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Abstract: 

Heat sources estimations from temperature field measurements deduced from infrared 

imaging are increasingly used to study thermo-mechanical coupling during materials 

deformation.  These estimations are based on approximations of the derivative terms with 

respect to time and space which are involved in the heat diffusion equation. This paper 

proposes a first experimental validation of this method by applying it to an experimental 

uniform air cooling of a NiTi Shape Memory Alloy thin plate. In the studied cooling 

temperate range, heat sources are due to Austenite to R phase transformation. Transformation 

temperatures, heat sources and energies are estimated from infrared temperature 

measurements and compared to differential scanning calorimetry results. The small 
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discrepancies are mainly explained by errors in DSC measurements due to thermal inertia and 

baseline determination.      

 

Key Word: Heat source estimation, infrared thermal field measurement, DSC, NiTi, A-R 

transformation.  

 

1. Introduction 

Infrared temperature field measurements are increasingly used to analyze the thermal 

manifestations accompanying materials deformation. Intensity and spatio-temporal 

temperature variations depend on the deformation mechanisms (elasticity, plasticity, 

viscosity, damage, phase transformation, etc.) but also on the thermal problem characteristics 

(geometry, thermal properties, boundary conditions, etc.). Heat sources determination from 

infrared temperature measurement has been shown to be helpful to analyze deformation 

mechanisms of various materials (Ref 1, 2, 3, 4). A first class of methods of heat sources 

estimation is based on inverse methods (Ref 5, for example). The method used in the present 

study was presented in (Ref 1). It is based on (i) temperature field measurements at the 

surface of a thin sample and then on (ii) approximations of temperature first derivative with 

respect to time and second derivative with respect to space involved in the local heat diffusion 

equation.  

 

Heat sources estimations were validated on test cases with synthetic data produced by solving 

direct problems with known heat sources using analytical or numerical models (Ref 1, 6). 

Finite element simulations generate temperature fields, which are corrupted with a random 

noise. Performances of the heat sources estimation methods were evaluated from these 

synthetic data. 
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The aim of this paper is to validate experimentally in a simple case the heat source estimation 

method proposed in (Ref 1). Uniform air cooling experiments were performed on a Nickel-

Titanium (NiTi) shape memory alloy (SMA) exhibiting two transformation steps during 

cooling from austenitic phase (A) to R phase (R) and then to martensitic phase (M).This 

material was chosen because its transformation behavior is stable with thermal cycling. Heat 

sources were estimated from infrared measurements in the temperature range of the A-R 

transition. Transformation temperature, heat sources and energy obtained with this method 

were finally compared to values obtained from usual differential scanning calorimetry (DSC) 

measurements. 

 

Firstly, material, experimental set-up and method to achieve such a validation are exposed. 

Then, results are presented and discussed. 

        

2. Material and method 

2.1. Used thermal model. 

Let us consider an air cooled sample with initial uniform temperature T0. The local heat 

diffusion equation governing the cooling of the sample reads: 

𝐶 !"
!"
− 𝑘  𝑙𝑎𝑝(𝑇) = 𝑞(𝑡)                           (Eq 1) 

where T is the current local temperature depending on the spatial position and time t, C the 

heat capacity, k the isotropic thermal conductivity and  𝑞 the specific internal heat sources.   

 

Three thermal models have been proposed by Chrysochoos and Louche (Ref 1) which were 

obtained by simplifying the previous equation successively in the case of thin plates of 

thickness e with uniform temperature and heat source throughout the plate thickness (2D 
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model), then in the case of slender thin samples with temperature and heat source considered 

as depending only on the axial position and time (1D model) and lastly in the case of small 

thin samples with temperature and heat sources considered as uniform throughout the sample 

and depending only on time (0D model). In this paper, we use this 0D thermal model which 

reads: 

𝐶 !"(!)
!"

= 𝑞(𝑡)− !
!"

,                  (Eq.2) 

 

where θ=T-T0 is the temperature variation and  ρ the density. The function f models heat 

losses from the lateral surfaces of the thin sample per unit of area. In this study, heat losses by 

free convection and radiant emission are considered, leading to the following expression of f:   

    

𝑓   = 𝑓!"#$   +   𝑓!"# = 2ℎ 𝑇 − 𝑇!   +       2𝜀𝜎  (𝑇! − 𝑇!!),           (Eq. 3) 

 

where h is the convection coefficient, ε the emissivity of the sample surfaces, σ the Stefan-

Boltzman constant, and Ta the ambient temperature. The heat loss by convection is due to 

transfer of heat energy between the sample surface and moving surrounding fluid; in the 

equation Eq.3, h is dependent on a lot of factors, including sample and surrounding fluid 

temperatures. Possible heat losses from the insulating wires are assumed negligible compared 

to convection and radiation heat losses and were neglected in the heat loss function. 

 

2.2.Material 

The air cooling experiments were performed on a commercial NiTi alloy bright rolled plate of 

thickness e = 0.39 mm with a nominal composition Ti-50.2 at.%Ni. The transformation 

behaviour of this alloy was characterized using TA Q200 differential scanning calorimeter 
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with a heating and cooling rate of 10 K min-1, for a temperature range between -90°C and  

+120°C. The DSC was performed on a sample of 22.9 mg cut with diamond blade. 

As shown in Fig.1, at cooling, the transformation is composed of two stages: austenite (A) to 

R-phase (R) and then R-phase to martensite (M). During heating, a single-step M-A is 

observed. From this DSC thermogram, the characteristic temperatures during heating, the 

austenite start temperature As = 69°C  and  the austenite finish temperature Af = 84°C, and 

those during cooling, the R phase start temperature Rs = 62°C , the  R phase finish temperature 

Rf  = 53°C  , the martensite start temperature Ms = 39°C and the martensite finish temperature 

Mf = 12°C were determined in a standard way described for example in (Ref 7).  From this 

curve, at temperature higher than 95°C, the material is fully austenitic. 

 

2.3.Experimental validation method 

Experimental validation of the heat source estimation was performed during air cooling 

experiments of two samples, a reference one (1) and a NiTi sample (2), as shown in Fig. 2. In 

that study, the reference sample is a pure Titanium plate of thickness e=0.50 mm, width 5mm 

and length 15mm. The dimensions of the NiTi plate are identical except a little smaller 

thickness e=0.39 mm, 

 

Firstly, the two samples were coated with a high emissivity paint (ε=0.95), in order to have 

identical emissivity. Then, they were put in a first climatic chamber (chamber n.1) during 

approximately 45 minutes at a temperature T1=100°C. As shown in Fig.1, at this temperature 

the NiTi plate was fully austenitic. Then, the two samples were transported from the chamber 

n.1 to a second climatic chamber (chamber n.2) maintained at temperature T2=0°C. A specific 

device has been designed to reduce cooling during the carrying of the two samples between 

the two chambers. During all the experiment, the two samples were suspended with insulating 



Favier et al, J. of Mater. Eng. and Perf., Vol 22, Issue 6, 1688-1693, 2013 

6 
 

wires to obtain uniform temperature. The samples temperatures were measured during air 

cooling in the chamber n.2 by means of an infrared camera, placed outside the chamber. This 

observation was done through a transparent infrared window with a transmission coefficient 

τ	
  = 0.92. Due to frost problem, the temperature of the chamber 2 could not be lower than 0°C. 

Note that, with appropriate chamber temperatures T1 and T2, it would also be possible to use 

the experimental set-up during heating. 

 

During the air cooling experiment, the temperature TNiTi is measured for the NiTi sample, 

leading to the temperature variation estimation θNiTi = TNiTi – T2 . The 0D thermal model (see 

Eq.2) allows estimating heat sources 𝑞 involved during cooling of this sample if the heat loss 

function f is known. In order to estimate f, measurement of the temperature during 

simultaneous cooling of the reference sample is used, as described in the following.  Due to 

the paint, emissivities of the two samples were identical and thus the heat loss due to radiant 

emission frad is only dependent on sample temperature, i.e.  frad(T). The heat loss due to 

convection fconv is always difficult to estimate (Ref 8). In order to determine it, the two 

samples in the chamber n.2 at temperature T2=Ta were considered being submitted, at a given 

sample temperature T, to identical thermal surface conditions and no assumption is done with 

the dependence of h on T. Convection heat loss fconv is then also taken as only dependent on 

sample temperature fconv(T). With these two assumptions, in the conditions of our air cooling 

experiments, the heat loss function f was only dependent on the sample temperature f(T) and 

independent of the sample material, i.e. identical for the reference and NiTi samples. This 

allows determining f(T) from temperature measurements of the reference Titanium sample ; 

during cooling, there was no internal heat sources in this sample and thus f(T) was determined 

from the cooling curve of the Titanium sample by estimating the left hand side of equ.2, with 

the material properties of the Titanium sample listed in Table 1. This function f(T) is then 
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used to estimate heat sources 𝑞 for the NiTi sample using equation (2) and material properties 

of the NiTi sample listed in Table 1. For that study, heat capacity of the Titanium and NiTi 

samples were measured with classical DSC, which is the common instrument to measure heat 

capacity. Thus, it comes: 

𝑞!"#" = 𝐶!"#"
!!!"#"(!)

!"
− !!"!!"

!!"#"!!"#"
𝐶!"

!!!" !
!"

.  (Eq. 4) 

Fig.3 summarizes the flowchart of the different steps proposed to validate the method. In the 

following, results obtained by calorimetry on one hand and those obtained from the infrared 

measurements on the other hand will be distinguished by DSC (Differential Scanning 

Calorimetry) and TFM (Thermal field measurement), respectively. It’s not possible to 

compare directly heat sources 𝑞  measured by infrared imaging, !qTFM with those measured by 

DSC, !qDSC , since the DSC measurement was performed at constant cooling rate 

!TDSC =10K min
−1  while the temperature rate !TTFM during air cooling was obviously not 

constant. In both cases, we have converted the heat sources 𝑞 to ( !q!T
)  since for a thermal 

martensitic transformation, the specific heat power is proportional to the heating/cooling rate 

of the sample. The experimental validation of the heat sources estimation is finally performed 

by comparing the evolutions of the two ratios ( !q!T
)TFM  and ( !q!T

)DSC , as function of temperature. 

 

3. Results and discussion 

Fig.4.a shows the infrared temperature measurement during simultaneous air cooling of the 

Titanium and NiTi samples. The cooling kinetics were very different for the two samples. The 

Titanium specimen cooled with temperature decreasing approximately exponentially with 

time, with its final temperature equal to 0°C, the ambient temperature of the chamber n.2. 
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Two bumps were observed in the NiTi cooling curve. They are due to the two A-R and R-M 

exothermic transformations involved in the studied cooling temperature range. 

 

Fig.4.b shows the cooling rates !TTFM of the two samples during air cooling. They are between 

one and almost two magnitude orders higher than the constant cooling rate !TDSC = 0.17K s-1 of 

the DSC, plotted in dashed line. The Titanium cooling rate is appreciably linearly decreasing 

with the temperature, which is explained by the fact that the heat losses were mainly due to 

the convection term in eq (3) and that the coefficient convection h was approximately 

constant during the experiment. The two peaks observed in the cooling rate curve for the NiTi 

sample reveal clearly the occurrence of the two phase transformations during the studied 

temperature range. 

 

From now on, the analysis will be restricted to the temperature range 90-39°C involving only 

the A-R transformation. First, this transformation is less affected by thermal cycling 

compared to A-M or R-M transformation, both for transformation temperatures and heats (Ref 

11). Moreover, Kustov et al (Ref 12) proved recently that this A-R transformation is purely 

athermal. Two successive air cooling experiments were performed using the same Titanium 

and NiTi plates.  The ratio ( !q!T
)TFM  is then plotted as function of the temperature in Fig. 5 for 

the first and second coolings. The two curves are very close, which demonstrates the 

repetitiveness of the heat sources estimations using the developed cooling experiment. 

 

Fig. 6.a. shows the (!
!
) ratios as function of temperature deduced from DSC measurements 

(gray DSC curve) and from air cooling experiments with infrared temperature measurement 

(black TFM curve). During a DSC measurement, the measured specific heat power includes 
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the specific sensible heat power associated with the heat capacity of the material and the 

imbalance of sensible heat power between the material and reference pans. In that study the 

heat power difference between pans is negligible compare to the power obtained from the 

sample. In order to calculate the specific latent heat power for a SMA (Ref 7), a baseline is 

drawn joining the respective initiation and ending of the transformation. Three baselines have 

been tentatively sketched in the DSC curve of Fig.6 a. Classically the transformation 

temperature can be estimated according to tangent lines built on the peaks, as it was done in 

Fig1. However, depending on the choice of the two points used to build these baselines, these 

transformation temperatures, and even more the associated latent heat, can be different. Here, 

it is proposed to estimate the “transformation initiation temperature” of R phase (noted Rsi) 

from the TFM curve in Fig6a. This temperature corresponds to the beginning of the increase 

of the TFM curve during cooling, and was estimated to Rsi=74°C. The end of the 

transformation is also difficult to estimate from the DSC. Thus, the same approach, based on 

the TFM curve, was proposed to estimate the transformation ending temperature (noted Rse): 

46°C. The first baseline (noted 1 in Fig6a) was then built with the two transformation 

temperature values (46°C and 74°C). From the DSC curve, the heat flow stops to decrease at 

40°C. This value was used to sketch the second baseline (notes 2 in Fig6a). The third baseline 

is the one commonly used for this kind of transformation, joining the initiation and the ending 

of the full transformation, in which the ending transformation was 5°C, as sketched in Fig. 1.  

 

Specific heat energies E are plotted as function of cooling temperature in Fig.6.b for the two 

techniques, by integrating the ratio (!
!
) plotted in Fig.6.a, over the transformation temperature 

range. For the TFM curve, the heat source plotted in Fig.6.a is only due to the A-R 

transformation, thus E(T) is obtained by simple integration of the ratio (!
!
) between the 

transformation initiation temperature, taken equal to 𝑅!"  = 74°C and the current temperature 
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T. For the DSC curve of Fig.6.a, the specific sensible heat power is approximated by the 

baseline and has to be deduced from the heat sources measured by DSC before integration 

between the transformation initation temperature and the current temperature. Three curves of 

E(T) determined by DSC are plotted in Fig.6.b associated with the three baselines sketched in 

Fig.6.a.  

 

Figs.6.a and 6.b allow assessing heat sources estimation based on infrared measurement, by 

comparing determined transformation temperatures, heat sources and energies from the TFM 

curves with those from DSC curves. Transformation temperatures are observed in Fig.6.a. 

The initiation and ending transformation temperatures are difficult to estimate for the two 

techniques; they are even more difficult to evaluate from the DSC curve because 

determination of a baseline is required. The characteristic A-R transformation temperatures 

deduced from the TFM and DSC curves of Fig.6.a are 𝑅!!"#  = 64°C and 𝑅!!"# = 53°C, almost 

equal to the DSC values 𝑅!  = 63°C and 𝑅!  = 57°C. Several papers (Ref 11) define the 

characteristic transformation temperature 𝑇!!! as measured at the maximum heat flow. The 

values of 𝑇!!!, as determined using TFM and DSC methods, are indicated in Fig.6.a, being 

equal to 𝑇!!!!"#= 60°C and 𝑇!!! = 58°C respectively. The differences between each of the 

three characteristic transformation temperatures as determined from TFM and DSC curves are 

smaller than 2°C; it is in the accuracy range on absolute temperatures measured by an infrared 

camera, equal to ±2°C. Moreover, the error on temperature variations (thermal resolution) 

measured by infrared camera is of the order of ±0.02°C. This is consistent with the fact that 

the three characteristic transformation temperatures are always higher of 1 to 2°C for the TFM 

curve compared to the DSC curve. It is worth recalling that these transformation temperatures 

were obtained for the TFM curves for a cooling rate of approximately 4 K s-1 compared to 
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0.17 K s-1
 for the TFM curve. The TFM method allows estimating accurately transformation 

temperatures even for fast temperature rate. 

 

Fig.6.b allows comparing heat energy estimation. For estimation based on the DSC curve, it 

appears clearly that the choice of the baseline influences consequently the obtained value for 

the heat energy (Ref 7). The deduced values for the A-R latent heat are respectively 5.2 J g-1 

and 6.2J g-1 for the first and second baselines, respectively. From the TFM curve in Fig.6.b, 

the value of the heat energy at the end of the A-R transformation is 6.0 ±0.2 J g-1. This value 

is between the two DSC values obtained with the two. The third baseline used for the DSC 

technique does not allow an accurate determination of the A-R latent heat of transformation as 

the two first baselines did. Finally, it can be noted that the TFM curve E(T) reveals 

interestingly that R-M transformation initiated approximately at 42°C.  

 

In Fig 6.b, in the middle of the A-R transformation, the heat energy increases faster for the 

TFM curve than for the three DSC curves. This is likely explained by thermal inertia effect of 

the DSC technique, as studied in (Ref 13, 14). This effect doesn’t exist in the TFM method, 

even if at the beginning of the transformation, the temperature cooling rate for the TFM curve 

is approximately 7K s-1, 40 times faster than the temperature rate used in the DSC 

experiments.  

 

A last remark concerns the strong hypothesis of a constant heat capacity C in the current TFM 

method. For NiTi SMAs, heat capacity is weakly temperature dependent and values reported 

in the literature are different for austenite and martensite (Ref 15, 16), although very scattered. 

Values for the R phase are scarce. The constant heat capacity hypothesis in the TFM model 

could explain the non zero value for the heat flow in Fig.6.c for temperature higher than 76°C. 
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It could also explain the weak heat source for temperature around 45°C, another explanation 

being some finishing A-R transformation and initiating R-M transformation in this 

temperature range. From a theoretical point of view, the method to remove this hypothesis in 

the TFM method can be based on the same approach as the one proposed for the possible 

variation of the thermal conductivity in (Ref 17). 

 

Conclusion 

 

This paper presents a first experimental validation of heat source and energy estimations 

obtained from infrared measurements. This validation was performed during uniform cooling 

of a NiTi SMA in the temperature range of the Austenite-to-R phase transformation. The 

validation was based on comparison of the determined heat sources normalized by the 

temperature rate and energy as function of temperature with reference measurements obtained 

with classical DSC technique. A qualitative and quantitative agreement was obtained between 

these two techniques. The comparison emphasizes the errors of the DSC technique due to 

thermal inertia phenomena which are reduced in our method, since it is a technique without 

contact. Validations of the 1D (slender thin samples) and 2D (thin plate sample or tube) heat 

source estimations with an identical technique, but with adapted experimental set-ups, are in 

progress. This will allow applying with confidence this heat source estimation method during 

mechanical testing, in particular during superelastic deformation of NiTi SMA. 
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Table 

 

 Thickness 

(mm) 

Density 

ρ (kg m-3) 

Heat capacity 

C (J kg-1 K-1) 

Pure Titanium  sample (Ref 9) 0.510 

 

4510 520 

NiTi (Austenite) sample (Ref 10) 0.386 6500 520  

 

Table 1: Titanium and NiTi samples properties 
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Fig.1: Differential scanning calorimetry thermogram of the NiTi sample. 
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Fig.2 : Experimental set-up. 
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Fig.3 : Flowchart of the experimental validation of the heat sources estimation. 
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Fig.4 : a) Cooling curves of Ti and NiTi samples. b) Cooling rate curves. 

 

 

40 50 60 70 80
0

0.5

1

1.5

	
  

	
  
Cycle	
  1
Cycle	
  2

T	
  (°C)

q/
T	
  
(J	
  
g-­‐

1 K
-­‐1
)

.
.

 
Fig.5 : Heat flow normalized by the temperature rate (𝒒

𝑻
) for two successive cooling 

experiments performed with the same sample. 
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Fig.6 : a) : Heat flow normalized by the temperature rate ( !q!T

) for DSC and air cooling 

experiments. b) : Energy estimations obtained with these two techniques
 
 

 
 


