
HAL Id: hal-01300472
https://hal.science/hal-01300472v1

Submitted on 11 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incorporating Computation Time Measures during
Heterogeneous Features Selection in a Boosted Cascade

People Detector
Alhayat Ali Mekonnen, Frédéric Lerasle, Ariane Herbulot, Cyril Briand

To cite this version:
Alhayat Ali Mekonnen, Frédéric Lerasle, Ariane Herbulot, Cyril Briand. Incorporating Computa-
tion Time Measures during Heterogeneous Features Selection in a Boosted Cascade People Detector.
International Journal of Pattern Recognition and Artificial Intelligence, 2016, 30 (8), pp.1655022.
�10.1142/S0218001416550223�. �hal-01300472�

https://hal.science/hal-01300472v1
https://hal.archives-ouvertes.fr

Incorporating Computation Time Measures during

Heterogeneous Features Selection in a Boosted Cascade

People Detector

A. A. Mekonnena, F. Leraslea,b, A. Herbulota,b, C. Brianda,b

aCNRS, LAAS, 7, Avenue du Colonel Roche, F-31400 Toulouse, France
bUniv de Toulouse, UPS, LAAS, F-31400 Toulouse, France

Abstract

In this paper, we investigate the notion of incorporating feature computation
time measures during feature selection in a boosted cascade people detector
utilizing heterogeneous pool of features. We present various approaches based
on pareto-front analysis, computation time weighted adaboost, and Binary
Integer Programming (BIP) with comparative evaluations. The novel feature
selection method proposed based on BIP – the main contribution – mines
heterogeneous features taking both detection performance and computation
time explicitly into consideration. The results demonstrate that the detector
using this feature selection scheme exhibits low miss rates with significant
boost in frame rate. For example, it achieves a 2.6% less miss rate at 10−4

FPPW compared to Dalal and Triggs HOG detector with a 9.22x speed
improvement. The presented extensive experimental results clearly highlight
the improvements the proposed framework brings to the table.

Keywords: People Detection, Feature Selection, Binary Integer
Programming, AdaBoost.

1. Introduction

In modern era computer vision plays a significant role in automated peo-
ple detection. It has vast pool of applications spanning many research do-
mains, including but not limited to: Human-Robot Interaction, Human-

Email addresses: aamekonn@laas.fr (A. A. Mekonnen), lerasle@laas.fr (F.
Lerasle), aherbulo@laas.fr (A. Herbulot), briand@laas.fr (C. Briand)

Preprint submitted to International Journal of Pattern Recognition and Artificial IntelligenceApril 11, 2016

Computer Interaction, Pedestrian Protection Systems (part of Advanced
Driver Assistance Systems), Video Surveillance, and Automated Image In-
dexing and Management. Automated people detection involves perceiving
the whereabouts of people in the information of a scene captured by a sen-
sor. Depending on the mode of the sensor, this can mean localizing the
accurate 3D position or rough 2D position of each person in the scene. Visi-
ble spectrum cameras (mostly called classical cameras) are the most widely
used sensors as they capture very informative data covering wide spatial
area, with color and texture information of the scene. This work focuses on
this domain – people detection using visible spectrum cameras, commonly
referred as visual people detection. Unfortunately, visual people detection
is by far one of the most challenging tasks in computer vision, mainly due
to physical variation of people, body deformations due to articulation, illu-
mination variation, viewpoint change, background clutter, occlusions, sensor
limitations, and computational constraints. In recent years astounding pro-
gresses have been made by the scientific community[4, 9, 12], but there is
still room for improvement.

In many applications, e.g., robotics, video surveillance, a real time peo-
ple detector is required. In these domains the frame rate of the detector is
as important as the accuracy of the detector. For example, a mobile robot
needs to be reactive during navigation/interaction in human occupied en-
vironments. Thus, its people detection module – which is one component
of an entire functioning system – should be fast. The advent of powerful
camera systems in the robotic community that provide high resolution omni-
directional images, e.g., the Ladybug series[33] from Point Grey, stresses this
point further urging the need to give extra focus on computation time during
detector design. Hence, we propose a framework that tries to address this
during detector design.

In this work, we investigate different approaches to incorporate compu-
tation time measures during people detector design. Balancing computation
time and detection performance is challenging; best detection results are
obtained using complex features and descriptors which are computationally
expensive. As an example, Histogram of Oriented Gradients (HOG)[5] is
the most discriminant single feature thus far, but it is also computation-
ally expensive compared to simple features like Haar variants[43]. Further-
more, most detectors that improve over HOG either use complex human
models, e.g., parts based models[10], or consider various heterogeneous pool
of features,[4, 7, 44, 47], both of which contribute to added computation time

2

unless explicit computation considerations are made. In line with this, we
present investigations on a people detector that uses heterogeneous pool of
features and makes explicit computation time versus detection trade-off op-
timization to build a performant detector that leads to a significant gain in
computation time while maintaining acceptable detection performance.

This paper is structured as follows: Section 2 presents an overview and
related works on visual people detection. Section 3 presents the proposed peo-
ple detection and detector learning framework. Subsequent sections present
the different components of the proposed framework in detail, namely: fea-
tures and weak classifiers, in section 4; and feature selection and classifier
learning, in section 5. All experiments carried out and obtained results are
detailed in section 6. Finally, the paper finishes with discussions in section 7
and concluding remarks in section 8.

2. Overview and Related Work

Undoubtedly, automated people detection is a very important research
area with prominent applications. All methods in the literature more or less
adhere to the generic scheme depicted in figure 1. For a given input im-
age, possible candidate windows are hypothesized. Using the person model
adopted, the original raw image input is transformed into a convenient for-
mat by extracting certain types of features that capture specific cues. Finally,
each hypothesis is labeled as either a person or not using a learned classi-
fication rule. Even though not shown in the figure, there is usually a last
post-processing step in the form of Non-Maximal Suppression (nms) which
merges multiple detections that may arise from the same person into one.
The scheme shown in figure 1 shows the flow used during detection. The
types of features, descriptors, classifiers, and exact person model employed is
a detector design choice. But, the actual subset of features/descriptors to use
and the exact classifier parameters are determined via a training, also called
learning, phase using a training dataset that contains positive and negative
instances in a supervised learning approach. Recently, unspervised learning
approach based on convolutional neural networks have also been successful
applied to person detection, notably Sermant et al. ConvNets [38] detector.

The entire literature in visual people detection is overwhelming and a
discussion on the different techniques is beyond the scope of this paper (please
refer to[4, 7, 9, 12] for extensive surveys). The presentation here is limited
to the approaches that are relevant for this work. We will primarily focus on

3

input
image

Candidate Window
Generation

Image Representation:
Features and Descriptors Classification Detections

Person Model
(Abstraction)

Figure 1: Important components of a visual people detector.

approaches that rely on sliding window candidate window generation mode
which generates candidate windows with a fixed aspect ratio by sampling at
all positions and scales of the input image.

In visual people detection, a person can be modeled either as a holistic in-
divisible object or as a parts-based entity. The holistic representation[43, 5,
8], considers a person as a whole indivisible object. On the other hand,
parts-based approaches[24, 49, 10], rely on detecting different parts of a
body – either explicitly looking for a head, torso, arms, and legs or looking
for implicit dividends – to detect a person. Holistic approaches are simple,
have straight forward model training, and have reduced computation time,
relatively speaking, during detection. But, they perform poorly with non-
standard poses (articulations) and partial visibility. On the other hand, parts
based approaches are better suited for person detection thanks to their ability
to better deal with partial occlusions, view point changes, and pose varia-
tions. However, they are difficult to train and computationally demanding
during detection. They also perform perform poorly with lower resolution
images as the parts require ample spatial support for robustness

The classification stage is responsible for labeling each candidate window
generated and described in accordance with the abstraction adopted as ei-
ther a person or not. This block can either output a binary label (person or
non-person) or a continuous valued score that reflects its confidence, and can
further be thresholded to provide a binary label. These classifiers are mostly
trained with a discriminative learning algorithm given positive and negative
example instances. Discriminative learning algorithms in addition to robust
image representation are the key reasons to recent advances in people detec-
tion. The most frequently used discriminative classifiers for people detection
are variants of Support Vector Machines (SVM) and Boosted classifiers. On
few occasions Fisher’s Linear Discriminant Analysis (LDA)[30], and Artifi-
cial Neural Networks[39, 54] have also been used; recently, Random Forest

4

classifiers are also gaining a significant momentum[40].
Features enable us to capture the essence of the underlying scene by

extracting meaningful information from a group of data points (pixels). Dif-
ferent features capture differing facets of the underlying scene and careful
feature choice plays an important role on the detection performance. Early
success in people detection was achieved using rudimentary Haar like features
inspired by Haar Wavelets[32, 43]. These features capture region intensity
differences which has limited descriptive power. Especially considering the
distinctive boundary of peoples’ figures, which can better be captured using
edges. This intuition led to the adoption of gradient based features: Edge
Orientation Histogram (EOH)[17, 13] and Histogram of Oriented Gradients
(HOG)[5]. Recently, variants of Local Binary Pattern (LBP)[28] features
have also been burgeoning. Color features are rarely used in person detec-
tion because of the variability induced by clothing. But, color shows local
similarity even over clothing. This notion was exploited by Color Self Sim-
ilarity (CSS) features, proposed by Walk et al.[44], which proved successful
by encoding similarities in different sub-regions. Looking at the trend in the
literature, the gist in features used for people detection can be captured with
two important terms: gradient and histogram. The most successful features
consider image gradients with local pooling in the form of histograms. This
is evident considering peoples’ global silhouettes, illumination and contrast
variations in imaging, and deformation in physical structure. In general,
these considerations tend to lead to complex features that require increased
computation time entailing more focus on computation time related opti-
mizations. This being said, the next natural question would be, how about
combination of features? Indeed, using a combination of features have shown
to improve detection further, for example, the top 4 current best detectors
(in terms of detection performance) in the state-of-the-art use a mixture of
heterogeneous features[7].

Heterogeneous features help capture complementary information useful to
handle various detection challenges – the more complementary the features,
the better. Many works in the literature have attested this complementary
nature. Geronimo et al.[13] showed this with Haar like features and EOH;
Wang et al.[45] with HOG and LBP; Wojek et al.[47] with Haar like features,
HOG, and shape context features; Walk et al.[44] with a concatenation of
HOG, Histogram of Flow (HOF[6]), and CSS. Similar conclusions were also
made by Schwartz et al.[37] and Hussain and Triggs[15] using – HOG, color
frequency, and co-occurrence features – and – HOG and LBP variant fea-

5

tures – respectively. This is also true with the recently burgeoning integral
channel features derivatives[4].

Given heterogeneous pool of features, different ways can be used to build
the final detector. Four main trends can be observed in the literature: (1)
Direct concatenation[44, 47] in which the different features are concatenated
to make one high dimensional feature vector and an SVM used afterwards
for classification. This is computationally costly owing to the complex fea-
ture and SVM weights applied in sliding window detection. Dimensionality
reduction techniques after concatenation do improve detection performance
but not detection speed[15, 37]. (2) Direct boosting where an ensemble clas-
sifier is learned using the entire heterogeneous pool of features[8, 47, 13].
The problem here is in boosting, on each iteration, the feature with the least
weighted classification error is added to the ensemble irrespective of its com-
putation time. This favors complex features resulting in computationally
costly detector. (3) Coarse-to-fine hierarchical arrangement where a cascade
is constructed using cheap features at the initial stages and using complex
features at later stages[25, 31]. This approach is quite advantageous and tries
to find a balance between detection performance and speed. The concern is,
how to decide which features to use at the different stages systematically?
Both[25, 31] adopt a heuristic based rule and use homogeneous family of
features they deemed cheap at the initial stages, and homogeneous complex
features at the latter. Finally, (4) computation time versus detection trade-
off. This notion has been considered in the works of Wu and Nevatia[50]
and Jourdheuil et al.[16]. In all cases, they defined a criterion composed
of feature detection performance and computation time in a multiplicative
manner. But, considering a multiplicative factor masks the contributions
from the corresponding objectives and is not guaranteed to be optimal.

In this paper, which is an extended version of our previous work Mekonnen
et al.[23], we investigate different schemes to incorporate feature computation
time measure during feature selection and primarily focus on Binary Integer
Programming (BIP) based feature selection. The proposed BIP framework
falls in the 4th category; but, it can also be considered as a variant of coarse-
to-fine hierarchy in which the exact features to use at each cascade node
are selected automatically via an optimization step. We use five pervasively
used heterogeneous features that exhibit significant discriminative power and
computation time differences, namely: Haar-like features[43], Edge Orienta-
tion Histogram (EOH)[13], CSS[44], Center Surround Local Binary Patterns
(CS-LBP)[14], and HOG[5] in a classical cascaded boosting configuration[43]

6

with an added explicit optimization step based on BIP to select a subset
of features that have the least combined computation time and achieve a
stipulated detection performance.

Recently the trend in the community has shifted towards channel features
based approaches and their derivatives thereof[52, 7, 27, 51, 3]. The basic
principle is to transform the image into a set of feature channels and then to
construct a feature vector by pooling over with a set of varying rectangular
regions. These channel features are mostly used with boosting classifiers to
learn a detector[4]. Their conception stems back to integral channel features
(ChnFtrs)[8]. The idea is quite similar to Haar like features, but in stead
of sum-pooling on intensity images, it is done on heterogeneous features,
for example, 6 orientation quantized HOG feature and LUV color feature
channels. The majority of approaches utilizing channel features can be gen-
eralized using the concept of filtered channel features[52] which basically con-
siders the variants as applying a specific type of filter. Since these features
are computed with the help of integral images over each channel, ignoring
pre-processing steps, each feature will basically have the same computation
time. These features are designed for fast computation. As a result, even
though our BIP framework is quite generic (and works best with heteroge-
neous features in terms of both detection performance and speed), channel
features and their derivatives are not considered. The majority of approaches
utilizing channel features can be generalized using the concept of filtered
channel features [52] which basically considers the variants as applying a
specific type of filter. For example, ChnFtrs [8] a filter composed of ran-
dom rectangular shapes, ACF [7] a filter with a 4× 4 pixels pooling region,
SquaresChnFtrs [3] a square pooling regions based filters of various sizes,
LDCF [27] (short for locally decorrelated channel features) PCA bases as
filter banks, and Checkerboards [52] filters with checkerboard patterns. Even
the InformedHaar [51] detector that uses hand crafted (from a training sam-
ple) binary and ternary Haar like feature templates that conform to the shape
averaged pedestrian gradient image obeys this generalization. Other detec-
tors that are currently within the state-of-the-art but that do not fit in the
filtered channel representation include: SketchTokens [19], Regionlets [46],
and Spatialpooling [29]. Evidently, the literature also encompasses several
other detectors. To name a few, using their commonly used acronyms: Po-
seInv [20], HikSvm [21], Pls [37], MultiFtr [47], and MultiFtr+CSS [47].

Furthermore, paradigms that stray from the usually manually crafted
feature set selection/design with the use of deep learning frameworks, also

7

known as deep networks, have emerged. Deep networks are gaining a strong
momentum due the improved classification performance, and their ability
to operate on raw input pixels [2, 1, 41, 42]. These approaches rely on
convolutional neural networks that automatically learn pertinent features, in
a deep cascade, that are relevant to discriminate people from background.
Even though, some authors claim better features for pedestrian detection
have not yet been obtained [4], the recent work of Angelova et al. indicate
better performance along with improved speed [2, 1] and seem to indicate
promising future of deep networks in people detection.
Contributions: The work presented in this paper makes two core contribu-
tions. First, it present different detector learning paradigms that incorporate
computation time measures of features during feature selection – amongst
which is a novel BIP formulation to mine heterogeneous features taking both
detection performance and computation time into consideration. This opti-
mization applied to heterogeneous features marks a key contribution. Second,
the paper presents a thorough evaluation of the proposed person detector –
using both proprietary and public datasets – with detailed analysis of its
performance compared to alternative approaches. The proprietary dataset,
called Ladybug dataset (section 6.1.1), is composed of images acquired with
the Ladybug2 omni-directional camera system mounted on a mobile robot.
The high resolution and versatile images from the Ladybug camera series
further underline the need for the proposed detector.

3. Proposed People Detector Framework

Evidently, the framework adopted to address the aforementioned objec-
tives needs to be concerned by detector detection performance and its asso-
ciated computation time. The most famous detector configuration suitable
for these requirements is the attentional cascade detector configuration pi-
oneered by Viola and Jones[43]. This configuration builds a cascade made
of nodes resembling a degenerate tree. Each node rejects negative candidate
windows and passes along potential positive windows onto the next stage for
more scrutinized verification. Figure 2 illustrates this configuration made up
of K nodes. Given a candidate window, it is passed along the cascade with a
label T (for true) if it fulfills the test encountered at each node, otherwise it is
rejected (labeled as F for false). A window is considered to be positive only if
it makes it to the end of the cascade. This leads to an efficient structure that

8

uses simple classifiers at the beginning of the cascade, which reject a majority
of the negative samples, and complex classifiers as one progresses along the
cascade speeding up detection drastically. This structure has gained wide
acceptance and has even been applied in recent part-based approaches[10].

Node 1 Node 2 . . . Node K− 1 Node K

Candidate
Window T T T T

Final
Classification

F F F F

Figure 2: An attentional detector cascade configuration.

Heterogeneous
Features

Extraction

Weak
Classifier
Learning

Pareto-Front
Selection

Binary
Integer

Programming

Discrete
AdaBoost

F

TPR
FPR
τ

Pareto-Front
Selection

{(xi,yi)} F F̂ Hbip(·)

Figure 3: Proposed cascade node training scheme using heterogeneous pool
of features and binary integer programming.

Figure 3 shows a block diagram representation of the the proposed clas-
sifier learning paradigm. For a cascade node, given labeled positive and
negative training sets, the heterogeneous features, F , described in section 4
are extracted and associated weak classifiers trained. Then a pareto-front
extraction technique is employed to reduce the feature sets to a manageable
size, F̃ . This is followed by a multi-criteria discrete optimization based fea-
ture selection technique that identifies a subset of the features that fulfill
the stipulated detection performance while exhibiting the smallest combined
computation time. This is realized using Binary Integer Programming (BIP)
– presented in section 5.1.2 – which furnishes a few set of selected features, F̂ ,
taking the optimization objective and constraints into account. Finally, dis-
crete AdaBoost is used to learn the nodal strong classifier, labeled as Hbip(·).
Each of these constituent components are presented in detail in subsequent
sections.

Additionally, to highlight the pros and cons of the proposed framework, it
is compared with several learning strategies, namely: a pareto-front and Ad-
aBoost, a computation time weighted AdaBoost, and a random sampling and

9

feature rearranging based learning strategies. The details of these techniques
are provided in section 5.2.2.

4. Features and Weak Classifiers

This section presents the heterogeneous features along with corresponding
weak classifiers used for each family of features and associated computation
time analysis.

4.1. Heterogeneous Feature Set

In this work, we have chosen to use the following five family of hetero-
geneous features: Haar like features, Edge Orientation Histograms (EOH),
Center-Symmetric Local Binary Patterns (CSLB), Color Self Similarity (CSS)
features, and Histogram of Oriented Gradients (HOG). These choices are
motivated mainly by two factors: (1) their frequent use in the literature for
person detection, and (2) their complementary nature (in terms of both dis-
crimination and computation requirements). EOH and HOG capture edge
distributions, CSS focuses on color symmetry, and Haar-like and CS-LBP on
intensity and texture variations. Each feature family is extracted within a
given image window of 128 × 64 pixels denoted as R, a standard template
size used prominently in people detection[9]. To generate the over-complete
set of features, the position, width, and height of the region the features are
computed is varied within the candidate window. In all references, (x, y)
position refers to the top left corner of the region R relative to the top left
corner of the candidate window, and (w, h) refers to the width and height of
the region spanned for extraction.

4.1.1. Haar Like Features

Haar like features represent a fast and simple way to compute region
differences. These features have been extensively used for face, person, and
various object detections[32, 43, 18, 13]. For a given feature, the response is
obtained by subtracting the sum of pixels spanned by the black region from
the sum of pixels spanned by the white region, see figure 4. To incorporate
various measures, we have used the extended Haar like features from Viola
and Jones[43] and Lienhart and Maydt [18], which contain upright and tilted
filters of various configurations as shown in figure 4.

If the operator Ωhaar(R, x, y, w, h, ϕ) denotes the feature extracted (scalar
value) in the overlaid region (x, y, w, h) within the candidate window R using

10

Figure 4: Set of extended Haar like feature types (configurations) used.

Haar filter type ϕ, the over-complete set of Haar like pool of features, denoted
as Fhaar, is obtained by extracting features for all possible combinations of
x, y, w, h, ϕ in R.

4.1.2. Edge Orientation Histogram (EOH)

EOH is another popular feature set that has been used for people detection[13].
These features represent ratios of gradients computed from edge orientation
histograms. Within a given overlaid region, first gradients are computed.
Then a gradient histogram is built by quantizing the gradient orientations.
Finally, the ratios of each histogram bin with one another make up individual
features. Similarly, let the operator ΩEOH(R, x, y, w, h, kb1 , kb2) denote the
feature extracted in the overlaid region (x, y, w, h) within R by first building
an edge orientation histogram and then taking the smoothed ratio of the his-
togram counts in any two bins kb1 and kb2 . Consequently, the over-complete
EOH feature pool set, denoted FEOH , is constructed by extracting feature
values for all possible combinations of x, y, w, h and any two bins kb1 and kb2
within R.

4.1.3. Local Binary Pattern (LBP)

LBP was initially proposed as a texture characterization features[28].
Since then, it has been used in many applications – primarily facial analysis[53],
and person detection[26]. To date, many variants of LBPs have been pro-
posed. In this work, we adhere to the Center-Symmetric Local Binary Pat-
tern (CS-LBP) variant due to its small dimensional histogram and demon-
strated good results on person datasets[14].

CS-LBP = s(n0− n4)20 + s(n1− n5)21 + s(n2− n6)22 + s(n3− n7)23 (1)

where, s(x) =

{

1 x ≥ 0

0 otherwise
and n0,...,n7 are gray scale pixel values (figure 5a).

In our implementation, CS-LBP is computed over a 3 × 3 pixel region
(best results reported in[14]) by comparing the opposite pixels and adding a

11

(a) (b) (c) (d)

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

Feature Dim.

(e)

Figure 5: CS-LBP feature extraction steps. (a) Pixel neighborhood for use
with equation 1 (8-connectivity), (b) original candidate image, (c) dense
CS-LBP per pixel computed values, (d) one specific feature specified by a
bounding box, and (e) actual feature vector extracted from (d).

modulated term according to equation 1 with respect to figure 5a. This gives
a scalar value less than 16 which is assigned to the center pixel. This is done
for all the pixels in the window. A sample raw feature image is shown in
figure 5c (the values are scaled to aid visibility). Finally, the actual feature
vector is extracted by constructing a CS-LBP histogram (figure 5e) over a
given overlaid region, figure 5d. Let ΩCLBP (R, x, y, w, h) denote the feature
vector constructed by making a histogram of all CS-LBP features within the
region (x, y, w, h). Extracting feature vectors for all possible combinations
of x, y, w, h within R with strides of 4 pixels in both direction gives the LBP
feature pool, denoted FCLBP . The histograms have 16 bins corresponding to
CS-LBP quantization levels.

4.1.4. Color Self Similarity (CSS)

Color features are rarely used in person detection because of the vari-
ability induced by clothing. Color, actually, shows local similarity even over
clothing. CSS features, proposed by Walk et al.[44], encode similarities in
different sub-regions. To compute the features, first the image window is
subdivided into non-overlapping blocks of 8× 8 pixels and within each block
a 3× 3× 3 color histogram in HSV space is built with interpolation. Then
similarities are computed by intersecting individual histograms. In[44], all
histogram intersection values are concatenated to define one feature vector.
But here, we define the intersection of one histogram block with the rest of

12

Figure 6: Illustration of sample CSS features.

the blocks as a single feature. With an 8× 8 block size and 128× 64 window
size, there are 128 different blocks. The intersection of one block with the rest
gives 127 scalar values (excluding intersection with itself). These scalar val-
ues all together make-up the feature vector computed for that specific block
location. This is repeated for each block resulting in 128 different features
– the CSS feature pool (FCSS). Figure 6 shows three sample features com-
puted at the crossed block positions; observe how neighboring blocks show
similarity.

4.1.5. Histogram of Oriented Gradient (HOG)

As it has been mentioned, no other single feature has been able to super-
sede HOG features[9]. Hence, naturally, we have resorted to use them.

(a) (b) (c)

x

y

w

h

(d)

Figure 7: Illustration of the HOG feature pool set generation.

In this proposed approach, we use the original HOG features proposed
by Dalal and Triggs[5] along with their widely preferred/used computation,

13

i.e., a cell size of 8 × 8 pixels, a feature block size of 2 × 2 cells and an
8 pixel horizontal and vertical stride. But, instead of using the entire de-
scriptor as a single feature, we generate pool of features by concatenating
only a subset of the block histograms. The main steps are illustrated in fig-
ure 7. Given a candidate window (figure 7a), cell histograms are computed
(figure 7b), and neighboring cells are combined and normalized to compute
block histograms (figure 7c). Then differing from the original proposition,
a single feature is described by concatenating all block histograms inside a
region parameterized by a starting location (x,y), width (w), and height (h)
as shown in figure 7d. Finally, the entire feature pool FHOG is generated by
varying x, y, w, and h for all possible positive values in the given candidate
window. This leads to a total of 3360 features with dimensions ranging from
36 (smallest) to 7 × 15 × 36 = 3780 (highest and equivalent to the feature
vector obtained when concatenating all block histograms).

Finally, the complete heterogeneous feature pool is determined by merg-
ing all heterogeneous feature pool sets, i.e., F = {FHaar,FEOH ,FCLBP ,FCSS,FHOG}.
In consecutive sections, each individual feature is indexed by j, where j ∈
{1, 2, ..., |F|}.

4.2. Weak Classifiers

The complete heterogeneous pool of features comprises of scalar and
multi-dimensional features. For all scalar features, i.e., Haar-like and EOH
features, we have chosen to use decision trees as a weak classifier. A decision
tree over a real valued scalar feature is equivalent to having multiple threshold
values assigning different bands of the range for positive and negative sam-
ples. In light of the detection performances exhibited, linear SVM is used
as weak classifier for HOG and CSS feature vectors. Unlike HOG and CSS,
the total number of CS-LBP features is quite high (see table 1) and using
SVM leads to an overwhelming training period. Consequently, for CS-LBP
features, we employ Fisher’s Linear Discriminant Analysis (LDA)[11] with
decision trees. Since LDA seeks to find a projection direction which better
discriminates the two classes, we train an LDA projection vector for all the
CS-LBP features once using the positive and negative samples provided at
the first node of the cascade. Afterwards, the same projection vectors are
used and only a new decision tree is trained on the projected data. Experi-
mentally, this has lead to a good balance between weak classifier performance
and training duration. Each weak classifier, associated with a unique feature,

14

is denoted as hj and maps each instance of the training set X to a discrete
label, hj : X → {−1,+1}.

4.3. Computation Time

The computation time of each feature is determined irrespective of any
implementation optimization that can be done during detection, e.g., use of
caches to buffer some features. This helps establish an upper bound. For
each feature considered, the associated computation time is made up of two
components. A part associated with image pre-processing (including rudi-
mentary feature preparation, integral image computation, etc) and a second
part pertaining to the feature extraction and necessary computation during
detection (e.g., multi-dimensional feature projection). For a feature indexed
by j, these are represented as τp,j and τe,j consecutively; the combined com-
putation time of that feature becomes τj = τp,j + τe,j. These values are
determined by averaging over 1, 000 repeated iterations. The computation-
ally cheapest feature, a two boxed horizontal Haar filter which takes a total
time (τj) of 0.0535 µs to compute on a core i7 machine, is used as a reference
to report computation time for other features. The range of computation
time for each feature family is reported in table 1. The table summarizes
the characteristics of the heterogeneous pool of features considered: the to-
tal number of features in each family, the minimum and maximum feature
computation time (both pre-processing, τp, and extraction, τe) along with
the weak classifier used are listed.
Table 1: Feature pool summary with minimum and maximum feature com-
putation time in each feature family. Time is reported as a multiple of
u = 0.0535 µs computed on a core i7 machine running at 2.4 Ghz.

Feature Type No of features
τmin τmax Weak Classifier

(τp)min (τe)min (τp)max (τe)max

Haar like 672,406 0.6u 0.40u 1.88u 1.60u Decision Tree
EOH 712,960 2.72u 2.11u 315.65u 2.10u Decision Tree
CS-LBP 59,520 1.24u 14.26u 111.60u 282.04u LDA + Decision Tree
CSS 128 560.75u 457.19u 560.75u 457.19u SVM
HOG 3,360 10.59u 479.12u 315.75u 51103.80u SVM

Haar like, and EOH features are computed with the help of integral im-
ages, which is accounted for in the pre-processing time component. In fact,
each τp,j of these feature families shares a fraction of the total time taken to
construct the integral image proportional to the area it spans. Additionally,

15

for Haar like features, a horizontal and vertical stride of 2 pixels are used to
generate the over-complete set and for EOH gradient orientation quantiza-
tion levels of 4 (give best results[13]) and horizontal and vertical strides of 4
pixels are used.

5. Feature Selection and Nodal Strong Classifier Learning

As presented in section 3 and depicted in figure 3, the main focus of
this work is a boosted cascade learning framework primarily utilizing binary
integer programming for feature selection. The novelty lies on the BIP op-
timization formulation to select a subset of heterogeneous features with the
least combined computation time that satisfy the required detection perfor-
mance. Hence, in this section, the sequence of steps involved in the BIP
based framework is initially presented under subsection 5.1. Consequently,
to put the BIP based approach into perspective, the section continues with
a presentation of other investigated boosted cascade learning alternatives in
subsection 5.2.

5.1. BIP based Classifier Learning

The BIP based nodal strong classifier learning block diagram is shown
in figure 3. The heterogeneous pool of features and their associated weak
classifiers have been presented in section 4. The objective of this learning
scheme is to build a nodal strong classifier Hbip(·) from the extracted features
F . This is essentially achieved with three constituent steps: Pareto-Front ex-
traction, binary integer programming, and discrete AdaBoost training. Each
of these components are presented as follows. The final cascade detector
trained using this scheme is referred with the label BIP+AdaBoost.

5.1.1. Pareto-Front Extraction

Pareto-Front analysis deals with selecting the optimal solutions when
faced with competing multi-objective optimization criteria – like in equation
2 where the objective is to minimize miss rate (MR), false positive rate
(FPR), and computation time (CT). It is termed competing because one
has to worsen the other objectives to improve itself. The optimal solutions
for these kind of optimization are termed as the Pareto optimal solutions.
Pareto-Front analysis is used to find these optimal solutions that make up
the Pareto optimal set. By applying this, a subset of features that are Pareto
optimal with respect to MR, FPR, and CT, are retained for further use. A

16

feature x is said to dominate another feature x′, only if gl(x) ≤ gl(x
′) for all

l ∈ {MR, FPR, CT}, and gl(x) < gl(x
′) for at least one l. Here, the gl(·) denotes

the MR, FPR, or CT, determined using the weak learner trained with the
corresponding feature x and evaluated on a validation set. On the other
hand, a feature is said to be non-dominated if no other feature dominates it.
The Pareto optimal features set, F̃ , is actually the set that fulfills equation 3
which can easily be determined using algorithm 1.

minimize g(x) = [gMR(x), gFPR(x), gCT (x)]

s.t. x ∈ F (2)

F̃ = {x ∈ F | ∀
x
′∈F gMR(x

′) ≥ gMR(x) ∨ gFPR(x
′) ≥ gFPR(x) ∨ gCT (x

′) ≥ gCT (x)}
(3)

0

0.5

1

0

0.5

1
0

0.01

0.02

MRFPR

C
o

m
p

u
ta

ti
o

n
 T

im
e

(m
se

c)

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

MR

C
o

m
p

u
ta

ti
o

n
 T

im
e

(m
se

c)

Haar like (blue)
EOH (green)
LBP (black)
Pareto Front set (red)

Figure 8: Sample Pareto-Front extraction. (Best viewed in color.)

Figure 8 illustrates a computed Pareto-Front, in 3D space and projected
(MR vs computation time) 2D plot. To ease visibility only sub-sampled
Haar like (shown in blue), EOH (in green), CS-LBP (in black) features are
considered1. The determined Pareto optimal set is shown with red circles.

1This is done for demonstration purposes but in the actual cascade construction all five
feature pools without sub-sampling are considered.

17

Algorithm 1 Pareto-Front Computation

1: procedure Pareto Front(F)
2: F̃ ← F1

3: for each x ∈ F do
4: add ← true
5: for each x′ ∈ F̃ do
6: if x dominates x′ then
7: F̃ ← F̃\{x′}; continue;
8: else if x′ dominates x then
9: add ← false; break;
10: end if
11: end for
12: if add then F̃ ← F̃

⋃

{x}
13: end for
14: return F̃
15: end procedure

5.1.2. Binary Integer Programming (BIP)

Given the substantially decreased feature set F̃ using Pareto-Front analy-
sis, a further subset of features F̂ ⊆ F̃ are selected using the BIP formulation
presented here. BIP is a special case of integer programming where decision
variables are required to be 0 or 1 (rather than arbitrary integers). It aims
at minimizing a given linear objective function f = cTv subject to the con-
straints that A.v ≥ b, where v represents the vector of 0-1 variables (to be
determined), c and b are known coefficient vectors, A is a matrix of coeffi-
cients (called constraint matrix). It is well-known that BIP is NP-hard in
the strong sense, but in practice, branch-and-cut techniques can solve huge
binary integer program very fast [34, 48]. Here, BIP is used to select a subset
of features that fulfill the detection performance stipulated (in terms of TPR
and FPR) with the minimum combined computation time. With respect to
the reduced feature set, F̂ , the BIP solutions are going to be the optimal
choices. The BIP selected feature set F̂ is further used to build a strong
nodal classifier with discrete AdaBoost (see subsection 5.1.3), Hbip(·). The
BIP formulation for feature selection is presented as follows.

Definition of parameters:. The following are list of parameters used in the
optimization specification along with their definitions. A binary set is de-
noted as B = {0, 1}.

• N = {1, ..., n}: set of training sample indexes with n ∈ Z; a total of n
training samples indexed by i;

18

• M = {1, ...,m}: set of weak learners indexes with m ∈ Z; a total of m
weak learners indexed by j;

• y+ ∈ B
n, y+ =

{

y+i
}

i∈N
; y− ∈ B

n, y− =
{

y−i
}

i∈N
; notice y−i + y+i =

1 ∀i ∈ N

y+i =

{

1 if i is positive
0 else

y−i =

{

1 if i is negative
0 else

• H ∈ B
nxm where H = {hi,j} i∈N

j∈M
with hi,j ∈ {0, 1}

hi,j =

{

1 if weak learner hj detects sample i as positive
0 else

• TPR ∈ [0, 1]: minimum true positive rate set at the considered node
of the cascade;

• FPR ∈ [0, 1]: maximum false positive rate at the node;

• T ∈ R
m: with T = {τj}j∈M computation time of weak learner j.

Decision Variables:. In BIP, the decision variables are restricted to binary
values, values from the set B = {0, 1}. The BIP decision variables are the
following.

• v ∈ B
m, v = {vj}j∈M vj ∈ {0, 1}: vj = 1 if weak learner hj is selected,

else vj = 0;

• t ∈ B
n, ti ∈ {0, 1}: ti = 1 if a positive sample i has been detected

as positive (true positive) by at least one selected weak learner, else
ti = 0;

• f ∈ B
n, fi ∈ {0, 1}: fi = 1 if a negative sample i has been detected as

positive (false positive) by at least one selected classifier, else fi = 0.

Let vector p = {pi}i∈N = Hv, which denotes the total number of weak
learners that have labeled each training sample i as positive.

19

Objective Function and Constraints:.

min T
Tv (1)

s.t ti ≤ y+i · pi ∀i (2)

fi ≥ y−i · hi,j · vj ∀(i, j) (3)

‖t‖
1
≥ ‖y+‖

1
· TPR (4)

‖f‖
1
≤ ‖y−‖

1
· FPR (5)

v ∈ B
n; t = {ti}i∈N , f = {fi}i∈N ; t, f ∈ B

n (6)

‖·‖
1
is the l1 norm.

The objective function (1) aims at minimizing the computation time.
Constraints (2)-(5) express that a given rate of detection quality has to
be reached (depending on the number of true and false positives). Con-
straints (2) link vj and ti variables (via pi) so that ti = 0 if image i has not
been well-recognized by at least one selected classifier. Since it is at least, it is
not expressed with respect to each selected weak classifier j – but to the sum
of all selected classifiers (sum over j, the entries of pi as it is). Constraints (3)
link vj and fi variables so that fi = 1 if a negative image i has been recog-
nized as positive by at least one selected classifier. A negative sample should
be correctly labeled (as 0) by all selected weak classifiers. It is considered as
a false positive (fi = 1) if at least one selected classifier labels it as positive.
So in this case, there will be a distinct constraint for each sample and feature
combination, hence the need for the ∀(i, j). Constraint (4) expresses that
the rate TPR of true positives, obtained with the selected classifiers, has to
be reached. Similarly, constraint (5) expresses that the rate FPR of false
positives, obtained with the selected classifiers, must not be exceeded. In
this formulation, there are a total of (n · (m+ 1)+ 2) number of constraints,
which could be huge for large n and m values. The final subset of features F̂
corresponds to only the selected features, i.e., non zero v entry; since each
feature indexed by j is associated with a unique weak learner hj, F̂ also rep-
resents the subset of weak learners retained. At this point, a classification
rule can be materialized by looking at pi for a given sample i. If pi is greater
than zero, it means one weak classifier out of the selected ones has labeled
the sample as positive. But, in order to break this discrete nature, we instead
use discrete AdaBoost to further train a strong classifier. This provides a
means to: (1) improve the classifier’s generalization to unseen samples with
the help of weights assigned to the weak classifiers based on discriminative
ability; and (2) provide additional flexibility to adjust the TPR and FPR

20

margin, by varying a threshold value, with the same computation time – this
could, for example, be useful to fine tune an already trained detector for a
new dataset.

5.1.3. Discrete AdaBoost

Discrete AdaBoost is one instance of the Boosting classifier variants which
build a strong classifier as linear combination (weighted voting) of a set of
weak classifiers. Suppose, we have a labeled training set {(xi, yi)}{i = 1, ..., (n+ + n−)}
where xi ∈ X, yi ∈ Y = {−1,+1}, where n+ and n− denote the number of
positive and negative training samples respectively. Given a set of weak
learners (features) F̂ = {hj}j∈M , with M = {1, 2, ...,m} the total number
of weak learners, that can assign a given example a corresponding label,
i.e., h : x → y, Discrete Adaboost constructs a strong classifier of the form
H(x) =

∑T

t=1 αtht(x) with sign(H(x)) determining the class label. The t

indexes connote the sequence of the weak learners and this specific classifier
has a total of T weak learners. The specific weak learner to use at each itera-
tion of this boosting algorithm and the associated weighting coefficients, αt,
are derived minimizing the exponential loss, which provides an upper bound
on the actual 1/0 loss [35]. The complete algorithm for training a per node
classifier with Discrete AdaBoost is can be found in [35].

5.2. Other Approaches

To investigate the advantages and disadvantages of the above presented
BIP based framework, we also consider other simpler variants that are es-
sentially derived by altering some of the constituent components in the BIP
based framework. In doing so, we present four different classifier learning
approaches, namely: a Pareto-Front with AdaBoost, AdaBoost with random
feature sampling, computation time weighted AdaBoost, and hierarchically
arranged cascade. Their block diagrams are depicted in figures 9a, 9b, 9c,
and 10 consecutively.

5.2.1. Pareto-Front with AdaBoost

In this mode, a cascade node is trained via a combination of Pareto-Front
analysis and discrete AdaBoost. First, the presented Pareto-Front analysis
is used to extract a subset of non-dominated features F̃ from F , which are
in turn used by discrete AdaBoost to build a strong nodal classifier Hpb(·) as
shown in figure 9a. This is simply jumping the BIP step in the framework
presented in section 5.1 and directly using AdaBoost with the Pareto optimal

21

Heterogeneous
Features

Extraction

Weak
Classifier
Learning

Pareto-Front
Selection

Discrete
AdaBoost

F

TPR
FPR
τ

Pareto-Front
Selection

{(xi,yi)} F F̂ Hbip(·)

(a) Pareto-Front with AdaBoost.

Heterogeneous
Features

Extraction

Weak
Classifier
Learning

Discrete AdaBoost
with Random Sampling

F

TPR
FPR
τ

Discrete AdaBoost
with Random Sampling

{(xi,yi)} F Hrb(·)

(b) Random feature sampling with discrete AdaBoost.

Heterogeneous
Features

Extraction

Weak
Classifier
Learning

Computation Time
Weighted AdaBoost

F

TPR
FPR
τ

Computation Time
Weighted AdaBoost

{(xi,yi)} F Hct(·)

(c) Computation time weighted AdaBoost.

Figure 9: Block diagrams of three other nodal strong classifier learning ap-
proaches.

features. The final cascade detector trained using this scheme is referred with
the label Pareto+AdaBoost.

5.2.2. AdaBoost with Random Feature Sampling

Using AdaBoost directly on the extracted feature set, without any prior
feature reduction, is the most classical detector learning scheme. It has been
applied by various researchers following the pioneering work of Viola and
Jones [43]. For a given cascade node, the node trains a nodal strong classifier
using AdaBoost iteratively. On each iteration, AdaBoost selects a single
feature that minimizes the weighted error over the training samples, assigns
a proper weight to the associated weak classifier, and adds it to the ensemble.
This entails evaluating the error term, ǫj, for all the weak classifiers in the
pool. Given that we have a total of 1,448,374 weak classifiers in our pool,
exhaustive search is not feasible. Therefore, we randomly sample a total
number of Rs weak classifiers (in accordance with the relative proportion of
features from each family) on each AdaBoost iteration and select the one

22

that minimizes the classification error. The nodal strong classifier trained
with this scheme is denoted as Hrb(·) – figure 9b – and the corresponding
cascade labeled as Random+AdaBoost.

5.2.3. Computation Time Weighted AdaBoost

This scheme is quite similar to the above discussed variant based on
random sampling and discrete AdaBoost (subsection 5.2.2) and has appeared
in our previous work [22]. We use a modified discrete AdaBoost that not only
takes detection performance, i.e., minimize ǫj for selecting the best feature,
but rather selects the one that minimizes a multiplicative term composed of
feature computation time and detection error:

ht = argmin
hj∈F

τ̃j ∗ ǫj (4)

τ̃j =
τ
β
j

∑

l

τ
β
max,l

(5)

where τ̃j denotes a smoothed normalized feature computation time. β ∈
[0, 1] is an exponential smoothing coefficient. τmax,l denotes the maximum
computation time registered within each distinct feature pool family, i.e.,
l ∈ {Haar, EOH, CSLBP, CSS, HOG}.

The computation time associated with each feature, τj = τp,j + τe,j, is not
constant (consequentially τ̃j changes too). The exact value evolves during
the classifier learning stage. It changes in two cases. The first is when a
feature that has already been selected is considered in future cascade nodes,
and the second is when a feature from the same family gets selected. In the
prior case, the computation time of the selected feature is replaced by a con-
stant time, τ0, in future references which accounts for only memory access.
In the latter case, the computation time for all of the features in the same
family gets affected, specifically, the time associated with the pre-processing
stage, τp,j, is set to zero for all the features in that family. This is logical and
is done to favor features of the same family. For example, if a Haar feature
is selected, it will be better to consider another Haar feature so the integral
image computation can be done once for the area spanned by the two fea-
tures, rather than considering another feature from a different family which
will require a different pre-processing step. This way the computation time
of the features within the same family will be levied contributing to speed

23

up. Accordingly, the normalized computation time of all affected features is
updated.

Algorithm 2 Computation Time Weighted AdaBoost

1: procedure Train AdaBoost(F , {(xi, yi)}i∈N)

2: Initialize: D1(i) =
1

(n+ + n−)
3: for t = 1,2,...,T do
4: · Find the best weak learner ht:
5: → Fr ← randomly sample Rs features from F

6: → Compute τ̃j =
τ
β
j

∑

i

τ
β
max,i

7: → ht = argmin
hj∈Fr

τ̃j ∗ ǫj where ǫj =

n++n
−

∑

i=1

Dt(i)[yi 6= hj(xi)]

8: · Compute weak learner weight: αt =
1

2
ln
1− ǫt

ǫt

9: · Update data weight distribution: Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

10: end for
11: end procedure

This modification enables AdaBoost to select the feature (weak learner)
that offers a compromise between computation time and detection error. This
is detailed in algorithm 2 (main modifications on the classical one are shown
in bold typeface). Again, due to the huge number of features, an exhausting
search is not feasible and hence Rs randomly sampled features are used, as in
section 5.2.2. The nodal strong classifier trained with this scheme is referred
as Hct(·), see figure 9c. The cascade trained with this learning algorithm is
referred as CTWeightedAdaBoost.

5.2.4. Coarse-to-Fine Hierarchical Arrangement

In this approach, we want to investigate the performance of a cascade
detector when it is manually tailored to use specific features in specific order
in coarse-to-fine hierarchy. Taking detection and computation time into con-
sideration, the initial cascade nodes will use computationally cheap features,
while trailing nodes would take on incrementally complex features (similar
to [25, 31]). With the help of the feature computation time characteristics
highlighted in table 1, a simple cascade is envisaged with the first G nodes
using Haar like features, the next EOH features, then CS-LBP, followed by

24

Node1,1 Node1,2 ... Node1,G Node2,1 Node2,2 ... Node2,G Node3,1 Node3,2 ... Node3,G

Node4,1 Node4,2 ... Node4,G Node5,1 Node5,2 ... Node5,G

T T T T T T T T T T T

T T T T T T T T

T
F F F F F F F F F

F F F F F F

Haar like EOH CS-LBP

CSS HOG

Figure 10: Coarse-to-fine hierarchically arranged sequence of cascade nodes.

CSS, and finally HOG features as depicted in figure 10. On each node, dis-
crete AdaBoost with random node specific feature sampling is utilized to
learn the nodal strong classifier, denoted Hmb(·). Hence, at the node level
heterogeneous feature pool is no more considered, it is rather a single fea-
ture family. But, globally, the entire cascade indeed considers heterogeneous
features. The cascade node trained in this manner is labeled as Hierarchi-
cal+AdaBoost.

In this section, the BIP based and several other alternative nodal cascade
classifier learning paradigms have been presented. They are the BIP+AdaBoost,
Pareto+AdaBoost, Random+AdaBoost, CTWeightedAdaBoost, and Hierar-
chical+AdaBoost. Each node k of the cascade is trained to fulfill a stipulated
nodal TPRk and FPRk detection performance constraints. In all cases, the
cascade construction starts with all positive training samples and a subset
of the negative training samples (equivalent to the positive ones) to learn
the set of relevant features and classifiers for the initial cascade node, follow-
ing the learning approach specified for each method. Once this is done, all
negative training samples in the dataset are tested with it. All those that
get classified correctly are rejected while all those labeled as positive samples
(false positives) are retained along with the positive samples for training the
following nodes. This step is repeated until all negative training sample are
exhausted. This data mining technique makes it possible to use vast number
of negative training samples.

25

6. Experiments and Results

In this section the different experiments carried out to investigate the
performance of the investigated approaches and obtained results are pre-
sented. Principally, five different cascade detector training approaches –
based on five differing nodal classifier learning schemes – using heteroge-
neous pool of features are presented. The evaluation aims to analyze the
pros and cons the presented four different classifier learning schemes referred
as: BIP+AdaBoost, Pareto+AdaBoost, Random+AdaBoost, CTWeightedAd-
aBoost, and Hierarchy+AdaBoost.

6.1. Visual Datasets

All experiments are carried out using two datasets: A proprietary dataset
refereed as the Ladybug dataset, and the public INRIA person dataset.

6.1.1. Ladybug Dataset

The Ladybug dataset is a custom compiled dataset using images acquired
with the Ladybug2 camera in our robotic laboratory. This dataset features
images of people acquired in a very cluttered indoor environment. The Lady-
bug2 (figure 11a), manufactured by Point Grey Inc[33], is a polydioptric cam-
era that provides real omni-directional view without pronounced geometric,
resolution, and/or illumination artifacts. It is a spherical omni-directional
camera system that has six cameras mounted in such a way to view more than
75% of a full sphere. Each camera has a maximum resolution of 1024× 768
pixels resulting in a 3500 × 1750 pixels stitched high resolution panoramic
image (figure 11b).

(a) (b)

Figure 11: Ladybug2 camera and a corresponding stitched image.

This dataset consists of two distinct sets. The first one, referred as the
training set, consists of 1990 positive samples (original and mirrored ver-
sion) annotated by hand and scaled to a 128 × 64 pixels window. It also

26

contains 58 person free full resolution images acquired from our robotic
and other rooms in the laboratory. A total of 488, 992 negative windows
of 128 × 64 pixels are uniformly sampled from these person free images.
The second set used for testing purposes – hence, called the test set –
contains 1, 000 original and mirrored manually cropped positive samples of
128 × 64 pixels and 41 person free images, out of which 319, 653 negative
windows are uniformly sampled. Illustrative positive samples are shown in
figure 12a. This dataset is made publicly available and can be downloaded
from http://homepages.laas.fr/aamekonn/dataset/ladybug/.

(a) Ladybug dataset

(b) INRIA public dataset

Figure 12: Sample positive images from the Ladybug and INRIA datasets.

6.1.2. INRIA Person Dataset

The INRIA person dataset, introduced by Dalal and Triggs[5], is the
most important and widely used public dataset for benchmarking purposes
in people/pedestrian detection works. The dataset is divided in two formats,
a format which contains original images (full images with people in natural
scenes) with corresponding annotations and a second format which contains
cropped positive images and people free negative images.

This format consists of both training and testing sets. The training set
features 2416 cropped positive instances (originals and mirrored versions)
and 1218 images free of persons. The cropped instances have a resolution of
160×96. But, the actual size of pedestrians bounding is 128×64. The extra

27

http://homepages.laas.fr/aamekonn/dataset/ladybug/

padding is provided to minimize the border effect. In this work, a total of
2.55 × 106 negative cropped instances are generated from these person free
images. The test set contains 1132 positive instances and 453 person free
images. Similarly, 2× 106 cropped negative windows are uniformly sampled
from the person free images during testing. Sample cropped positive images
from this dataset are shown in figure 12b.

6.2. Evaluation Metrics

To evaluate our trained detectors, we use the Per Window (PW) eval-
uation scheme. In addition, we also define a metric which we call Average
Speed Up (ASU) to characterize the speed gain with respect to a known
benchmark.

6.2.1. PW Evaluation: Detector Error Trade-off (DET)

As the name clearly suggests, the PM method determines performance
based on cropped positive and negative image windows. This approach iso-
lates classifier performance from overall detection system, thus, making it
ideal for characterizing classifier performance[9]. A widely used metric in
this category is Detection Error Trade-off (DET). This metric depicts DET
curve with miss rate (MR) versus False Positives Per Window (FPPW) on a
log-log scale[5], where MR = 1−TPR = 1− TP

TP+FN
and FPPW = FP

FP+TN
.

This metric is principally used to report comparative results of the various
investigated detectors.

6.2.2. Average Speed Up (ASU)

We define the ASU criterion to compare the performance of a trained
detector in terms of computation time. Recall that for a cascade detector
the average computation time for a given candidate window is affected by
the FPR of each node. Let K be the total number of nodes in the cascade,
FPRk be the false positive rate and ζk be the total computation time of the
kth node during detection. Assuming the nodal FPR characteristics hold on
a generic input image, the average time spent on a test candidate window,
ζav, can be estimated as ζav =

∑K

k=1(
∏k−1

z=0 FPRz)ζk.

ASU =
ζHOG

ζav
(6)

Using Dalal and Triggs[5] detector – which takes ζHOG per candidate
window – as a reference, the ASU over it is determined using equation 6.

28

Consequently, the ASU values reported henceforth are with respect to Dalal
and Triggs detector.

6.3. Implementation Details and Validation

Recall that the cascade node training is governed by two parameters:
the nodal FPRk and TPRk. In all the experiments a nodal TPRk value
of 1.0 and FPRk of 0.5 is used unless specified otherwise (the exception is
the variant discussed in section 6.4.2). During training the TPR and FPR
values exhibited by the weak classifiers or cascade node is determined on a
separate validation set. Actually, the training dataset is initially divided into
a 60% training and a 40% validation set; the new training set is used to train
the weak classifiers and nodal classifiers whereas the validation set is used
to determine detection performance exhibited. Once all feature selection is
done, the node is retrained using the complete training set. This is applied
when considering both the Ladybug and INRIA datasets (section 6.1).

In the following subsections, the validation steps taken to determine free
parameters that are crucial for the performance of the different presented
nodal classifier training schemes are discussed. These parameters are: (1)
the depth of the decision trees used (D), (2) number of features randomly
sampled (Rs) with the Random+AdaBoost and CTWeightedAdaBoost strate-
gies, and (3) the computation time smoothing coefficient (β) used in the
CTWeightedAdaBoost variant. In all cases, a training and validation set
from the Ladybug dataset is used.

6.3.1. Decision Tree Depth (D)

0 100 200 300 400

0.08

0.1

0.12

0.14

0.16

0.18

0.2

AdaBoost Iterations (# of feats)

E
rr

or
 R

at
e

1
2
3
4
5
8
10
15

(a)

0 50 100 150

0.05

0.1

0.15

0.2

AdaBoost Iterations (# of feats)

E
rr

or
 R

at
e

1
2
3
4
5
8
10
15

(b)

0 50 100 140
0

0.05

0.1

0.15

0.2

AdaBoost Iterations (# of feats)

E
rr

or
 R

at
e

1
2
3
4
5
8
10
15

(c)

Figure 13: Decision tree depth validation for (a) Haar like features – Dhaar,
(b) EOH features – Deoh, and (c) CS-LBP features – Dcslbp.

The depth of the decision trees for Haar like features (Dhaar), EOH (Deoh),
and CS-LBP (Dcslbp) features are validated as follows. Using only a single

29

cascade node, a strong classifier is trained using AdaBoost with each in-
dividual feature families, and its performance on a validation set analyzed.
Multiple runs are performed using different decision tree depths. On each Ad-
aBoost iteration, only 2, 000 randomly sampled features are used to limit the
validation time to a reasonable duration. For Haar like, EOH, and CS-LBP
features, the error rate on the validation set as a function of the AdaBoost it-
eration for different decision tree depths is shown in figures 13a, 13b, and 13c
respectively. Based on this, decision tree depths of Dhaar = 2, Deoh = 3, and
Dcslbp = 3 are used. Computing Fisher LDA weights, for CS-LBP features,
per each node makes the classifier over-fit on the training set with deteri-
orated performance on the validation set. Hence, the Fisher LDA weights
computed at the first node are used throughout the cascade by learning only
new decision trees.

6.3.2. Number of Randomly Sampled Features (Rs)

At each AdaBoost iteration in Random+AdaBoost and CTWeightedAd-
aBoost variants, we use a randomly selected subset of features (as is com-
monly done, e.g., in[55, 50]). According to Scholkopf and Smola[36](pp. 180),
given a set of samples, it can be guaranteed to sub sample amongst the best
rs percentage of estimates with a probability p by randomly sampling a sub
sample of size log(rs)

log(p)
. This reduced set will do as well as considering the

entire set with a probability p. In our case, to select amongst the best 5%
features with a 99% probability, we need to sample a total of log(0.05)

log(0.99)
≈ 299

samples. In our implementation we use 3000 features which is way above the
suggested number of samples and guarantees inclusion of relevant features
with a high probability. Hence, Rs = 3000.

Table 2: Values of different parameters obtained with the validation step.

Parameter Description Value

TPRk required True Positive Rate for node k (fixed case) 1.0
FPRk required False Positive Rate for node k (fixed case) 0.5
Dhaar decision tree depth for Haar like features 2
Deoh decision tree depth for EOH features 3
Dcslbp decision tree depth for CS-LBP features 3
Rs number of randomly sampled features 3000
β computation time smoothing coefficient 0.2

G
number of cascade nodes per feature family 3 (ladybug training)

(for Hierarchical + AdaBoost) 5 (inria training)

30

6.3.3. Computation Time Smoothing Coefficient (β)

The computation time smoothing exponential factor, β, used in the time
weighted AdaBoost is determined empirically through a validation step. The
CTWeightedAdaBoost is used to learn a single nodal cascade using different
β values on a subset of the training set. Then the classification errors on a
validation set and the conglomerated computation time of the trained node
is determined to select the best value that offers a good trade-off. Figure 14
shows the validation result plots for different values of β. Clearly, higher β
reduces smoothing, in effect, features with low computation time dominate
improving speed but with poor detection performance. Lower values favor
complex features. As a compromise, a β value of 0.2 is used to train the final
cascade classifier in this scheme.

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

AdaBoost Iterations

E
rr

o
r

R
a
te

Figure 14: Error rate on a validation set using the computation time weighted
AdaBoost trained with different β values.

The different parameters tuned in the validation step are summarized in
table 2.

6.4. Results

The results corresponding to all experiments are reported in this section
categorized under each dataset.

6.4.1. Ladybug Dataset

We train five different cascade detectors (see section 5) using its training
set and test on its test set. Since this dataset is composed of cropped positive

31

samples, we use the PW evaluation to determine detection performance. The
main obtained results are depicted in figure 15 and summarized in table 3.
Clearly Pareto+AdaBoost and Hierarchy+AdaBoost result in the best detec-
tion performance, 2.9% MR, followed by Dalal and Triggs detector trained on
this dataset, 3.0%, at 10−4 FPPW. CTWeightedAdaBoost shows the lowest
detection performance with a 10% MR at 10−3 FPPW, but it manages to
learn a detectors that is 1.8× faster than Dalal and Triggs HOG. The Hier-
archy+AdaBoost detector achieves a 8.4× speed improvement. In terms of
detection, BIP+AdaBoost trails behind Random+AdaBoost with marginal
loss. But, the most important result to notice is that BIP+AdaBoost results
in a drastic 42.7x speed up over Dalal and Triggs with only a 7% loss in MR
at 10−4 FPPW. The main reason for this speed up is that BIP+AdaBoost
systematically uses cheap features in the initial stages of the cascade and
only starts using computationally expensive features at later stages. The
trained classifier has 10 cascade nodes with CSS features initially appearing
at the 6th node and HOG at the final stage; figure 16 depicts this showing
the selected features at some of the nodes.

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

m
is

s
 r

a
te

false positives per window (FPPW)

DET - Person Detection

HOG
Random + AdaBoost

Pareto + AdaBoost
CTWeightedAdaBoost

BIP + AdaBoost
Hierarchy + AdaBoost

Figure 15: DET of different detectors trained and tested on the Ladybug dataset.

Apparently, Pareto+AdaBoost and Random+AdaBoost result in wors-
ened speeds. This is because AdaBoost always privileges the most discrim-
inant feature, irrespective of computation cost, from the pool of features
passed to it, and both Pareto-Front extraction and random sampling are
likely to pass such kind of complex features. Consequently, the set of features
selected in the first node result in a conglomerate that is effectively compu-
tationally demanding than Dalal and Triggs detector. CTWeightedAdaBoost

32

(a) node-0 (b) node-1 (c) node-2 (d) node-5 (e) node-9

Figure 16: Illustration of the different features selected on different
nodes of cascade (superimposed on an average human gradient image) of
BIP+AdaBoost trained on Ladybug dataset. Black and white rectangular
regions are Haar features, red for EOH, blue for CS-LBP, crossed white
boxes for CSS, violet HOG features.

Table 3: Summary of the cascade detector trained on the Ladybug dataset.
Miss rate is reported at 10−4 FPPW.

Detector Feature Proportion MR ASU

Haar CS-LBP CSS EOH HOG

Dalal and Triggs[5] – – – – 100% 3.0% 1.0x

Pareto + AdaBoost 10.7% 0.0% 0.0% 0.0% 83.7% 2.9% 0.7x

CTWeightedAdaBoost 53.3% 33.3% 0.0% 10.0% 3.3% 25.0% 1.8x

Random + AdaBoost 51.6% 6.2% 1.5% 36.0% 4.7% 8.0% 0.6x

Hierarchy + AdaBoost 17.8% 67.4% 7.6% 5.1% 2.1% 2.9% 8.4x

BIP + AdaBoost 54.3% 8.6% 8.5% 25.7% 2.8% 10.0% 42.7x

improves upon this by selecting a slightly less complex feature. The intuition
of using cheaper features initially followed by complex features, the Hierar-
chical+AdaBoost detector, pays off both in terms of detection performance
and computation time improvement. But, the computation time improve-
ment is much lower than the BIP+AdaBoost variant. Figure 17 shows the
features selected in the initial cascade of the four trained detectors. The
results for Hierarchy+AdaBoost are not shown as they convey no useful in-
formation – containing 14 Haar like features that clutter the window. Ran-
dom+AdaBoost, Pareto+AdaBoost, and CTWeightedAdaBoost, have HOG
features in this node contributing to reduced speed; on the contrary, for
BIP+AdaBoost, only CS-LBP and Haar features are used. These result are
obtained using a fixed nodal FPRk of 0.5 for all constructed nodes and the
obtained results are very precise that altering the FPR is not necessary.

The proportion of features present from each family is also consistent with

33

(a) Random+AdaBoost (b) Pareto+AdaBoost (c) CTWeightedAdaBoost (d) BIP+AdaBoost

Figure 17: The features selected and used in the first node of the cascade
under the different learning approaches with the Ladybug dataset superim-
posed on an average human gradient image. Black and white rectangular
regions show Haar features, blue for CS-LBP, crossed white boxes represent
CSS features and their position indicates the reference block, and finally,
violet shows the spatial region spanned by the concatenated HOG blocks.

the underlying training scheme adopted (see Table 4). Both CTWeightedAd-
aBoost and BIP+AdaBoost emphasize on computation time, accordingly,
they have the highest proportion of Haar features in their trained model.
They also have the least proportion of HOG features taking only 3.3% and
2.8%, respectively, of the total proportion of features. Pareto+AdaBoost fa-
vors complex features with superior detection performance which explains
the 83.7% HOG features presence.

6.4.2. INRIA Dataset

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

m
is

s
 r

a
te

false positives per window (FPPW)

DET - Person Detection

HOG
Pareto + AdaBoost

Random + AdaBoost
CTWeightedAdaBoost
Hierarchy + AdaBoost
BIP + AdaBoost (Fix.)
BIP + AdaBoost (Ad.)

Figure 18: DET of different detectors trained and tested on the INRIA
dataset.

34

Similar results obtained for the INRIA dataset are shown in figure 18 and
summarized in table 4. As this dataset is challenging, two variants of the
BIP+AdaBoost classifier are trained. In the first case, a fixed nodal FPRk

of 0.5 is used for all nodes, called BIP+AdaBoost (Fix). In the second case,
an adaptive FPR is employed which starts at 0.3 in the initial stage and
continues training nodes, whenever a solution for the BIP optimization does
not exist, this constraint is relaxed/incremented by 0.1 and the procedure
continues from that node likewise until all negative samples are depleted.
This is called BIP+AdaBoost (Ad). The best detection results at 10−4 FPPW
are obtained by the Random+AdaBoost and Hierarchy+AdaBoost variants
(Pareto+AdaBoost is edged out marginally). But, this time both variants
of BIP+AdaBoost beat Dalal and Triggs detector at 10−4 by more than
2%. On top of this, the BIP+AdaBoost(Fix) achieves a 15.6x speed up
while that of BIP+AdaBoost (Ad) trails with a 9.22x speed up. As expected
the Hierarchy+AdaBoost also results in improved speed (an ASU of 4.05×).
Random+AdaBoost, Pareto+AdaBoost, and CTWeightedAdaBoost variants
on the other hand result in increased computation time (even with respect
to [5]). The reason is all these three start off with complex features in the
initial nodes. Figure 19 shows the features selected in the first node of all
trained detector variants. Only the ones employing BIP do not have HOG
features in the initial stage. Even though the CTWeightedAdaBoost variant
does not result in a significant boost in speed, it is twice as much faster as its
random counterpart (Random+AdaBoost) with marginal loss in miss rate.
The explicit computation time consideration does help even in this case.

Table 4: Summary of the cascade detector trained on the INRIA datasets.
Miss rate is reported at 10−4 FPPW.

Detector Feature Proportion MR ASU

Haar CS-LBP CSS EOH HOG

Dalal and Triggs[5] – – – – 100% 11.0% 1.0x

Pareto + AdaBoost 42.8% 14.5% 7.8% 25.6% 9.3% 7.0% 0.4x

Random + AdaBoost 26.3% 10.8% 3.7% 53.5% 5.6% 6.0% 0.4x

CTWeightedAdaBoost 86.7% 9.1% 2.4% 0.0% 3.9% 14.6% 0.8x

Hierarchy + AdaBoost 26.6% 9.7% 5.7% 24.9% 33.% 6.8% 4.05x

BIP + AdaBoost (Fix) 60.4% 10.8% 8.0% 9.7% 11.0% 8.0% 15.6x

BIP + AdaBoost (Ad) 55.0% 14.6% 8.1% 9.3% 13.0% 7.4% 9.22x

35

Concerning the BIP+AdaBoost variants, as the initial FPR constraints
are stringent on the BIP+AdaBoost (Ad) variant, it favors relatively dis-
criminant features with increased computation time. This contributes to
its superior detection performance, over BIP+AdaBoost (Fix), throughout
the FPPW range shown in figure 18. Observe in table 4, there are more
proportion of Haar like features (5.4% more) and less proportions of HOG
features (2.0% less) in the fixed variant compared to the adaptive variant
which results in the increased speed.

(a) Random+AdaBoost (b) Pareto+AdaBoost

(c) CTWeightedAdaBoost (d) BIP+AdaBoost(Fix) (e) BIP+AdaBoost (Ad)

Figure 19: The features selected and used in the first node of the cascade
trained on the INRIA dataset superimposed on an average human gradient
image. Black and white rectangular regions are Haar features, blue for CS-
LBP, red for EOH, crossed white boxes for CSS, violet HOG features.

Figure 20 illustrates a few of the selected features overlaid on an average
human gradient image for BIP+AdaBoost (Ad). Observe that all selected
features capture discriminant facets of people. Figure 21 shows histogram
of the selected features, with relative proportions, for the first 9 nodes of
both the fixed and adaptive variants. Clearly, the fixed variant initially uses
cheaper features and increases along the cascade both in number and com-
plexity. On the contrary, for the variable variant, complex features appear
in the initial nodes and increase in number along the cascade.

36

(a) node 0 (b) node 1 (c) node 2

(d) node 8

Figure 20: Sample depictions of the heterogeneous features selected at differ-
ent nodes of the cascade BIP+AdaBoost (Ad) trained on the INRIA dataset
using an adaptive FPR. Black and white rectangular regions are Haar fea-
tures, blue for CS-LBP, crossed white boxes for CSS, violet HOG features.

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Fixed FPR Adaptive FPR

Figure 21: Histogram of selected features in the first 9 nodes of the model
trained on the INRIA dataset using both fixed FPR of 0.5 and adaptive FPR.

7. Discussions

The features presented in this work capture varying cues relevant to peo-
ple in an image. They are highly variable in terms of discriminative ability as
well as computation time. Given this kind of feature pool with diverse char-
acteristics, extra care should be given to the way these features are mined
to build a people detector. This work favors a sparser solution by employing
feature selection to reduce the set to a few performant ones.

Settling on feature selection, to mine relevant features out of the pool, we

37

have investigated five different approaches all based on the popular AdaBoost
with cascade of nodes detector. The approaches are: Random+AdaBoost,
which uses discrete AdaBoost to learn a strong nodal classifier by randomly
sampling Rs features on each boosting iterations and adding the best one to
the ensemble; Pareto+AdaBoost, which uses Pareto-Front analysis to retain
only non-dominated features with respect to TPR, FPR, and computation
time, and then builds a nodal strong classifier with discrete AdaBoost and
the retained subset of features; CTWeightedAdaBoost, which makes use of
a modified AdaBoost that selects the best features using the classification
error weighted by a computation time measure to enable AdaBoost to give
consideration for feature computing speed; Hierarchy+AdaBoost, which takes
on a coarse-to-fine hierarchical arrangement approach to use computation-
ally cheap features in the initial nodes of the cascade and then consider
incrementally complex features in subsequent cascade nodes; and finally,
BIP+AdaBoost which uses a discrete optimization formulation based on BIP
to retain the minimum number of features that fulfill the stipulated detec-
tion performance with the minimum combined computation time. All five
approaches have been evaluated on proprietary and public datasets thor-
oughly and compared to the state-of-the-art. In terms of detection, all five
achieve between 6.0% and 14.6% miss rates at 10−4 FPPW on the INRIA
dataset which confirms that considering heterogeneous features is relevant.

The Random+AdaBoost variant avoids the need to iterate through all
features in the pool, at each boosting iteration, which would have otherwise
made the training non-realistic. As long as the number of randomly sampled
features are high, it will lead to comparable results as the exhaustive search.
In terms of detection, this approach is expected to lead to the best (compared
to the four variants) result as it always picks the best discriminative features
iteratively. The downside of this approach is, reflecting the properties of
AdaBoost, it always selects features based on classification performance blind
to feature computation time. If there are two competing features with only
a slight difference in classification error but big difference in computation
time, the minimum error feature will be selected. This characteristics is
exemplified in the evaluations as it leads to the worst detector speed, 0.4×
Dalal and Triggs HOG, with amongst the best detection performance, e.g.,
6.0% MR at 10−4 FPPW on the INRIA dataset, in all cases.

To overcome the shortcomings of Random+AdaBoost, we investigated
CTWeightedAdaBoost variant. In the experimental results, this approach
achieves approximately 2× and 3× as much faster detector compared to the

38

Random+AdaBoost variant on the Ladybug and INRIA trained models re-
spectively. But, the modification down plays its detection performance lead-
ing to reduced detection rate. For example it achieves a 5.6% MR reduction
at 10−4 FPPW compared to Random+AdaBoost on the INRIA evaluation.
The third investigated scheme, Pareto+AdaBoost variant, avoids the exhaus-
tive search that needs to be done by AdaBoost and yet is guaranteed to pass
on the most performant features. This is clearly seen by the low miss rate
it exhibits on the test cases, 2.9% and 7.0% MR at 10−4 FPPW on the La-
dybug and INRIA dataset evaluations respectively. But, again as long as
computationally intensive discriminant features exist in the selection, which
is actually the case as observed in the experiments, AdaBoost is bound to
greedily favor the discriminant ones leading to computationally demanding
detector. These remarks are seen on the evaluation results, for example on
the INRIA test set, it achieves the second highest detection rate, 7.0% miss
rate at 10−4 FPPW, with the least frame rate, more than twice slower than
Dalal and Triggs HOG.

The fourth scheme termed as Hierarchy+AdaBoost uses a unique family
of features in each node. It starts with computationally cheap features, the
Haar like features, and continues until HOG, training G number of nodes with
each feature family, a kind of coarse-to-fine hierarchical detector. This simple
approach does indeed lead to both improved detection and speed compared
to Dalal and Triggs HOG – a 4.05× speed gain and a 3.2% improvement
on MR at 10−4 FPPW. But, as it has been demonstrated, the speed gain is
inferior to the BIP based approach.

The main approach presented, BIP+AdaBoost, makes explicit optimiza-
tion to select the features that achieve the required detection performance
with the minimum possible computation time. The two modes investigated
in this scheme are learned using a fixed nodal FPR and an adaptive nodal
FPR. Both variants result in a detector that is most considerate as both
detection and speed aspects are taken into account to come up with the best
compromise. The BIP+AdaBoost (Fix) variant for example achieves a 10.0%
and 8.0% MR at 10−4 on the Ladybug and INRIA datasets respectively. It
contains significant proportions (more than 54% on the Ladybug model and
more than 60% on the INRIA model) of Haar features and less proportions of
the costly features, e.g., only 2.8% and 11% HOG features in both datasets
respectively. This helps it achieve a 42.7× and 15.6× speed up over Dalal
and Triggs HOG using the Ladybug and INRIA trained models respectively.
Its adaptive variant trained on the INRIA dataset improves the detection

39

further achieving a 7.4% MR at 10−4 FPPW with a 9.22× speed up over
Dalal and Triggs HOG. The trained detector has more proportion of Haar
features (55.0%) and less proportion of HOG features (13.0%). Hence, it
can be safely concluded that the BIP based detector variants are the most
considerate ones as they work on both detection and speed aspects to come
up with the best compromise.

Another advantage of the BIP based framework is its flexibility with
respect to computational resource constraints and detection requirement. On
any dataset, the stipulated detection parameters used during training (nodal
TPRk and FPRk) can either be made stringent or relaxed to learn a model
that can either consume more or less computational resources respectively,
giving explicit control on the detection vs speed trade off. This has been
demonstrated with the adaptive and fixed detector variants trained on the
INRIA dataset.

Additionally, another flexibility of the framework is its ability to adapt
the complexity of the learned model to the challenge inherently present in
the training dataset. The framework takes advantage of the underlying chal-
lenge manifested by the training dataset to furnish an appropriate detector
model. For simpler datasets, it provides simpler model with increased frame
rate, e.g., the 42.7x improvement achieved with the Ladybug dataset trained
model contrary to the 9.22x improvement achieved with the INRIA dataset.
This quality would enable developing a detector that is suited for specific
scene/domain that reflects on the detection challenge, e.g., for indoor open
environment (like the hall of a shopping mall) application that might feature
less background clutter with upright people having less pose variability, with
faster frame rates. Most of the detectors listed in the state-of-the-art do
not have the ability to automatically change the complexity of the detector
based on the dataset. As an example, consider Dalal and Triggs HOG [5],
HogLbp[45], LatSvm-V1 [10], which have a fixed size high-dimensional classi-
fier that is always fixed irrespective of the dataset.

8. Conclusions

In this work, different strategies to train a people detector using heteroge-
neous pool of features have been investigated. Various experiments have been
carried out to investigate the advantages and shortcomings of each strategy
using proprietary and multiple public datasets. The obtained results ascer-
tain that complementary heterogeneous features lead to improved detection

40

performance, and under explicit consideration of computation time, lead to
improved frame rate as well. The different results also show the superiority of
the proposed BIP based feature selection strategy. The proposed BIP strat-
egy is quite capable in taking advantage of the diversity that exists in the
feature pool from detection as well as speed perspectives. Further improved
frame rates can also be achieved by parallelizing the trained model with the
help of specialized hardwares like a Graphical Processing Unit (GPU).

In the near future, we plan to investigate ways to achieve more faster
versions of the detector by focusing on implementation optimization and
specialized accelerator hardwares. Additionally, we are in the process of
integrating the proposed BIP based detector in a “tracking-by-detection”
framework for multi-person tracking. This will be used in robotic applica-
tions to better identify the trajectory of each individual in the vicinity for
acceptable human-aware robot navigation.

Acknowledgment

This work was supported by a grant from the French National Research Agency
(ANR) under project RIDDLE with grant number ANR-12-CORD-0003.

41

References

[1] A. Angelova, A. Krizhevsky, and V. Vanhoucke. Pedestrian detection with
a large-field-of-view deep network. In IEEE International Conference on
Robotics and Automation (ICRA’15), pages 704–711, May 2015.

[2] A. Angelova, A. Krizhevsky, V. Vanhoucke, A. Ogale, and D. Ferguson. Real-
time pedestrian detection with deep network cascades. In British Machine
Vision Conference (BMVC’15), September 2015.

[3] R. Benenson, M. Mathias, T. Tuytelaars, and L. Van Gool. Seeking the
strongest rigid detector. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’13), pages 3666–3673, June 2013.

[4] R. Benenson, M. Omran, J. Hosang, and B. Schiele. Ten years of pedestrian
detection, what have we learned? In Computer Vision - ECCV 2014 Work-
shops, volume 8926 of Lecture Notes in Computer Science, pages 613–627,
2015.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for human de-
tection. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’05), San Diego, CA, USA, June 2005.

[6] N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented his-
tograms of flow and appearance. In European Conference on Computer Vision
(ECCV’06), pages 428–441, Graz, Austria, May 2006.

[7] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for
object detection. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 36(8):1532–1545, Aug 2014.

[8] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel features.
In British Machine Vision Conference (BMVC’09), pages 91.1–91.11, Lon-
don,UK, September 2009.

[9] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An
evaluation of the state of the art. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 34(4):743–761, 2012.

[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part-based models. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 32(9):1627–1645, 2010.

42

[11] R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7(7):179–188, 1936.

[12] D. Gerónimo, A. López, A. Sappa, and T. Graf. Survey of pedestrian detec-
tion for advanced driver assistance systems. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(7):1239–1258, 2010.

[13] D. Gerónimo, A. M. López, D. Ponsa, and A. D. Sappa. Haar wavelets
and edge orientation histograms for on-board pedestrian detection. In Iberian
Conference Pattern Recognition and Image Analysis (IbPRIA’07), pages 418–
425, Girona, Spain, June 2007.

[14] M. Heikkil, M. Pietikinen, and C. Schmid. Description of interest rregions
with local binary patterns. Pattern Recognition, 42(3):425 – 436, 2009.

[15] S. Hussain and B. Triggs. Feature sets and dimensionality reduction for visual
object detection. In British Machine Vision Conference (BMVC’10), pages
1–10, Aberystwyth, UK, August 2010.

[16] L. Jourdheuil, N. Allezard, T. Chateau, and T. Chesnais. Heterogeneous ad-
aboost with real-time constraints - application to the detection of pedestrians
by stereovision. In International Conference on Computer Vision Theory and
Applications (VISAPP’12), pages 539–546, Rome, Italy, February 2012.

[17] K. Levi and Y. Weiss. Learning object detection from a small number of ex-
amples: The importance of good features. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’04), pages 53–60, Washington, DC,
USA, June 2004.

[18] R. Lienhart and J. Maydt. An extended set of haar-like features for rapid
object detection. In IEEE International Conference on Image Processing
(ICIP’02), pages 900–903, New York, USA, September 2002.

[19] J.-J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A learned mid-
level representation for contour and object detection. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’13), pages 3158–3165,
Portland, OR, USA, 2013.

[20] Z. Lin and L. S. Davis. A pose-invariant descriptor for human detection
and segmentation. In European Conference on Computer Vision (ECCV’08),
pages 423–436, Marseille, France, October 2008.

43

[21] S. Maji, A. Berg, and J. Malik. Classification using intersection kernel support
vector machines is efficient. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’08), pages 1–8, Anchorage, AL, USA, June 2008.

[22] A. A. Mekonnen, F. Lerasle, and A. Herbulot. Person detection with a com-
putation time weighted adaboost. In Advanced Concepts in Intelligent Vision
Systems (ACIVS’13), pages 632–644, Poznan,Poland, October 2013.

[23] A. A. Mekonnen, F. Lerasle, A. Herbulot, and C. Briand. People detection
with heterogeneous features and explicit optimization on computation time.
In International Conference on Pattern Recognition (ICPR’14), pages 4322–
4327, Stockholm, Sweden, August 2014.

[24] K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection based on a
probabilistic assembly of robust part detectors. In European Conference on
Computer Vision (ECCV’04), volume I, pages 69–81, Prague, Czech Repub-
lic, May 2004.

[25] A. Mogelmose, A. Prioletti, M. Trivedi, A. Broggi, and T. Moeslund. Two-
stage part-based pedestrian detection. In IEEE International Conference on
Intelligent Transportation Systems (ITSC’12), pages 73–77, Anchorage, AK,
USA, September 2012.

[26] Y. Mu, S. Yan, Y. Liu, T. Huang, and B. Zhou. Discriminative local binary
patterns for human detection in personal album. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’08), pages 1–8, Anchorage,
AK, USA, June 2008.

[27] W. Nam, P. Dollar, and J.-H. Han. Local decorrelation for improved pedes-
trian detection. In Advances in Neural Information Processing Systems
(NIPS’14), pages 424–432, 2014.

[28] T. Ojala, M. Pietikinen, and D. Harwood. A comparative study of texture
measures with classification based on featured distributions. Pattern Recog-
nition, 29(1):51 – 59, 1996.

[29] S. Paisitkriangkrai, C. Shen, and A. van den Hengel. Strengthening the effec-
tiveness of pedestrian detection with spatially pooled features. In Computer
Vision ECCV 2014, pages 546–561. Springer International Publishing, 2014.

[30] S. Paisitkriangkrai, C. Shen, and J. Zhang. Fast pedestrian detection using
a cascade of boosted covariance features. IEEE Transactions on Circuits and
Systems for Video Technology, 18(8):1140–1151, 2008.

44

[31] H. Pan, Y. Zhu, and L. Xia. Efficient and accurate face detection using
heterogeneous feature descriptors and feature selection. Computer Vision
and Image Understanding, 117(1):12 – 28, 2013.

[32] C. Papageorgiou and T. Poggio. A trainable system for object detection.
IJCV, 38(1):15–33, 2000.

[33] Point Grey Inc. Ladybug2. http://www.ptgrey.com/products/ladybug2/,
2012. [Online; accessed 29-January-2013].

[34] T. J. V. Roy and L. A. Wolsey. Valid inequalities for mixed 0-1 programs.
Discrete Applied Mathematics, 14(7):199–213, 1986.

[35] R. E. Schapire. The boosting approach to machine learning: An overview.
Lecture Notes in Statistics, pages 149–172, 2003.

[36] B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT Press, Cambridge,
MA, USA, 2001.

[37] W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis. Human detec-
tion using partial least squares analysis. In IEEE International Conference
on Computer Vision (ICCV’09), pages 24–31, Kyoto, Japan, October 2009.

[38] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. Lecun. Pedestrian de-
tection with unsupervised multi-stage feature learning. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’13), pages 3626–3633,
Washington, DC, USA, 2013.

[39] M. Szarvas, A. Yoshizawa, M. Yamamoto, and J. Ogata. Pedestrian detection
with convolutional neural networks. In IEEE Intelligent Vehicles Symposium
(IV’05), pages 224–229, Las Vegas, NV, USA, June 2005.

[40] D. Tang, Y. Liu, and T. Kim. Fast pedestrian detection by cascaded ran-
dom forest with dominant orientation templates. In British Machine Vision
Conference (BMVC’09), pages 1–11, London, UK, September 2012.

[41] Y. Tian, P. Luo, X. Wang, and X. Tang. Pedestrian detection aided by
deep learning semantic tasks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’15), pages 5079–5087, 2015.

[42] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. Efficient object
localization using convolutional networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’15), pages 648–656, 2015.

45

http://www.ptgrey.com/products/ladybug2/

[43] P. A. Viola and M. J. Jones. Robust real-time face detection. International
Journal of Computer Vision, 57(2):137–154, 2004.

[44] S. Walk, N. Majer, K. Schindler, and B. Schiele. New features and insights for
pedestrian detection. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’10), pages 1030–1037, San Francisco, CA, USA, June
2010.

[45] X. Wang, T. Han, and S. Yan. An HOG-LBP human detector with partial
occlusion handling. In IEEE International Conference on Computer Vision
(ICCV’09), Kyoto, Japan, October 2009.

[46] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection.
In IEEE International Conference on Computer Vision (ICCV’13), pages 17–
24, Washington, DC, USA, 2013.

[47] C. Wojek and B. Schiele. A performance evaluation of single and multi-feature
people detection. In DAGM-Symposium, pages 82–91, Munich, Germany,
June 2008.

[48] L. A. Wolsey. Strong formulations for mixed integer programs: Valid inequal-
ities and extended formulations. Mathematical Programming, 97(7):423–447,
2003.

[49] B. Wu and R. Nevatia. Detection of multiple, partially occluded humans in a
single image by bayesian combination of edgelet part detectors. In IEEE In-
ternational Conference on Computer Vision (ICCV’05), pages 90–97, Beijing,
China, October 2005.

[50] B. Wu and R. Nevatia. Optimizing discrimination-efficiency tradeoff in inte-
grating heterogeneous local features for object detection. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’08), Anchorage, AK,
USA, June 2008.

[51] S. Zhang, C. Bauckhage, and A. Cremers. Informed haar-like features improve
pedestrian detection. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’14), pages 947–954, June 2014.

[52] S. Zhang, R. Benenson, and B. Schiele. Filtered channel features for pedes-
trian detection. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR’15), Boston, MA, USA, 2015.

46

[53] G. Zhao and M. Pietikainen. Dynamic texture recognition using local binary
patterns with an application to facial expressions. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(6):915–928, 2007.

[54] L. Zhao and C. Thorpe. Stereo-and neural network-based pedestrian detec-
tion. In IEEE International Conference on Intelligent Transportation Systems
(ITSC’99), pages 298–303, Tokyo, Japan, October 1999.

[55] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan. Fast human detection
using a cascade of histograms of oriented gradients. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA,
June 2006.

47

	Introduction
	Overview and Related Work
	Proposed People Detector Framework
	Features and Weak Classifiers
	Heterogeneous Feature Set
	Haar Like Features
	Edge Orientation Histogram (EOH)
	Local Binary Pattern (LBP)
	Color Self Similarity (CSS)
	 Histogram of Oriented Gradient (HOG)

	Weak Classifiers
	Computation Time

	Feature Selection and Nodal Strong Classifier Learning
	BIP based Classifier Learning
	Pareto-Front Extraction
	Binary Integer Programming (BIP)
	Discrete AdaBoost

	Other Approaches
	Pareto-Front with AdaBoost
	AdaBoost with Random Feature Sampling
	Computation Time Weighted AdaBoost
	Coarse-to-Fine Hierarchical Arrangement

	Experiments and Results
	Visual Datasets
	Ladybug Dataset
	INRIA Person Dataset

	Evaluation Metrics
	PW Evaluation: Detector Error Trade-off (DET)
	Average Speed Up (ASU)

	Implementation Details and Validation
	Decision Tree Depth (D)
	Number of Randomly Sampled Features (Rs)
	Computation Time Smoothing Coefficient ()

	Results
	Ladybug Dataset
	INRIA Dataset

	Discussions
	Conclusions

