

Long-term macroeconomic impacts of US unconventional Oil & Gas production:

A general equilibrium perspective

Florian Leblanc

PhD student at CIRED

Cité Universitaire de Paris Paris - 26 Janvier 2016 leblanc@centre-cired.fr www.centre-cired.fr

Context

- Countries supposedly rich in shale gas are looking forwards to produce their own resources (energy security, lower energy costs, etc..)
- One of the political argument for shale gas in France has been:
 - Support employment in industries through increasing competitiveness

-> Does it hold in a general equilibrium context?

Outlines

- A decade of unconventional resource production in the US
- The Imaclim-R framework
 - General architecture
 - Endogenising resource production
- Long-term scenarios on the US
 - Impacts on the US GDP
 - Competitiveness implications and global strategic choices of the US economy

The unconventional boom

Shale gas

- A 30% increase of gas production between 2005-2014
- 35% of total gas production
- Well-head gas price : from 6,73 \$/Mbtu (2006)
 to 3,73 \$/Mbtu (2013)

Source: EIA, Annual Energy Outlook 2013

Source: U.S. Energy Information Administration based on HPDI, LLC; 2011 is through November

Light tight oil

- 4,8 bbl/day in 2015 : the US first world oil producers (9,3 bbl/day)
- One of the reasons for the 2014 50% oil price drop

The economic impact of shale gas in the literature

- Early studies find a positive impact on local income/employment :
 - BUT : overstated according to (Kinnaman, 2011).
 - Less optimistic conclusions in recent peer-reviewed studies (Weber, 2012; Paredes et al., 2015):
- As for the manufacturing sector :
 - 33 % drop in employment (2000-2011) (Baily and Bosworth, 2014)
 - Recent rise of exports
 - 6% increase in exports due to the gas price gap (IMF, 2014)
 - Gas intensive industries: 8,7% of total manufacturing sectors in term of GDP (Spencer et al, 2014)

Endogenous resource production within the Imaclim-R framework

The IMACLIM-R model

Figure 1: Iterative Top-down / Bottom-Up dialogue in IMACLIM-R

The oil module: geological constraints & producers' decisions

- Resource: 12 oil categories (conventional and unconventional)
 - ➤ Maximum rate of increase of production capacity for each category, given geological constraints, depending on :
 - Endogenous remaining reserves
 - breakeven price (exploration/exploitation and accessibility)
 - steepness of the bell-shape profile reflecing a geological constraint (Rehrl and Friedrich 2006)
 - Light tight oil: exogenous trajectory from (EIA, 2015), if profitable
- Producers' behavior
 - All regions except Middle-East = "Fatal producers"
 - ➤ Maximum deployment if profitable
 - Middle-East = "Swing producers"
 - > Fill the gap between demand and other suppliers
 - ➤ World price depends on the utilization rate of production capacities
 - > Deployment of production capacities in function of their price objective

Modeling monopolistic behaviors of oil markets

Waisman et al. (2012) studies two Middle East stylized strategies as a tradeoff between short-term costs and long-term benefits:

(Peak oil profiles through the lens of a general equilibrium assessment, Energy Policy)

Market Flooding strategy:

➤ ME expands production capacities to maintain oil price low

Limited Deployment strategy:

➤ ME restricts capacity expansion to maximize short-term rents

- o In this exercise
 - Middle East turns to Market Flooding strategy when the US produces light tight Oil

Oil production profiles of the model

USA conv. and Light tight oil (bbl/d)

OPEC oil prod - no Ito OPEC oil prod - with Ito

World oil prod - no Ito

World oil prod - with Ito

The impacts on US GDP

Four scenarios:

- (i) A reference: No unconventional production
- (ii) US Shale case only
- (iii) US Light tight oil only
- (iv) US Shale gas and light tight oil

Main results

- GDP in 2050 :
 - 1 % (shale gas), 0.7% (Lto), 1.7% (both)
- Similar studies
 - 1.5% GDP increase for of both resources production (Hunt et al., 2015)
 - 0.84% GDP increase for shale gas only (Spencer et al., 2014)
- Energy account for 5,4% in US GDP (2050), this share increase by 11.8% because of unconv. resource production :
 - -> The direct effect of the energy boom accounts for a third of the 1.7% increase
- Indirect mechanisms :
 - +1% increase of investments
 - +1.9% of households and public expenditures
 - -0.2% decrease of exports
 - -1.5% of non-energy exports in the medium-term (2030)

The medium-term (2030) effect on exports

- Term of trade increase
 - +0.5% for energy intensive industries' production costs relatively to world prices
 - +1.1% for non-energy intensive industries' production costs relatively to world prices
- Despite lower energy costs
 - -3% for electricity, -8% for gas
- Because of higher wages (+4%): unemployment reduced in a more domesticoriented economy
- Non-energy exports decrease (52% share for energy intensive industries, 26% for non-energy intensive industries)
 - More than offset the rise of energy exports

GDP: two main general equilibrium channels (2030 – sc (iv))

Sudden GDP increase, offset in the medium-term by depletion and lock-ins

US GDP (PPP real) - in %

Competitiveness implications and global strategic choices of the US economy

Conditions upon two strategical policies

- A more inwards-oriented strategy :
 - No "currency" policy
 - Better terms of trade allows for raising wages and purchasing power
 - Penalizes export-oriented sectors
 - BUT benefits the other sectors
 - At the expense of non-energy goods exports
- An export-oriented strategy :
 - Towards a monetary policy supporting the law exchange rate value of the US \$
 - It benefits export-oriented activities
 - BUT penalizes domestic-oriented activities

The impact on competitiveness

- Inwards-oriented strategy :
 - At the expense of non-energy goods exports in the medium term
- Export-oriented strategy :
 - Possibly raise energy-intensive industrial exports in the mediumterm, because of unchanged terms of trade

The impact on competitiveness

- Export-oriented strategy :
 - Increased market shares in the short-term
 - But still a decrease of total non-energy goods production
 - -> wages still increase in the long-run, favoring imports

The second strategy partially offset the positive effects on GDP and employment

- Export-oriented strategy :
 - Lower GDP increase and employment :
 - Constraints terms of trade partially offset the purchasing power increase of households in terms of final goods

Conclusions

- We assess the GDP impact of US unconventional resource production
 - +1.7% US GDP increase in 2050
 - Long-term positive effect because of increase resource availability
 - But with an adverse effect due to partial lock-ins (higher energy content) in the medium-run
- The competitiveness effect depends on strategic choices of the US :
 - Main parameters :
 - Relative share of labor and energy costs in production costs
 - Households preferences for imported goods, Share of imported goods in production inputs
- Next step: the case of Europe, China?
- -> the competitiveness implications of shale gas depends upon the strategic relations of those regions in response of US policy choices

Thank you for your attention!

Contact:

leblanc@centre-cired.fr

http://www.centre-cired.fr/

The IMACLIM-R model - dynamic

- O Hybrid matrices in values, energy and « physical » content (Mtoe, pkm)
 - > Secure the consistency of the engineering-based and economic analyses
 - Explicit accounting of inertias on equipment stocks
 - ➤ Endogenous and exogenous TC, technical asymptotes, basic needs
- O Solowian growth engine in the long run but transitory disequilibrium
 - Unemployment, excess capacities
 - Investments under imperfect foresight (informed by sectoral models)
 - Trade and capital flows under exogenous assumption about <u>debts</u>

static equilibrium

Final energy and demand - fuel

- Alternatives to oil
 - Biofuels
 - Competition over oil-based fuels: supply curves increasing with oil price
 - ➤ Asymptotes on BF production at a given year (competition of land uses)
 - Evolve in time to represent induced technical progress
 - Coal-To-Liquid
 - backstop technology with capacity constraints
 - > enter the market at high oil price
 - > production costs governed by the cumulated past investments
- Demand for liquid fuels (residential, industry, transport)
 - Utility and profit maximization under constraints
 - ➤ Short-term : inertia in the renewal of equipments and LBD
 - Long-term: consumption styles (preferences), technical potentials (technology availability, asymptotes), location patterns

The gas module

- Supply curve for conventional gas
- A single breakeven price for shale gas

- International market shares depends on :
 - Profitability (breakeven price, utilization rate)
 - Available reserves (R/P ratio rule)
- Production prices driven by
 - Local production costs
 - A profit margin elastic to the demand increase

Cumulative availability curves (\$2001 / Mtoe)

Terms of trade

Non-energy intensive industries' production costs relatively to world prices

Energy intensive industries' production costs relatively to world prices