N+π

η
)λQ(λ+ πω); (4.81)

10In fact, forQ(λ) of the form (4.76), one hasW (2)
Q (λ+ π) = (−1)x+1 (ie−iλ−iπω

2 )N ei
∑

λj+(π+πω)α W
(1)
Q (λ).
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• if (x, y) = (0, 0) andN odd, we expect two independent solutions of the form

Q(λ) = ei
[
kπ
η
− 1

2

]
λ

N∏

j=1

θx=y(λ− λj), k ∈ {0, 1}, (4.82)

with

N∑

j=1

λj =

N∑

k=1

ξk −
N

2
η +

π + πω

2
, (4.83)

and

Q̂(λ) = Q(λ+ π) ∝ eiNλQ(λ+ πω). (4.84)

Remark4.2. The case(x, y) = (0, 0) with N odd can be considered from three different viewpoints (as a
particular case ofx = 0, of y = 0 or of x = y), hence leading to three possible different systems of independent
solutions ((4.63) and (4.65), (4.72) and (4.74), or (4.82) and (4.84)).

In the previous study, we have exhibited possible forms for the entireQ-solutions of (4.22), hence suscep-
tible to lead to a system of Bethe-type equations. One can in fact be slightly more precise in our argument by
remarking that, ifQ(λ) is a solution of the form (4.51), (4.67) or (4.76) to the homogeneous functional equation
(4.22) for some function̄t(λ) satisfying (4.17) and (4.18), then at least one of the two functions (4.30) or (4.32)
should be non identically vanishing. This means on the one hand that the sum rules (4.59), (4.68) or (4.77)
should indeed be satisfied, so that we can indeed refine the form of Q(λ) as in (4.60), (4.63), (4.69), (4.72),
(4.79) or (4.82) according to the case. This means on the other hand that the condition2’. of Proposition 4.2 is
automatically satisfied. This is due to the following proposition and corollary:

Proposition 4.4. If Q(λ) is a non-zero solution of(4.22)of the form(4.51), (4.67)or (4.76)to (4.22)for some
function t̄(λ) satisfying(4.17)and (4.18), then at least one of the two functionsW (1)

Q (λ) (4.30)andW (2)
Q (λ)

(4.32)is not identically zero.

Proof. Let us suppose that both functionsW (1)
Q (λ) andW (2)

Q (λ) are identically zero, i.e. thatQ(λ) satisfies the
relations





Q(λ+ π)

Q(λ+ π − η)
= (−1)y

Q(λ)

Q(λ− η)
,

Q(λ+ πω)

Q(λ+ πω − η)
= (−1)x e−iNη Q(λ)

Q(λ− η)
.

(4.85)

This means that the functionQ(λ)
Q(λ−η) is a double-Bloch function which can therefore be written inthe form

Q(λ)

Q(λ− η)
= cP e

βλ
M∏

j=1

θ(λ− µj)

θ(λ− νj)
(4.86)

for some integerM, some complex parameterβ and some sets of zeroes and polesµj andνj, 1 ≤ j ≤ M.
It follows thatQ(λ) should be of the form (4.23) which, as already mentioned, is not compatible with the
quasi-periodicity properties of (4.22).
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Corollary 4.1. Let t̄(λ) satisfying(4.17)and(4.18)and let us suppose that there exists a functionQ(λ) solution
to the homogeneous functional equation(4.22)associated with̄t(λ).

• If x = 0 and ifQ(λ) is of the form(4.51), thenW (1)
Q (λ) is not identically zero and the sum rule(4.59) is

satisfied. Moreover, for alln ∈ {1, . . .N},
(
Q(ξn − η), Q(ξn − η + π)

)
6= (0, 0).

• If y = 0 and ifQ(λ) is of the form(4.67), thenW (2)
Q (λ) is not identically zero and the sum rule(4.68) is

satisfied. Moreover, for alln ∈ {1, . . .N},
(
Q(ξn − η), Q(ξn − η + πω)

)
6= (0, 0).

• If x = y = 0 and ifQ(λ) is of the form(4.76), thenW (1)
Q (λ) andW (2)

Q (λ) are not identically zero and the
sum rule(4.77) is satisfied. Moreover, for alln ∈ {1, . . .N},

(
Q(ξn − η), Q(ξn − η + π)

)
6= (0, 0) and(

Q(ξn − η), Q(ξn − η + πω)
)
6= (0, 0).

Moreover, in all these cases,t̄(λ) is a transfer matrix eigenvalue.

Proof. Let us first consider the casex = 0. The first part of the assertion is a direct consequence of Propo-
sition 4.4, of the fact thatW (2)

Q (λ) is identically zero forQ(λ) of the form (4.51) and of the previous study.

ThereforeW (1)
Q (λ) = c

(1)
W eα1λ D(λ) with c(1)W 6= 0. This is clearly incompatible with the possibility that, for

somen ∈ {1, . . . ,N},
(
Q(ξn−η), Q(ξn−η+π)

)
= (0, 0), since in that case we would haveW (1)

Q (ξn−η) = 0.
Hence the second assertion follows.

The casesy = 0 andx = y can be proven similarly.

It is also easy to see that, whenever such solutions exist fort̄(λ) ∈ ΣT , they are unique, which means that
the characterization of a given eigenvalue (and corresponding eigenvector) of the antiperiodic transfer matrix in
terms of the corresponding type of solutions of Bethe equation is uniquely determined (i.e the same eigenvalue
cannot be obtained by two different solutions of the same type).

Proposition 4.5. For each̄t(λ) ∈ ΣT , the equation(4.22)admits

• at most one independent solution of the form(4.60)if (x, y) = (0, 1);

• at most one independent solution of the form(4.69)if (x, y) = (1, 0);

• at most one independent solution of the form(4.79)if (x, y) = (1, 1);

• at most one independent solution of the form(4.63)with the constraint(4.64), at most one independent
solution of the form(4.72), and at most one independent solution of the form(4.82) with the constraint
(4.83)if (x, y) = (0, 0).

Proof. Let us suppose that there exists, for(x, y) 6= (0, 0) and for a given̄t(λ) ∈ ΣT , two solutionsQ1(λ)

andQ2(λ) of the form (4.60) (respectively (4.69), respectively (4.79)). Then their quantum Wronskian (4.36)
satisfies the periodicity propertyW12(λ + 2π) = W12(λ). HenceW12(λ) = f12(λ) D(λ), wheref12(λ) is an
entire function with two incommensurable periods2π and2η (we suppose thatη /∈ πQ), i.e. it is a constant.
The latter is equal to zero if(x, y) 6= (0, 0) due to (4.38).

Let now(x, y) = (0, 0) and let us suppose that, for a givent̄(λ) ∈ ΣT , there exist two solutionsQ1(λ) and
Q2(λ) of the form (4.63) with the constraint (4.64) (respectivelyof the form (4.72), respectively of the form
(4.82) with the constraint (4.83)). By considering the quasi-periodicity properties of their quantum Wronskian
(4.36)W12(λ) = f12(λ) D(λ) with respect to shifts of2π andπω (respectively ofπ and2πω, respectively of2π
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and±π + πω), one obtains thatf12(λ) is of the formf12(λ) = c12e
α12λ, and one obtains some conditions on

α12 if c12 6= 0. These conditions are clearly incompatible with the supposed form ofQ1(λ) andQ2(λ), which
means here also thatc12 = 0 and that the two solutions are not independent.

We shall see in the next subsection that the reformulation ofthe spectral problem forT (λ) in terms of
solutions of the form (4.60), (4.69) or (4.79) is effectively equivalent to the SOV characterization of the spectrum
of Theorem 4.1, at least in the caseN even.

4.5 On the reformulation of the SOV characterization of the spectrum in terms of solutions of
an homogeneous functional T -Q equation: proof of the completeness for N even

We shall now prove the converse of Theorem 4.2 in the case of evenN and forQ(λ) of the form (4.60), (4.69)
or (4.79), i.e. the completeness of the solutions to the corresponding Bethe equations. More precisely, we shall
prove the following result:

Theorem 4.3. Let us suppose that the inhomogeneity parametersξ1, . . . , ξN satisfy(3.8) and let t̄(λ) be an
eigenvalue of the antiperiodic transfer matrixT (λ) (i.e. t̄(λ) ∈ ΣT ). Then, ifN is even, there exists a function
Q(λ) of the form

Q(λ) =
N∏

j=1

θX(λ− λj), (4.87)

for some set of rootsλ1, . . . , λN, such that̄t(λ) andQ(λ) satisfy the homogeneous functional equation(4.22).
Here the notationθX(λ) stands, respectively, for the function(4.41) if (x, y) = (0, 1), for the function(4.42) if
(x, y) = (1, 0), or for the function(4.43)if (x, y) = (1, 1).

From Proposition 4.5 we know that such a solution is unique (up to normalization). We also know from
Corollary 4.1 that this solution is such that condition2’. of Proposition 4.2 is satisfied. Hence, in the case
of evenN, it means that the discrete SOV characterization of the spectrum is equivalentto the description in
terms of Bethe equations based on solutions of the form (4.87) of the homogeneous functional equation (4.22).
The description of the eigenstates can then be obtained as inTheorem 4.2, or more generally as in its variant
Propostion 4.2. Note here that it is possible to rewrite the corresponding eigenvectors in a form more similar
to what we have in the ABA framework, i.e. by multiple action,on a given reference state, of a product of
operators evaluated at the corresponding Bethe roots. However, due to the fact that the functionQ(λ) (4.87)
is not a theta function of the same type (i.e. with the same quasi-periods) as the other functions defining the
model, and unlike what happens in the context of the reformulation of Appendix B (see Corollary B.1), we do
not use the whole operatorD to construct the eigenstates, but only “parts” of this operator: in the present case,
the operatorD is split into a product of commuting operators, and these arethe latter which are used to construct
the eigenstates. More precisely, for eachN-tupleβ = (β1, . . . , βN) ∈ {0, 1}

N, let us define inEnd(D(6VD),N)

the following diagonal operator on the SOV basis given by thevectors|h, r〉:

Dβ(λ) |h, r〉 =
N∏

n=1

{[
cX e

iπ(x+y−xy)hn
N

+iδy=0(λ−ξ
(hn)
n )

]βn

θX
(
λ− ξ(hn)

n + βnπX
)}
|h, r〉, (4.88)
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where

c−1
X =





θ4(0|ω) if x = 0,
i
2 e

−iπω
2 θ2(0|ω) if y = 0,

1
2 e

−iπω
2 θ2(0|ω) θ3(0|ω) θ4(0|ω) if x = y,

(4.89)

πX = (1− δy=0)π + δy=0 πω. (4.90)

We have that

Dβ(λ)D1−β(λ) |h, r〉 = e
iπ(x+y−xy)

N

∑N
n=1 hn

N∏

n=1

θ(λ− ξ(hn)
n ) |h, r〉, (4.91)

where1 − β stands for theN-tuple(1− β1, . . . , 1− βN). This means that

D(λ) = TDDβ(λ)D1−β(λ), (4.92)

whereTD is the shift operator defined on the SOV basis as

TD |h, r〉 = e
iπ(x+y−xy)

N

sh−s0
2 e−iyη

sh−s1
2

θ(tr+1,h)

θ(tr+1,1)
|h, r + 1〉. (4.93)

Then one can formulate the following corollary:

Corollary 4.2. Under the condition(3.8) and if N is even, there exists a one-to-one correspondence between
ΣT and the setΣBAE of different (up to the real quasi-period of the functionθX) Bethe rootsΛ = {λ1, . . . , λN}

such that

1. the function

Ax,y(λ)
Q(λ− η)

Q(λ)
+ D(λ)

Q(λ+ η)

Q(λ)
(4.94)

is entire and satisfies the quasi-periodicity properties(4.17)-(4.18),

2. ∀n ∈ {1, . . . ,N}, there existsβn ∈ {0, 1} such thatQ(ξn + βnπX) 6= 0,

whereQ(λ) is defined in terms ofΛ by (4.87). The eigenvaluēt(λ) ∈ ΣT associated withΛ ∈ ΣBAE is then
given by the entire function(4.94). For anyκ ∈ C \ {0}, the corresponding one-dimensional right and left

eigenspaces of theκ-twisted transfer matrixT
(κ)

(λ) are the one-dimensional subspaces ofD̄
(0,R/L)
(6VD),N spanned

by all vectors of the type

|Ψ
(κ)
Λ,β〉 =

N∏

j=1

Dβ(λj) |Ω
(κ)〉, respectively 〈Ψ(κ)

Λ,β| = 〈Ω
(κ)|

N∏

j=1

Dβ(λj), (4.95)

for anyN-tupleβ ∈ {0, 1}N. In (4.95), the operatorsDβ(λ) are defined as in(4.88), and the reference states
|Ω(κ)〉 and〈Ω(κ)| are

|Ω(κ)〉 =
∑

h∈{0,1}N

N∏

a=1

(
eiyη Ax,y(ξa)

κ D(ξa − η)

)ha

det
N

[
Θ(0,h)

]
|h, 0〉, (4.96)

〈Ω(κ)| =
∑

h∈{0,1}N

N∏

a=1

(
κ eiyη

)ha

det
N

[
Θ(0,h)

]
〈0,h|. (4.97)
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The proof of Theorem 4.3 is based on the following lemma:

Lemma 4.1. Let us suppose that the inhomogeneity parametersξ1, . . . , ξN satisfy(3.8) and letN = 2M be
even. Then, for each̄t(λ) ∈ ΣT , there exist∆ ∈ C and two non-zero entire functionsQ+(λ) andQ−(λ) with
the following quasi-periodicity properties:

Q±(λ+ π) = (±1)yQ±(λ), (4.98)

Q±(λ+ πω) = (±1)x (−e−2iλ−iπω)M e2i∆−iMπω Q±(λ), (4.99)

which satisfy the following system of2N equations:
{
t̄(ξj)Q+(ξj) = −A(ξj)Q−(ξj − η),

t̄(ξj − η)Q−(ξj − η) = D(ξj − η)Q+(ξj),
1 ≤ j ≤ N. (4.100)

Proof. On the one hand, sincēt(λ) ∈ ΣT the system (4.100) is equivalent to the following system of only N

equations:

t̄(ξj)Q+(ξj) = −A(ξj)Q−(ξj − η), 1 ≤ j ≤ N. (4.101)

On the other hand, the entireness and quasi-periodicity properties of the two functionsQ±(λ) are equivalent to
the fact that the functions

Q̃±(λ) ≡ e
−i[y 1∓1

2
−M]λQ±(λ) (4.102)

are theta functions ofλ of quasi-periods(π, πω), of orderM and of norm

∆± = ∆−
1∓ 1

2

(
x
π

2
+ y

πω

2

)
. (4.103)

This is also equivalent to the fact that the functionsQ±(λ) can be represented in the following form,

Q+(λ) =

M∑

k=1

e−iM(λ−ξik )
θ(λ− ξik +

∑M
ℓ=1 ξiℓ −∆+)

θ(
∑M

ℓ=1 ξiℓ −∆+)

M∏

ℓ=1
ℓ 6=k

θ(λ− ξiℓ)

θ(ξik − ξiℓ)
Q+(ξik), (4.104)

Q−(λ) =

M∑

k=1

ei(y−M)(λ−ξik+η) θ(λ− ξik + η +
∑M

ℓ=1 ξiℓ −Mη −∆−)

θ(
∑M

ℓ=1 ξiℓ −Mη −∆−)

×

M∏

ℓ=0
ℓ 6=k

θ(λ− ξiℓ + η)

θ(ξik − ξiℓ)
Q−(ξik − η), (4.105)

in terms of some arbitraryM-tuples
(
Q+(ξi1), . . . , Q+(ξiM)

)
and

(
Q−(ξi1 − η), . . . , Q−(ξiM − η)

)
, provided

that∆+ −
∑M

ℓ=1 ξiℓ /∈ Γ and∆− −
∑M

ℓ=1 ξiℓ + Mη /∈ Γ. Here, we have arbitrarily split the set of theN
inhomogeneity parameters{ξ1, . . . , ξN} into two disjoint subsets{ξi1 , . . . , ξiM} and {ξiM+1

, . . . , ξiN} of the
same cardinalityM = N/2.

Hence, the system (4.101) forQ+(λ) andQ−(λ) is equivalent to the following linear system for these two
M-tuples:





Q−(ξij − η) = −
t̄(ξij )

A(ξij )
Q+(ξij ),

M∑

k=1

[
Xt̄(∆)

]
jk
Q+(ξik) = 0,

j = 1, . . . ,M, (4.106)
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whereXt̄(∆) is theM×M matrix of elements:

[
Xt̄(∆)

]
ab

= e−iM(ξia+M
−ξib )

M∏

ℓ=1
ℓ 6=b

θ(ξia+M
− ξiℓ)

θ(ξib − ξiℓ)

[
θ(ξia+M

− ξib +
∑M

ℓ=1 ξiℓ −∆+)

θ(
∑M

ℓ=1 ξiℓ −∆+)

t̄(ξia+M
)

A(ξia+M
)

−eiy(ξia+M
−ξib)

θ(ξia+M
− ξib +

∑M
ℓ=1 ξiℓ −Mη −∆−)

θ(
∑M

ℓ=1 ξiℓ −Mη −∆−)

t̄(ξib)

A(ξib)

]
. (4.107)

The first line in (4.106) corresponds to the equationsi1, . . . , iM of (4.101), which completely fixe theM-tuple(
Q−(ξi1 − η), . . . , Q−(ξiM − η)

)
in terms of theM-tuple

(
Q+(ξi1), . . . , Q+(ξiM)

)
, whereas the second line

in (4.106) corresponds to the equationsiM+1, . . . , iN of (4.101), in which we have used the representations
(4.104) and (4.105) that we have rewritten (by means of the first line of (4.106)) in terms of theM-tuple(
Q+(ξi1), . . . , Q+(ξiM)

)
only.

Hence, this system admits a non-zero solution if and only if the determinant of the matrixXt̄(∆) (4.107)
vanishes. It is easy to see that this determinant is a quasi-periodic function of∆ with quasi-periodicity properties

det
M

[
Xt̄(∆ + π)

]
= det

M

[
Xt̄(∆)

]
, (4.108)

det
M

[
Xt̄(∆ + πω)

]
= e2i

∑M
a=1(ξia+M

−ξia ) det
M

[
Xt̄(∆)

]
, (4.109)

so that, if not identically zero, it is a non-constant11 function of∆ which can be written in the form

det
M

[
Xt̄(∆)

]
= cX

∏2M
j=1 θ(∆−∆j)

θ(∆+ −
∑M

ℓ=1 ξiℓ)
M θ(∆− −

∑M
ℓ=1 ξiℓ +Mη)M

, (4.110)

in terms of some roots∆j which are not all equal to the roots appearing in the denominator. This ends the proof
of Lemma 4.1.

Proof of Theorem 4.3.Let t̄(λ) ∈ ΣT andN = 2M be even. Then Lemma 4.1 implies that there exists
two non-zero entire functionsQ±(λ) which satisfy the quasi-periodicity properties (4.98)-(4.99) and the system
(4.100) for some∆ ∈ C. This implies that there exist two entire functionsf±(λ), with quasi-periodicity
properties

f±(λ+ π) = (±1)y f±(λ), (4.111)

f±(λ+ πω) = (±1)x (−e−2iλ−iπω)M e2i∆−iMπω f±(λ), (4.112)

which satisfy together with the functionsQ±(λ) the following system of functional equations:
{
t̄(λ)Q+(λ) = −A(λ)Q−(λ− η) + D(λ) f−(λ+ η),

t̄(λ)Q−(λ) = −A(λ) f+(λ− η) + D(λ)Q+(λ+ η).
(4.113)

Particularizing the first line of (4.113) at the pointsξj − η, j = 1, . . . ,N, and the second line at the pointsξj,
j = 1, . . . ,N, and using the fact that̄t(λ) ∈ ΣT , we obtain that

Q+(ξj − η)Q−(ξj) = f+(ξj − η) f−(ξj), 1 ≤ j ≤ N. (4.114)

11at least for some adequate splitting of{ξ1, . . . , ξN}.
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Note that the functionQ+(λ − η)Q−(λ) and the functionf+(λ − η) f−(λ) satisfy the same quasi-periodicity
properties:

F+−(λ+ π) = F+−(λ), (4.115)

F+−(λ+ πω) = (−e−2iλ−iπω)N e4i∆+iNη−iNπω F+−(λ), (4.116)

so thatF+−(λ) is a theta function of orderN and of norm2∆ +Mη −Mπω, whereF+−(λ) stands either for
the functionQ+(λ− η)Q−(λ) or for the functionf+(λ− η) f−(λ). Hence (4.114) implies that the identity is
in fact valid at the functional level, i.e. for anyλ ∈ C:

Q+(λ− η)Q−(λ) = f+(λ− η) f−(λ). (4.117)

One can therefore eliminatef+(λ− η) in the system (4.113), and we obtain the following functional system for
the functionf−(λ):





t̄(λ)Q+(λ) = −A(λ)Q−(λ− η) + D(λ) f−(λ+ η),

t̄(λ)Q−(λ) = −A(λ)
Q+(λ− η)Q−(λ)

f−(λ)
+ D(λ)Q+(λ+ η).

(4.118)

Note that the ratio in the second line of (4.118) is in fact an entire function due to (4.117). This systems implies
that

A(λ) f1(λ) = D(λ) f2(λ+ η), (4.119)

in which we have set

f1(λ) = Q−(λ− η)Q−(λ)−
Q+(λ− η)Q−(λ)

f−(λ)
Q+(λ), (4.120)

f2(λ) = f−(λ)Q−(λ− η)−Q+(λ)Q+(λ− η). (4.121)

f1(λ) andf2(λ) are two entire functions ofλ which are both theta functions of orderN, and therefore the
relation (4.119) implies that there exists two constantsc1, c2 ∈ C such that





f1(λ) = c1 D(λ),

f2(λ+ η) = c2 A(λ),

c1 = c2,

i.e. f1(λ) = f2(λ) = c1 D(λ). (4.122)

Hence

f−(λ) = Q−(λ), and f+(λ) = Q+(λ), (4.123)

which means thatQ−(λ) andQ+(λ) satisfy the following system:
{
t̄(λ)Q+(λ) = −A(λ)Q−(λ− η) + D(λ)Q−(λ+ η),

t̄(λ)Q−(λ) = −A(λ)Q+(λ− η) + D(λ)Q+(λ+ η).
(4.124)

Let us now define the entire functions

Q(λ) =
Q+(λ) +Q−(λ)

2
, and Q(λ) =

Q+(λ)−Q−(λ)

2
. (4.125)
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with quasi-periodicity properties

Q(λ+ π) = (1− y)Q(λ) + yQ(λ), (4.126)

Q(λ+ πω) = (−e−2iλ−iπω)M e2i∆−iMπω
[
(1− x)Q(λ) + xQ(λ)

]
, (4.127)

and

Q(λ+ π) = (1− y)Q(λ) + yQ(λ), (4.128)

Q(λ+ πω) = (−e−2iλ−iπω)M e2i∆−iMπω
[
(1− x)Q(λ) + xQ(λ)

]
. (4.129)

From these quasi-periodicity relations, it is easy to see that Q(λ) andQ(λ) are both (up to a constant nor-
malization factor) of the form (4.87). Moreover they satisfy the following respective homogeneous functional
equations:

t̄(λ)Q(λ) = −A(λ)Q(λ− η) + D(λ)Q(λ+ η), (4.130)

t̄(λ)Q(λ) = A(λ)Q(λ− η)− D(λ)Q(λ+ η). (4.131)

This ends the proof of Theorem 4.3.

5 Local operators and dynamical Yang-Baxter algebra

In the next section, we shall compute determinant representations for form factors of local operators in the
D̄
(0,L/R)
(6VD),N-basis of the eigenstates of theκ-twisted transfer matrix. As in the algebraic Bethe Ansatz framework

[26, 30], such representations are based on the solution of the quantum inverse problem, i.e. on the fact that
one can reconstruct the local operators we consider in termsof the generators of the Yang-Baxter algebra. A
particularly crucial point in this respect comes from the fact that the positions on the lattice of these local
operators are given in terms of propagators written as products of transfer matrices, so that their action on the
corresponding eigenstates merely contributes as simple numerical coefficients.

For the dynamical 6-vertex model that we consider in this paper, the local operators of interest are essentially
of two types: localspinoperators and localheightoperators. In our framework, local spin operators correspond
to elementary operators acting non-trivially on only one factor of the space tensor productVN ≡ ⊗

N
n=1Vn and

can be expressed in terms of the usual basis of elementary matrices
{
Eij

n ; i, j ∈ {+,−}, 1 ≤ n ≤ N
}

of
End(VN) defined by

Eij
n =

(
δ+,i δ+,j δ+,i δ−,j

δ−,i δ+,j δ−,i δ−,j

)

[n]

i, j ∈ {+,−}, 1 ≤ n ≤ N, (5.1)

whereas the local height operators are dynamical operatorsacting non-trivially on the dynamical spaceD. In
the physical context of classical SOS face models, the localoperators that we should especially consider for the
computation of correlation functions are the following (see for instance Section 3 of [32]): the spin operators
E++

n andE−−
n , which are associated with the values of the classical spin variable (+ or−) on then-th vertical

bond of a given vertical line of the lattice, and the local height operatorŝδ(j)t , t ∈ t0 + ηZ, which are associated
with the valuest of the local height variable on thej-th site of a given vertical line of the lattice. Note in
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particular that the local height operatorsδ̂(1)t at site 1 (the reference site) have the following simple action on the
dynamical-spin basis (2.31):

(⊗N
n=1〈n, hn|)⊗ 〈t(a)| δ̂

(1)
t = δt,t(a) (⊗

N
n=1〈n, hn|)⊗ 〈t(a)|, (5.2)

δ̂
(1)
t (⊗N

n=1|n, hn〉)⊗ |t(a)〉 = δt,t(a) (⊗
N
n=1|n, hn〉)⊗ |t(a)〉. (5.3)

Its action on the SOV basis (3.4)-(3.5) hence simply followsfrom (3.6):

〈r,h| δ̂
(1)
t = δt,tr,h 〈r,h|, δ̂

(1)
t |h, r〉 = δt,tr,h |h, r〉. (5.4)

In the following, we shall denote this operator asδ̂(1)t ≡ δt(τ).

Reconstruction of local spin operators in terms of the elements of the dynamical periodic monodromy matrix
(2.11) has been obtained in [30], generalizing to the dynamical case the proof of [26, 34]. In this paper, we need
instead to express these operators in terms of the elements of the κ-twistedantiperiodic monodromy matrix
(2.20) (using in particular propagators given in terms of theκ-twisted transfer matrix (2.25)) so as to be able to
easily compute their action on the eigenstates (4.3)-(4.4).

So as to remain as general as possible and to present a proof that is valid in both periodic and antiperiodic
cases, we shall instead consider a quasi-periodic monodromy matrix of the form

M
(Y )
0 (λ) ≡ Y0M0(λ), (5.5)

whereM is given by (2.11) andY stands for any numerical invertible matrix (theκ-twisted antiperiodic case
corresponding to the particular choiceY ≡ X(κ)σx). The corresponding quasi-periodic transfer matrix will be
denoted byT (Y )(λ) ≡ tr0

[
M

(Y )
0 (λ)

]
. The aim is therefore to express local operators in terms of the operator

entries of (5.5). As in the periodic case, this reconstruction is based on the following lemma:

Lemma 5.1. [30] We have the following identity between products of monodromy matrices:

−→
m∏

k=1

Mak ,1...N

(
ξk|τ + η

k−1∑

l=1

σzal

)
=

←−
m∏

k=1

Mak,k k+1...N a1 a2...ak−1

(
ξk|τ + η

k−1∑

l=1

σzl + η
m∑

l=k+1

σzal

)
, (5.6)

in which the symbols
−→
m∏
k=1

(respectively
←−
m∏
k=1

) means that the product is ordered from1 tom (respectively fromm

to 1). In this expression,Mak,k k+1...N a1 a2...ak−1
denotes the monodromy matrix of a chain ofN sites labelled in

this order byk, k + 1, . . . N, a1, a2, . . . ak−1 with inhomogeneity parametersξk, ξk+1, . . . ξN , ξ1, ξ2, . . . ξk−1.

We will also use the following result:

Lemma 5.2. The trace of the inverse of the quasi-periodic monodromy matrix (5.5)evaluated at some inhomo-
geneity parameterξn, n ∈ {1, . . . ,N}, is equal to the inverse of the quasi-periodic transfer matrix evaluated at
ξn, i.e.

tr0
[
M

(Y )
0 (ξn)

−1
]
= T (Y )(ξn)

−1. (5.7)
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Proof. For any given numerical matricesZ andZ̃, we independently compute the two tracestr0
[
Z0M0(ξn)

]

and tr0
[
M0(ξn)

−1 Z̃0

]
as products ofR-matrices or of inverseR-matrices, using the fact that theR-matrix

(2.1) becomes proportional to the permutation operatorP12 when evaluated atλ = 0: R12(0|τ) = a(0)P12. On
the one hand, we obtain

tr0
[
Z0M0(ξn)

]
= tr0

[
Z0

←−−−
N∏

k=n+1

R0k

(
ξn − ξk|τ + η

k−1∑

l=1

σzl

)
· a(0)P0n

×

←−
n−1∏

k=1

R0k

(
ξn − ξk|τ + η

k−1∑

l=1

σzl

)
T
σz
0

τ

]

=

←−
n−1∏

k=1

Rnk

(
ξn − ξk|τ + η

k−1∑

l=1

σzl

)
Tσz

n
τ

× tr0

[
Z0

←−−−
N∏

k=n+1

R0k

(
ξn − ξk|τ + η

k−1∑

l=1
l 6=n

σzl

)
· a(0)P0n

]

= a(0)

←−
n−1∏

k=1

Rnk

(
ξn − ξk|τ + η

k−1∑

l=1

σzl

)
Tσz

n
τ Zn

←−−−
N∏

k=n+1

Rnk

(
ξn − ξk|τ + η

k−1∑

l=1
l 6=n

σzl

)
,

where we have used the zero-weight property of theR-matrix, namely[Rnk, σ
z
n + σzk] = 0, as well as the

commutation relation (2.10). The second trace can be computed similarly, leading to

tr0
[
M0(ξn)

−1 Z̃0

]
=

1

a(0)

−−−→
N∏

k=n+1

R−1
nk

(
ξn − ξk|τ + η

k−1∑

l=1
l 6=n

σzl

)
Z̃n T

−σz
n

τ

−→
n−1∏

k=1

R−1
nk

(
ξn − ξk|τ + η

k−1∑

l=1

σzl

)
,

hence the result forZ = Z̃−1 = Y .

Remark5.1. It follows from Lemma 5.2 and from the inversion relation (2.16) that

T (ξ
(0)
n )T (ξ

(1)
n )

A(ξ
(0)
n ) D(ξ

(1)
n )

=
e−iyηS θ(τ)

θ(τ + ηS)
,

T
(κ)

(ξ
(0)
n )T

(κ)
(ξ

(1)
n )

A(ξ
(0)
n ) D(ξ

(1)
n )

= −
e−iyηS θ(τ)

θ(τ + ηS)
. (5.8)

Similarly, building on the inversion relation (2.16) and onthe proof of Lemma 5.2 for different choices ofZ, Z̃,
one can deduce several other useful identities, such as for instance the following cancellation identities, analog
to those obtained in [23] in the non-dynamical case:

Mij(ξ
(0)
n )Mik(ξ

(1)
n ) = 0, ∀i, j, k = ±. (5.9)

Remark5.2. By using similar arguments as in the proof of Lemma 5.2, one can also easily show that

−→
N∏

j=1

T (Y )(ξj)

A(ξj)
=

−→
N∏

j=1

{
T
σz
j

τ Yj

}
. (5.10)
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Let us now formulate the solution of the quantum inverse problem for the quasi-periodic monodromy matrix
(5.5).

Theorem 5.1. The local spin operatorsEij
n (5.1), understood as operators acting onD(6VD),N, can be expressed

in terms of the entries of the quasi-periodic monodromy matrix (5.5)or of its inverse in the following way:

Eij
n =

−→
n−1∏

k=1

T (Y )(ξk) ·
[
M(Y )(ξn)

]
ji
·

←−
n∏

k=1

[
T (Y )(ξk)

]−1
· Tj−i

τ , (5.11)

=

−→
n∏

k=1

T (Y )(ξk) ·
[
M(Y )(ξn)

−1
]
ji
·

←−
n−1∏

k=1

[
T (Y )(ξk)

]−1
· Tj−i

τ . (5.12)

Remark5.3. The reconstructions of Theorem 5.1 are valid on the whole representation spaceD(6VD),N, on which
the transfer matrices do nota priori commute. Hence, we have to pay attention to the order in the corresponding
products.

Remark5.4. In [30] was only formulated the analog of (5.11) in the periodic case. The relation (5.12) is instead
useful to express local operators in terms of elements of themonodromy matrix with shifted inhomogeneity
parameters. In fact, using the inversion relation (2.16) for the monodromy matrix, the relation (5.12) can, in the
periodic or antiperiodic case, be respectively rewritten as

Eij
n = (−1)

j−i
2

−→
n∏

k=1

T (ξk) ·

[
M(ξ

(1)
n )
]
−i,−j

A(ξ
(0)
n ) D(ξ

(1)
n )

eiyηS
θ(τ + ηS)

θ(τ)
·

←−
n−1∏

k=1

[
T (ξk)

]−1
· Tj−i

τ . (5.13)

= −(−1)
j−i
2

−→
n∏

k=1

T
(κ)

(ξk) ·

[
M

(κ)
(ξ

(1)
n )
]
−i,−j

A(ξ
(0)
n ) D(ξ

(1)
n )

eiyηS
θ(τ + ηS)

θ(τ)
·

←−
n−1∏

k=1

[
T

(κ)
(ξk)

]−1
· Tj−i

τ . (5.14)

Proof. Let us first show (5.11) forn = 1. The proof is based, as usual (see [26, 34] and the proof of Lemma 5.2),
on the crucial fact that theR-matrix (2.1) becomes proportional to the permutation operatorP12 when evaluated
atλ = 0. Expressing as in Lemma 5.2 the matrix element[M(Y )(ξ1)]ji as a tracetr0

[
M

(Y )
0 (ξ1)E

ij
0

]
over some

auxiliary space 0, representingM(Y )
0 (ξ1) in terms of a product ofR-matrices and moving in this expression the

operatorEij
0 from right to left, using successively thatT

σz
0

τ Eij
0 = Eij

0 T
σz
0+i−j

τ , thatP01E
ij
0 = Eij

1 P01 and that
(τ + ησz1)E

ij
1 T

i−j
τ = Eij

1 T
i−j
τ (τ + ησz1), we get

[
M(Y )(ξ1)

]
ji
= Eij

1 Ti−j
τ T (Y )(ξ1). (5.15)

The general case can be deduced from the casen = 1 by means of Lemma 5.1. Let us express part of the
product in the left hand side of (5.11) as a multiple trace over auxiliary spaces:

−→
n−1∏

k=1

T (Y )(ξk) ·
[
M(Y )(ξn)

]
ji
= tra1a2...an

[−→
n∏

k=1

(
Yak Mak(ξk|τ)T

σz
ak

τ

)
Eij

an

]

= tra1a2...an

[
n∏

k=1

Yak

−→
n∏

k=1

Mak

(
ξk|τ + η

k−1∑

l=1

σzal

) n∏

k=1

T
σz
ak

τ · Eij
an

]
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in which we have used (2.10). The product of monodromy matrices can now be rewritten as in Lemma 5.1, and
reorganized thanks to (2.10) such that

−→
n−1∏

k=1

T (Y )(ξk) ·
[
M(Y )(ξn)

]
ji
= tra1a2...an−1

[
n−1∏

k=1

Yak

× tran

[
M

(Y )
an,n n+1...Na1a2...an−1

(
ξn|τ + η

n−1∑

l=1

σzl

)
T
σz
an

τ Eij
an

]

×

←−
n−1∏

k=1

Mak,k k+1...Na1a2...ak−1

(
ξk|τ + η

k−1∑

l=1

σzl + η

n−1∑

l=k+1

σzal

) n−1∏

k=1

T
σz
ak

τ

]
. (5.16)

The trace overan can now be explicitly computed similarly as in (5.15):

tran

[
M

(Y )
an,n n+1...Na1a2...an−1

(
ξn|τ + η

n−1∑

l=1

σzl

)
T
σz
an

τ Eij
an

]

= Eij
n Ti−j

τ tran

[
M

(Y )
an,n n+1...Na1a2...an−1

(
ξn|τ + η

n−1∑

l=1

σzl

)
T
σz
an

τ

]
, (5.17)

so that the productEij
n Ti−j can be moved out of the trace from the left in (5.16). The remaining multiple trace

can then be re-expressed as a product of transfer matrices (using again Lemma 5.1), leading to (5.11).

The proof of (5.12) can be performed in a similar way. Considering first the casen = 1 we obtain, as in
(5.15), that

tr0
[
Eij

0 M
(Y )
0 (ξ1)

−1
]
= tr0

[
M

(Y )
0 (ξ1)

−1
]
Ti−j
τ Eij

1 = T (Y )(ξ1)
−1 Ti−j

τ Eij
1 , (5.18)

where we have used Lemma 5.2. The general case can be proven bymeans of Lemma 5.1 and Lemma 5.2, by
computing

[
M(Y )(ξn)

−1
]
ji
·

←−
n−1∏

k=1

[
T (Y )(ξk)

]−1
= tra1a2...an

[
Eij

an

←−
n∏

k=1

(
Yak Mak(ξk|τ)T

σz
ak

τ

)−1
]
. (5.19)

Reorganizing the product inside the trace and using identity (5.6) for inverse monodromy matrices, we obtain,
by a similar reasoning as in the previous case, that

[
M(Y )(ξn)

−1
]
ji
·

←−
n−1∏

k=1

[
T (Y )(ξk)

]−1
=

←−
n∏

k=1

trak
[
M(Y )(ξk)

−1
]
· Ti−j

τ Ei−j
n

=

←−
n∏

k=1

[
T (Y )(ξk)

]−1
· Ti−j

τ Ei−j
n , (5.20)

which ends the proof of Theorem 5.1.

As a consequence, one gets
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Corollary 5.1. The local spin operatorsE++
n , E−−

n , and the local height operatorŝδ(n)t , 1 ≤ n ≤ N, admit in
D̄
(0,L/R)
(6VD),N the following reconstruction in terms of the entries of theκ-twisted antiperiodic monodromy matrix:

E++
n =

n−1∏

k=1

T
(κ)

(ξk) · κ C(ξn) ·
n∏

k=1

[
T

(κ)
(ξk)

]−1
, (5.21)

= −
n∏

k=1

T
(κ)

(ξk) ·
κ−1B(ξn − η)

detqM(ξn)
·
n−1∏

k=1

[
T

(κ)
(ξk)

]−1
, (5.22)

E−−
n =

n−1∏

k=1

T
(κ)

(ξk) · κ
−1B(ξn) ·

n∏

k=1

[
T

(κ)
(ξk)

]−1
, (5.23)

= −

n∏

k=1

T
(κ)

(ξk) ·
κ C(ξn − η)

detqM(ξn)
·

n−1∏

k=1

[
T

(κ)
(ξk)

]−1
, (5.24)

δ̂
(n)
t =

n−1∏

k=1

T
(κ)

(ξk) · δt(τ) ·

n−1∏

k=1

[
T

(κ)
(ξk)

]−1
. (5.25)

Proof. The representations (5.21)-(5.24) follow directly from (5.11)-(5.12) taking into account Remark 5.4 and
the fact that we restrict ourselves tōD(0,L/R)

(6VD),N. The relation (5.25) follows, as in Theorem 3.2 of [32], froma
trivial recursion onn using the fact that

δ̂
(n)
t = δ̂

(n−1)
t−1 E++

n−1 + δ̂
(n−1)
t+1 E−−

n−1 (5.26)

and the solution of the inverse problem forE++
n−1 andE−−

n−1.

6 Form factors of local operators

We are now in position to compute matrix elements of local operators (spin and height) between eigenstates of
theκ-twisted antiperiodic transfer matrix. We obtain the following result:

Theorem 6.1. The matrix elements ofE++
n andE−−

n between generic〈Ψ(κ)
t̄ | and |Ψ(κ)

t̄′ 〉 left and right eigen-

states ofT
(κ)

(λ) on D̄(0,L/R)
(6VD),N admit the following determinant representations:

〈Ψ
(κ)
t̄
|E++

n |Ψ
(κ)
t̄′
〉 =

∏n−1
b=1 t̄(ξb)∏n
b=1 t̄

′(ξb)
det
N+1

[
St̄,̄t′(ξn)

]
= −

∏n
b=1 t̄(ξb)∏n−1
b=1 t̄′(ξb)

detN+1

[
St̄′ ,̄t(ξn − η)

]

detq M(ξn)
, (6.1)

〈Ψ
(κ)
t̄
|E−−

n |Ψ
(κ)
t̄′
〉 =

∏n−1
b=1 t̄(ξb)∏n
b=1 t̄

′(ξb)
det
N+1

[
St̄′ ,̄t(ξn)

]
= −

∏n
b=1 t̄(ξb)∏n−1
b=1 t̄′(ξb)

detN+1

[
St̄,̄t′(ξn − η)

]

detq M(ξn)
, (6.2)

whereSt̄,̄t′(ξ
(ǫ)
n ), ǫ ∈ {0, 1}, is an(N+ 1)× (N+ 1) matrix which corresponds to the matrixFt̄,̄t′ (4.16)of the

scalar product(4.15)with one additional line and one additional column:
[
St̄,̄t′(ξ

(ǫ)
n )
]
a,b

=
[
Ft̄,̄t′

]
a,b
, for a, b ∈ {1, . . . ,N}, (6.3)

[
St̄,̄t′(ξ

(ǫ)
n )
]
a,N+1

= eiyξa Ax,y(ξa) q
(0)
t̄,a q

(1)
t̄′,a, for a ∈ {1, . . . ,N}, (6.4)

[
St̄,̄t′(ξ

(ǫ)
n )
]
N+1,b

= −e−iyξ
(ǫ)
n ϑb−1(ξ

(ǫ)
n − ξ̄0), for b ∈ {1, . . . ,N}, (6.5)

[
St̄,̄t′(ξ

(ǫ)
n )
]
N+1,N+1

= 0. (6.6)
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The representations (6.1) and (6.2) straightforwardly follow from the solution of the quantum inverse prob-
lem (5.21)-(5.24), which enables us to write

〈Ψ
(κ)
t̄ |E

++
n |Ψ

(κ)
t̄′ 〉 = κ

∏n−1
b=1 t̄(ξb)∏n
b=1 t̄

′(ξb)
〈Ψ

(κ)
t̄ | C(ξn) |Ψ

(κ)
t̄′ 〉 = −κ

−1

∏n
b=1 t̄(ξb)∏n−1
b=1 t̄′(ξb)

〈Ψ
(κ)
t̄ | B(ξn − η) |Ψ

(κ)
t̄′ 〉

detq M(ξn)
,

〈Ψ
(κ)
t̄
|E−−

n |Ψ
(κ)
t̄′
〉 = κ−1

∏n−1
b=1 t̄(ξb)∏n
b=1 t̄

′(ξb)
〈Ψ

(κ)
t̄
| B(ξn) |Ψ

(κ)
t̄′
〉 = −κ

∏n
b=1 t̄(ξb)∏n−1
b=1 t̄′(ξb)

〈Ψ
(κ)
t̄
| C(ξn − η) |Ψ

(κ)
t̄′
〉

detq M(ξn)
,

and from the following lemma:

Lemma 6.1. The matrix elements of the operatorsB(ξ(ǫ)n ) andC(ξ(ǫ)n ), ǫ ∈ {0, 1}, between eigenstates〈Ψ(κ)
t̄
|

and |Ψ(κ)
t̄′ 〉 of the antiperiodic transfer matrix are given by the following determinants:

〈Ψ
(κ)
t̄
| B(ξ(ǫ)n ) |Ψ

(κ)
t̄′
〉 = κ det

N+1

[
St̄′ ,̄t(ξ

(ǫ)
n )
]
, 〈Ψ

(κ)
t̄
| C(ξ(ǫ)n ) |Ψ

(κ)
t̄′
〉 = κ−1 det

N+1

[
St̄,̄t′(ξ

(ǫ)
n )
]
, (6.7)

whereSt̄,̄t′(ξ
(ǫ)
n ), ǫ ∈ {0, 1}, is the(N+ 1)× (N+ 1) matrix with elements(6.3)-(6.6).

Proof. From (4.4), (3.21), one can easily compute the action ofC(ξ
(ǫ)
n ), ǫ = 0, 1, on a leftT

(κ)
-eigenstate:

〈Ψ
(κ)
t̄
| C(ξ(ǫ)n ) =

N∑

a=1

∑

h∈{0,1}N

ha=0

eiy(ξ
(ha)
a −ξ

(ǫ)
n ) θ(t0,h − ξ

(ǫ)
n + ξ

(ha)
a )

θ(t0,h)

∏

b6=a

θ(ξ
(ǫ)
n − ξ

(hb)
b )

θ(ξ
(ha)
a − ξ

(hb)
b )

× D(ξ(1−ha)
a )

N∏

b=1

(
eiyηhb κhb q

(hb)
t̄,b

)
det
N

[
Θ(0,h)

]
〈0,T+

a h| . (6.8)

Then, using (4.3) and (3.32), one gets

〈Ψ
(κ)
t̄
| C(ξ(ǫ)n ) |Ψ

(κ)
t̄′
〉 = κ−1

N∑

a=1

∑

h∈{0,1}N

ha=0

eiy(ξa−ξ
(ǫ)
n ) A(ξa) q

(0)
t̄,a q

(1)
t̄′,a

×
N∏

b6=a

[(
eiyη Ax,y(ξb)

D(ξb − η)

)hb

q
(hb)
t̄,b q

(hb)
t̄′,b

]
(−1)N+a det

N

[
Θ

(0,h)
[â,N] (ξ

(ǫ)
n )
]
. (6.9)

In this expression, theN×N matrixΘ(0,h)
[â,N] (ξ

(ǫ)
n ) is obtained fromΘ(0,h) by eliminating thea-th row (containing

the elementsϑb−1(ξ
(ha)
a − ξ̄0), 1 ≤ b ≤ N ) and inserting a new row at positionN with elementsϑb−1(ξ

(ǫ)
n − ξ̄0),

1 ≤ b ≤ N. Indeed, it follows from (A.7) that

(−1)N+a det
N

[
Θ

(0,h)
[â,N] (ξ

(ǫ)
n )
]
=
θ(t0,h − ξ

(ǫ)
n + ξ

(ha)
a )

θ(t0,h)

∏

b6=a

θ(ξ
(ǫ)
n − ξ

(hb)
b )

θ(ξ
(ha)
a − ξ

(hb)
b )

det
N

[
Θ(0,h)

]
. (6.10)

It remains to notice that the sum in (6.9) corresponds precisely to the development of the determinant of the
(N + 1) × (N + 1) matrix St̄,̄t′(ξ

(ǫ)
n ) w.r.t. the columnN + 1. The proof for the other formula in (6.7) is

similar.
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Theorem 6.2. The matrix elements of local heights operatorsδ̂
(n)
s fixing the value of the heights ∈

{
t0+ηs̃; s̃ ∈

{0, 1, . . . ,N}
}

at a given siten between generic〈Ψ(κ)
t̄ | and |Ψ(κ)

t̄′ 〉 left and right eigenstates ofT
(κ)

(λ) on

D̄
(0,L/R)
(6VD),N can be written as the following sum ofN+ 1 determinants:

〈Ψ
(κ)
t̄
| δ̂(n)s |Ψ

(κ)
t̄′
〉 =

n−1∏

b=1

t̄(ξb)

t̄′(ξb)

1

N+ 1

N∑

j=0

e
−2πi

j(s−t0)
η(N+1) det

N

[
F̃

(j)
t̄,̄t′

]
, (6.11)

whereF̃ (j)
t̄,̄t′ is theN× N matrix with elements

[
F̃

(j)
t̄,̄t′

]
a,b

=

1∑

h=0

e2πi
j h
N+1

(
eiyη

Ax,y(ξa)

D(ξa − η)

)h
q
(h)
t̄,a q

(h)
t̄′,a ϑb−1(ξ

(h)
a − ξ̄0). (6.12)

Proof. Using (5.25), (4.3), (4.4) and (3.33), one obtains

〈Ψ
(κ)
t̄ | δ̂

(n)
s |Ψ

(κ)
t̄′ 〉 =

n−1∏

b=1

t̄(ξb)

t̄′(ξb)

∑

h∈{0,1}N

δs,t0,h

N∏

a=1

[(
eiyη

Ax,y(ξa)

D(ξa − η)

)ha

q
(ha)
t̄,a q

(ha)
t̄′,a

]
det
N

[
Θ(0,h)

]
. (6.13)

Noticing thatt0,h ∈
{
t0 + ηk; k ∈ {0, 1, . . . ,N}

}
, one can rewriteδs,t0,h as

δs,t0,h =
1

N+ 1

N∑

j=0

e
−2πi

j(s−t0,h)

η(N+1) =
1

N+ 1

N∑

j=0

e
−2πi

j(s−t0,0)

η(N+1)

N∏

a=1

e
2πijha
N+1 , (6.14)

which leads to (6.11)-(6.12).

To conclude this section, let us briefly comment about these results. Although the matrix elements of local
spin operators can quite straightforwardly be expressed interms of a single determinant as in Theorem 6.1, hence
generalizing the simpler (non-dynamical) six-vertex case[39], the situation seems slightly more complicated for
the matrix elements of local height operators. The latter can nevertheless be expressed as a sum of determinants
as in Theorem 6.2. The number of terms of this sum being related to the sizeN of the model, this may (or
may not, depending on the behavior of the different terms) bea problem for the study of the thermodynamic
limit. Note however that our study concerns theunrestrictedSOS model, for which the heightss area priori
allowed to take an infinite number of values12. In the literature, one usually considerrestrictedmodels, such
as the ABF model [2] or the CSOS model [29, 46], for which the crossing parameterη of the model is rational
(η = r/L) and the heightss are only allowed to take a finite number (L) of values. Our present study does
not directly apply to the ABF case (which corresponds to the case for which there may be poles in (2.2)) but
could easily be adapted to the study of the CSOS case. In the latter case, the matrix elements of local height
probabilities would be reduced to the sum of onlyL terms. Although the structure of the determinants at stake
area priori quite different, the situation is somehow similar to what happens for the periodic model, which can
be studied by means of ABA: matrix elements of local spin operators between Bethe eigenstates of the transfer
matrix can be expressed (at least in the case of the CSOS model) as a single determinant [30], but it seems that
matrix elements of local height operators, related to localheight probabilities, can only be expressed as sums of
determinants [32].

12In fact, due to the antiperiodic boundary conditions that weconsider here, the heights of the model are only allowed to takeN+ 1

values. The consideration of such boundary conditions indeed reduces the actual space of states of the model to the finite-dimensional
subspacēD(0,L/R)

(6VD),N of the whole representation spaceDL/R

(6VD),N.

42



7 Conclusion

We have here studied the antiperiodic dynamical 6-vertex model in the SOV framework, for different configura-
tions of the representation space corresponding to the different possible values of the global shiftt0 of the heights
of the model by half of the periods of the theta function, associated with a couple of parameters(x, y) ∈ {0, 1}2.
We have diagonalized the corresponding antiperiodic transfer matrix, hence obtaining a complete characteriza-
tion of all eigenvalues and eigenstates in terms of a system of discrete equations involving the inhomogeneity
parameters of the model. We have discussed the rewriting of this characterization in terms of functional equa-
tions of Baxter’s type, and notably in terms of certain classes of solutions of the usual homogeneous function
T -Q equations. We have also obtained determinant representations for the form factors of the model.

Several interesting problems remain to be solved. For instance, we have shown the complete equivalence
between the SOV discrete characterization of the spectrum and eigenstates and the reformulation in terms of
solutions of the homogeneousT -Q equation (i.e. in terms of Bethe-type equations) in the caseof an even
number of sites only. We plan to consider the case of an odd number of sites in a further study. We also expect
to be able to use this reformulation so as to consider the homogeneous and thermodynamic limit of the form
factors formulas that we have obtained here, similarly as what has been recently done in the XXX case [25].

Finally, we would like to mention that our results can be usedto study, in the SOV framework, the XYZ (or
eight-vertex) model with various types of quasi-periodic boundary conditions (related to the values ofx andy).
This interesting problem will be the subject of the paper [41].
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A Theta functions, elliptic polynomials and useful identities

In this paper,θ(λ) ≡ θ1(λ|ω) denotes the usual theta-function [20, 54] with quasi-periodsπ andπω (ℑω > 0),

θ(z) = −i
∞∑

k=−∞

(−1)keiπω(k+
1
2
)2e2i(k+

1
2
)z, (A.1)

= 2eiπ
ω
4 sin z

∞∏

n=1

(
1− e2i(nπω−z)

)(
1− e2i(nπω+z)

)(
1− e2inπω

)
, (A.2)

which satisfies

θ(z + π) = −θ(z), θ(z + πω) = −e−iπω e−2iz θ(z). (A.3)

Throughout the paper, we use the following terminology [16,48, 44].

Let Γ ≡ Γ(π,πω) = πZ + πωZ. Let χ : Γ → C× be a group homomorphism. We say that a functionf of
z ∈ C is a theta function of quasi-periods(π, πω), of ordern and characterχ if f is a holomorphic function
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satisfying the quasi-periodicity properties

f(z + π) = χ(π) f(z), f(z + πω) = χ(πω) e−in(2z+πω) f(z). (A.4)

We say thatf is a theta function (or an elliptic polynomial) of quasi-periods (π, πω), of ordern and normαf

if f is a theta function of ordern and character given byχ(π) = (−1)n andχ(πω) = (−1)n e2iαf . This is
equivalent to the fact that there exist constantsλ1, . . . , λn andC with λ1 + . . .+ λn = αf such that

f(z) = C
n∏

k=1

θ(z − λk). (A.5)

We have the following properties (see for instance [16, 44]):

1. LetΘ(π,πω)
n,α be the space of theta functions of quasi-periods(π, πω), of ordern ∈ N and of normα. Then

dimΘ
(π,πω)
n,α = n.

2. Letf, g ∈ Θ
(π,πω)
n,α which coincide atn pointsx1, . . . , xn ∈ C: f(xi) = g(xj), 1 ≤ j ≤ n. If x1, . . . , xn

are independent (i.e. ifxi − xj /∈ Γ and
∑n

j=1 xj − α /∈ Γ) thenf = g. It means that there exists a
unique theta function (elliptic polynomial) of quasi-periods(π, πω), of ordern and of normα with values
f(x1), . . . , f(xn) at the respective independent pointsx1, . . . , xn. It is given by the following interpolation
formula:

f(λ) =

n∑

j=1

θ(α−
∑n

k=1 xk + xj − λ)

θ(α−
∑n

k=1 xk)

n∏

k=1
k 6=j

θ(λ− xk)

θ(xj − xk)
f(xj). (A.6)

3. Let {ϑj}1≤j≤n be a basis ofΘ(π,πω)
n,α . Then, for any(x1, . . . , xn) ∈ Cn, the determinant of the matrix

(ϑj(xi))1≤i,j,≤n is of the form

det
1≤i,j≤n

[
ϑj(xi)

]
= C · θ

( n∑

l=1

xl − α
)
·
∏

i<j

θ(xi − xj), (A.7)

whereC is some constant.

We also recall Frobenius determinant formula, for anyn-tuples (x1, . . . , xn), (y1, . . . , yn) ∈ Cn (with
xi − yj /∈ Γ, ∀i, j) and anyt ∈ C (with t /∈ Γ):

det
1≤i,j≤n

[
θ(xi − yj + t)

θ(xi − yj) θ(t)

]
=
θ
(∑n

j=1(xj − yj) + t
)

θ(t)

∏
1≤i<j≤n θ(xi − xj) θ(yj − yi)∏n

i,j=1 θ(xi − yj)
. (A.8)

B Inhomogeneous Baxter equation as reformulation of SOV spectrum

In this appendix we explain how one can show the equivalence of the SOV discrete characterization of the
spectrum of Theorem 4.1 with the description in terms of elliptic polynomial solutions, with quasi-periods
(π, πω), of some particular functionalT -Q equations with an extra inhomogenous term.
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As explained in Section 4.2, one can modify the functional equation with respect to (4.22) so as to force
this equation to admit elliptic polynomial solutions with quasi-periods(π, πω). This means introducing some
gauge transformation as in (4.24), so as to adjust the quasi-periodicity properties of the three termst̄(λ)Q(λ),
Ā(λ)Q(λ− η) andD̄(λ)Q(λ+ η) for t̄(λ) satisfying (4.17)-(4.18). A possible (and somehow minimal) way to
do it is to choose the functionf(λ) ≡ f

(β)
µ (λ) as in (4.26) in terms of two parametersβ andµ. Of course, the

sum of the aforementioned three terms does not in general cancel, so that one should also add to the equation
an inhomogeneous term as in (4.25). As explained in Section 4.2, this still enables ones to recover the condition
(4.2) as long as this inhomogeneous term cancels at all points ξ(hn)

n , n ∈ {1, . . . ,N}, i.e. contains the factor
A(λ) D(λ).

For the class ofQ(λ) of the form (4.26) withM = N, the functionF (λ) ≡ F
(β)
µ,Q(λ) appearing in the

inhomogeneous equation (4.25) is defined in terms ofβ, µ andQ(λ) as

F
(β)
µ,Q(λ) =

β−1(−1)x+y+xy e−iyλ θ(t0,0)

θ(t0,0 + αQ −
∑

k ξk + Nη)

Q(µ− η − t0,0)

D(µ− t0,0)

θ(λ− µ− αQ +
∑

k ξk − Nη)

θ(λ− µ+ t0,0)

+
β eiy(λ+η) θ(t0,0)

θ(yπω − t0,0 − αQ +
∑

k ξk − Nη)

Q(µ)

A(µ− η)

θ(λ− µ+ η + yπω − t0,0 − αQ +
∑

k ξk − Nη)

θ(λ− µ+ η)

(B.1)

with αQ ≡
∑N

j=1 λj being the norm of the theta functionQ(λ) of orderN. Note that (4.25)-(B.1) forM = N can
be seen as an elliptic generalization of the trigonometric inhomogeneous functional equation that was obtained
in [42]. Indeed, under some simple assumptions on the functional dependence of the zeros of thet̄(λ) ∈ ΣT ,
when taking the XXZ limitω → +i∞ (see Remark 2.2), one indeed recovers the equation of Theorem 4.1 of
[42]. The elliptic analog of Theorem 4.1 of [42] can then be formulated as follows:

Theorem B.1. Let us suppose that the inhomogeneity parametersξ1, . . . , ξN satisfy(3.8)and let us setM = N.
Then the following two propositions are equivalent:

1. t̄(λ) is an eigenvalue function of the antiperiodic transfer matrix T (λ) (i.e. t̄(λ) ∈ ΣT );

2. t̄(λ) is an entire function ofλ and, for someβ ∈ C \ {0}, there exists a functionQ(λ) of the form(4.26)
such that

(
Q(ξj), Q(ξj − η)

)
6= (0, 0), 1 ≤ j ≤ N, and that̄t(λ) andQ(λ) satisfy the inhomogeneous

functional equation(4.25)-(4.26)-(B.1).

If η ∈ C \ R, these propositions are also equivalent to:

3. t̄(λ) is an entire function ofλ and, for anyβ ∈ C \ {0}, there exists a functionQ(λ) of the form(4.26)
such that

(
Q(ξj), Q(ξj − η)

)
6= (0, 0), 1 ≤ j ≤ N, and that̄t(λ) andQ(λ) satisfy the inhomogeneous

functional equation(4.25)-(4.26)-(B.1).

Proof of Theorem B.1.Obviously3. implies2.

So as to prove that2. implies1., let us suppose that, for someβ ∈ C\{0}, there exists an elliptic polynomial
Q(λ) of orderN such that the function̄t(λ) defined as

t̄(λ) ≡
f
(β)
µ (λ) Ax,y(λ)Q(λ− η) +

[
f
(β)
µ (λ+ η)

]−1
D(λ)Q(λ+ η)− A(λ) D(λ)F

(β)
µ,Q(λ)

Q(λ)
(B.2)
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is an entire function ofλ. Then the functioneiyλ t̄(λ) is a theta function of orderN and of normαt̄ ≡
∑N

k=1 ξk+

t0,0. Moreover, the particularization of (B.2) at the2N pointsξj andξj − η, 1 ≤ j ≤ N, gives

Q(ξj) t̄(ξj)− f
(β)
µ (ξj) Ax,y(ξj)Q(ξj − η) = 0, Q(ξj − η) t̄(ξj − η)−

D(ξj − η)

f
(β)
µ (ξj)

Q(ξj) = 0, (B.3)

for eachj ∈ {1, . . . ,N} which, provided that
(
Q(ξj), Q(ξj − η)

)
6= (0, 0), means that the matrix (4.19) has

zero determinant and therefore thatt̄(λ) satisfies (4.2). Hencēt(λ) ∈ ΣT .

Let us now prove that1. implies2. and, in the caseη /∈ R, 3. Let β ∈ C \ {0} and let̄t(λ) ∈ ΣT . For any

elliptic polynomialQ(λ) of degreeN andF (β)
µ,Q(λ) defined in terms ofQ(λ) by (B.1), the function

eiy

{
t̄(λ)Q(λ)− f (β)µ (λ) Ax,y(λ)Q(λ − η)−

D(λ)

f
(β)
µ (λ+ η)

Q(λ+ η) + A(λ) D(λ)F
(β)
µ,Q(λ)

}
(B.4)

is a theta function of order2N and of norm
∑N

k=1 ξk + t0,0 +αQ, whereαQ =
∑N

j=1 λj is the sum of the roots
of the elliptic polynomialQ(λ). Then the equation (4.25) is satisfied fort̄ andQ if (and only if) it is satisfied in
N independent points, namely

• for λ = ξj , j = 1, . . .N: t̄(ξj) θ(ξj − µ+ t0,0)Q(ξj) = β−1e−iyξj Ax,y(ξj) θ(ξj − µ)Q(ξj − η),

• for λ = ξj − η, j = 1, . . .N: t̄(ξj − η) θ(ξj − µ)Q(ξj − η) = β eiyξj D(ξj − η) θ(ξj − µ+ t0,0)Q(ξj),

provided that

N∑

k=1

ξk + t0,0 − αQ /∈ Γ. (B.5)

Sincēt(λ) ∈ ΣT satisfies (4.2), the above system is therefore equivalent tothe following system ofN equations:

t̄(ξj) θ(ξj − µ+ t0,0)Q(ξj) = β−1e−iyξj Ax,y(ξj) θ(ξj − µ)Q(ξj − η), j = 1, . . . ,N. (B.6)

In general, an elliptic polynomial of orderN and of normαQ is completely characterized by its values atN

independent points. Hence it can be written in the followingform:

Q(λ) =
N∑

k=1

θ(λ− ξk +
∑

ℓ ξℓ − αQ)

θ(
∑

ℓ ξℓ − αQ)

N∏

ℓ=1
ℓ 6=k

θ(λ− ξℓ)

θ(ξk − ξℓ)
Q(ξk), (B.7)

provided
∑

ℓ ξℓ − αQ /∈ Γ. Hence, the system (B.6) is in fact a system ofN homogeneous linear equations in
theN unknownsQ(ξn), n ∈ {1, . . . ,N}, which can be written as:

N∑

k=1

[
Ct̄(β, αQ)

]
jk
Q(ξk) = 0, j = 1, . . . ,N, (B.8)

whereCt̄(β, αQ) is theN× N matrix of elements

[
Ct̄(β, αQ)

]
ab

= δab
β eiyξa t̄(ξa)

Ax,y(ξa)

θ(ξa − µ+ t0,0)

θ(ξa − µ)
−
θ(ξa − ξb − η +

∑
ℓ ξℓ − αQ)

θ(
∑

ℓ ξℓ − αQ)

N∏

ℓ=1
ℓ 6=b

θ(ξa − ξℓ − η)

θ(ξb − ξℓ)
. (B.9)
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Note that, using Frobenius determinant formula (A.8) and the formula for the determinant of the sum of two
matrices, one can express the determinant of the matrix (B.9) in the form

det
N

[
Ct̄(β, αQ)

]
=

N∑

n=0

(−1)nβN−n θ(
∑

ℓ ξℓ − αQ − nη)

θ(
∑

ℓ ξℓ − αQ)

×
∑

P⊂{1,...,N}
#P=n

∏

a/∈P

{
eiyξa

t̄(ξa)

Ax,y(ξa)

θ(ξa − µ+ t0,0)

θ(ξa − µ)

∏

b∈P

θ(ξa − ξb + η)

θ(ξa − ξb)

}
. (B.10)

where the second summation in (B.10) runs over all subsetsP of the set{1, . . . ,N} with cardinalityn.

The system (B.8) admits some non-zero solution
(
Q(ξ1), . . . , Q(ξN)

)
if and only if the determinant of the

matrix (B.9) is zero. Atβ = 0, this determinant simplifies into

det
N

[
Ct̄(0, αQ)

]
= (−1)N

θ(αQ −
∑

ℓ ξℓ + Nη)

θ(αQ −
∑

ℓ ξℓ)
, (B.11)

so that

det
N

[
Ct̄(0, αQ)

]
= 0 ⇔ ∃(k1, k2) ∈ Z2, αQ =

∑

ℓ

ξℓ − Nη + πk1 + πωk2, (B.12)

∂ detN
[
Ct̄(β, αQ)

]

∂αQ

∣∣∣∣αQ=
∑

ℓ ξℓ−Nη+πk1+πωk2
β=0

6= 0. (B.13)

Hence we can apply the implicit function theorem for holomorphic functions:∀(k1, k2) ∈ Z2, there exist some
open vicinitiesU(k1,k2) andV(k1,k2) of 0 and ofα(0)

(k1,k2)
≡
∑

ℓ ξℓ − Nη + πk1 + πωk2 respectively, and there

exists a unique holomorphic functionα(k1,k2) : U(k1,k2) → V(k1,k2) with α(k1,k2)(0) = α
(0)
(k1,k2)

such that

{
(β, αQ) ∈ U(k1,k2) × V(k1,k2) | det

N

[
Ct̄(β, αQ)

]
= 0
}
=
{
(β, α(k1,k2)(β)) | β ∈ U(k1,k2)

}
. (B.14)

Hence the system

N∑

k=1

[
Ct̄

(
β, α(k1,k2)(β)

)]
jk
qk = 0, j = 1, . . . ,N, (B.15)

admits, for allβ ∈ U(k1,k2), a non-zero solution(q1, . . . , qN). Due to the form of (B.15), one can choose this
solution such that allqj ≡ qj(β) are continuous function ofβ in U(k1,k2).

Note that, atβ = 0, we haveqj(0) 6= 0 for all j ∈ {1, . . . ,N} (it is clear from the system (B.6) that
all the roots of the solutionQ(λ) are, up toΓ-periodicity, at the pointsξj − η, 1 ≤ j ≤ N, whenβ =

0). Hence it is always possible to chooseU(k1,k2) such thatqj(β) 6= 0 for all j ∈ {1, . . . ,N} and for all
β in U(k1,k2). Moreover, sinceα(k1,k2)(0) −

∑
ℓ ξℓ /∈ Γ andα(k1,k2)(0) −

∑
ℓ ξℓ − t0,0 /∈ Γ, and since the

functionα(k1,k2)(β) is holomorphic, one can also chooseU(k1,k2) such thatα(k1,k2)(β) −
∑

ℓ ξℓ /∈ Γ and that
α(k1,k2)(β)−

∑
ℓ ξℓ − t0,0 /∈ Γ for anyβ ∈ U(k1,k2). Hence we have shown2.

Let us now notice that, up to a similarity transformation, the matrixCt̄(β, αQ + πω) is proportional to the
matrixCt̄(βe

2iη , αQ). Hence the system (B.8) admits a non-zero solution for(β, αQ) if and only if it is the case
for the system corresponding to(βe2inη , αQ + nπω) (∀n ∈ Z).
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Let β ∈ C \ {0}, and let us suppose moreover thatη /∈ R. Hence, there existsn ∈ Z such thatβ e2ikη ∈
U(0,0), so that the system associated with

(
βe2inη , α(0,0)(βe

2inη)
)

admits a non-zero solution such that each
unknown (i.e. eachQ(ξj) solution to this system) is itself non-zero. It follows fromthe previous remark that
the system for

(
β, α(0,0)(βe

2inη)−nπω
)

admits also a non-zero solution which is such thatQ(ξj) 6= 0 for each
j ∈ {1, . . . ,N}. Hence we have shown3.

The inhomogeneous functional equation (4.25)-(4.26)-(B.1) for M = N is not the only functional equation
that can be considered in this framework. For instance, it isalso possible to completely characterize the SOV
spectrum in terms of a functional equation of the same type (still using (4.26) to define the gauge function
f(λ) in terms of some arbitrary parameterµ) but for an elliptic polynomialQ(λ) of degreeM = N + 1 and
arbitrary normαQ. Of course the inhomogeneous term has to be adapted accordingly and it appears slightly
more complicated in this case. In that way, increasing the degree of the elliptic polynomialQ(λ) corresponds
to increasing the number of free parameters in the inhomogeneous equation: apart from the gauge parameter
β, we have one free parameter (the parameterµ) for the degreeN, and two free parameters (µ andαQ) for the
degreeN+1. Hence, the choice of the degreeN− 1 for Q(λ) seems to be the minimal possible if one considers
equations of the form (4.25)-(4.26): in that case we have still N unknown parameters which are the parameter
µ appearing in the definition (4.26) off(λ), as well as theN − 1 roots ofQ(λ), and there does not remain any
free parameter (exceptβ), cf. footnote 6.

It is interesting to remark that, if we have a complete description of the transfer matrix spectrum in terms
of the elliptic polynomial solutionsQ(λ) of degreeM of some inhomogeneous functional equation of the form
(4.25) with associated functionf(λ), it is possible to rewrite the transfer matrix eigenvectorsin a generalized
Bethe form, in terms of the roots of the corresponding elliptic polynomialQ(λ). More precisely, defining the
states,

|Ω
(κ)
M,f 〉 =

∑

h∈{0,1}N

N∏

a=1

(
eiyη Ax,y(ξa)

κ D(ξa − η)
f(ξa)

)ha

det
N

[
Θ(0,h)

]
|h,−M〉, (B.16)

〈Ω
(κ)
M,f | =

∑

h∈{0,1}N

N∏

a=1

(
κ eiyη f(ξa)

)ha

det
N

[
Θ(0,h)

]
〈M,h|, (B.17)

we have the following result:

Corollary B.1. Let t̄(λ) be an eigenvalue of theκ-twisted antiperiodic transfer matrix (i.e.̄t(λ) ∈ ΣT ), and let

Q(λ) =

M∏

j=1

θ(λ− λj) (B.18)

be such that̄t(λ) andQ(λ) satisfy the functional equation(4.25) for some functionf(λ). Then theT (λ)- left
and right eigenstates with eigenvaluet̄(λ) can be represented as

|Ψ
(κ)
t̄
〉 =

M∏

a=1

[
eiyτ θ(τ)−1D(λa)

]
|Ω

(κ)
M,f〉, 〈Ψ

(κ)
t̄
| = 〈Ω

(κ)
M,f |

M∏

a=1

[
D(λa) θ(τ)

−1 eiyτ
]
, (B.19)

where the order of the operators in each bracket[. . .] has to be kept as it appears.

In other words, iff(λ) is fixed, which is the case for the complete characterizationof the transfer spectrum
that we have obtained in Theorem B.1 in terms of elliptic polynomials solutions of (4.25)-(4.26) forM = N, then
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(B.16) and (B.17) have to be understood as some fixed pseudo-vacuum states. The corresponding eigenstates
are then obtained by multiple action, on these pseudo-vacuum states, of the (slightly dressed) operatorD(λ)
evaluated at the roots of the Bethe equations, i.e. in a form very similar to what happens in the context of ABA.

Let us finally insist on the fact that the possibility to writesuch an ABA-type representation for the SOV
transfer matrix eigenstates is very general for models solved by SOV, as soon as we have some characterization
of the transfer matrix spectrum in terms of (generalized) polynomial solutions to some (homogeneous or inho-
mogeneous)T -Q functional equation. It is not restricted to reformulations of the SOV spectrum by inhomoge-
neous Baxter equations; indeed, we can construct similar reformulations, using multiple action of some slightly
different operator, in the framework of the characterization in terms of the solutions of the homogeneousT -Q
equation as obtained in Section 4. It is not restricted to themodel under consideration; indeed, a similar rewrit-
ing is possible for all the integrable models so far solved inthe SOV framework [43, 37, 21, 14, 13, 39, 40, 42]
as soon as we have a characterization of the SOV spectrum by a finite system of (generalized) Bethe equations.
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