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Semantic browsing of sound databases
without keywords

Grégoire Lafay1, Nicolas Misdariis2, Mathieu Lagrange1, Mathias Rossignol2
(gregoire.lafay@irccyn.ec-nantes.fr)

IRCCyN, Ecole Centrale de Nantes 1 STMS Ircam-CNRS-UPMC 2

In this paper, we study the relevance of a semantic or-
ganization of sounds to ease the browsing of a sound
database. For such a task, semantic access to data is tra-
ditionally implemented by a keyword selection process.
However, various limitations of written language, such as
word polysemy, ambiguities, or translation issues, may bias
the browsing process.

We present and study the efficiency of two sound pre-
sentation strategies that organize sounds spatially so as to
reflect an underlying semantic hierarchy. For the sake of
comparison, we also consider a display whose spatial or-
ganization is only based on acoustic cues. Those three dis-
plays are evaluated in terms of search speed in a crowd-
sourcing experiment using two different corpora: the first
is composed of environmental sounds from urban envi-
ronments and the second of sounds produced by musical
instruments. Coherent results achieved by considering the
two different corpora demonstrate the usefulness of using
an implicit semantic organization to display sounds, both
in terms of search speed and of learning efficiency.

Audio content management and display, Semantic sound
data mining

0 Introduction

With the growing capability of recording and storage
devices, the problem of indexing large audio databases has
recently been the object of much attention [22]. Most of
that effort is dedicated to the automatic inference of
indexing metadata from the actual audio recording
[23, 21]; in contrast, the ability to browse such databases
in an effective manner has been less considered.

Thus, most media asset management systems are based
on keyword-driven queries. The user enters a word which
best characterizes the desired item, and the interface
presents him with items related to this word. The
effectiveness of this principle is primarily based on the

typological structure and nomenclature of the database.
However, for sound databases, several issues arise:

1. Sounds, as many others things, can be described in
many ways. Environmental sounds in particular may be
designated by their source (a car door), the action of
that source (the slamming of a car door) or their en-
vironment (slamming a car door in a garage) [8, 13, 2].
Designing an effective keyword-based search system re-
quires an accurate description of each sound, which has
to be suited to the sound representation of the user to be
effective.

2. Pre-defined verbal descriptions of the sounds made
available to the users may potentially bias their brows-
ing and final selection.

3. Localization of the query interface is made difficult as
the translation of some words referring to qualitative as-
pects of the sound, such as its ambiance, is notoriously
ambiguous and subject to cultural specificities.

4. Unless considerable time and resources are invested
into developing a multilingual interface, any system
based on verbal descriptions can only be used with re-
duced performance by non-native speakers of the cho-
sen language.

To circumvent those issues, not relying on keywords is
desirable. However, conveying semantics remains a
necessity for ease of browsing, which raises the question
of what alternate means, other than written language, can
be used to that end.

We thus consider in this paper three means of
displaying sounds without relying on any textual
representation, all based on a spatial organization of
sounds. The first one, considered as a reference baseline,
does not rely on any semantic information and positions
sounds according to their acoustical properties (time
averaged spectral features). The second and third displays
exhibit a spatial organization based on a predefined
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hierarchical semantic organization; those last two displays
differs by how semantics are used.

Their effectiveness is studied through a search-based
task whose aim is to find a given target sound by browsing
the database using the display under evaluation. Two
corpora are considered for this study: the first one is
composed of sounds recorded in a urban environment, and
the second of sounds produced by musical instruments.

The paper is organized as follows: in Section 1,
previous work on the topic of sound database browsing is
reviewed. The two corpora used in this study are then
introduced in Section 2. The three displays under
evaluation are next described in Section 3, and the
crowdsourcing test used to compare them using the two
different corpora is presented in Section 4. The outcomes
of those experiments are discussed in Sections 5 and 6.

1 Previous work

Most of the research effort in the sound design and
Music Information Retrieval (MIR) communities is
focused on acoustical based indexing and browsing
[20, 19, 7, 16]. Typically, the items (sound effects or
pieces of music) are modeled by processing the digital
audio waveform through some signal processing pipeline
in order to get a compact description of each item [5],
with sometimes additional textual features. Then,
statistical projections or embedding techniques, like
Principal Components Analysis (PCA) [12], Multi
Dimensional Scaling (MDS) [17, 4], Self Organizing
Maps (SOM) [14, 15, 9] and the like are used to project
the items in a two or three dimensional space while
preserving as much as possible the distances among them.
One of the advantages of such an approach is its ability to
scale to very large databases [18] as it does not need any
kind of manual annotation and allows the user to search
by similarity efficiently according to acoustical properties.

However, acoustical models are inherently subject to
observation noise and biases. Selecting the most relevant
features to achieve the correct projection of the data may
only be performed by an expert user, taking into account
the specifities of the data. If done a priori by an expert or
by some above cited dimensionality reduction technique,
the induced bias can strongly limit the users’ ability to
access what they search for. In that respect, semantic tags,
if available, have the advantage of implicitly structuring
the similarity space, thus possibly easing the browsing
process even if the actual tags are not – as in this study –
explicitly exposed to the user.

2 Datasets

The datasets considered in this study are respectively
composed of 149 urban environmental sound events and
137 sounds produced by musical instruments.

In the first corpus, a sound is characterized by a tag
describing the physical source of the sound (man-yelling,
car-passing). Sounds are then hierarchically grouped into
classes according to their tags (car > car-passing; car >

Level 0

(top class)

Level 1 Level 2

(leaf class)

Traffic Truck
Truck
passing

Truck
starting

car

Human
voice

Fig. 1. Semantic hierarchical structure of the dataset of urban
environmental sounds.

Traffic

Truck

Truck
starting

Fig. 2. Semantic displays are based on the semantic hierarchical
structure of the dataset.

car-starting). Those classes are in turn packed into classes
until high level classes describing broader concepts are
reached (traffic > car > car-passing). The sound dataset
is thus organized into a hierarchical structure of semantic
classes as described in Figure 1, where the sound samples
of the dataset are the leaf semantic levels. All the other
classes are represented by a prototype sound that best
characterizes the sounds belonging to the class.

In order for the semantic hierarchical structure to be
perceptually valid, the tags that describe the classes are
chosen from sound categories presented in studies
addressing environmental auditory scenes perception
[13, 2, 6]. In cognitive psychology, sound categories may
be regarded as intermediaries between collective sound
representations and individual sensory experiences [6]. It
is our belief that using such category names to build the
hierarchical structure makes it perceptually motivated, and
can thus help the users to efficiently browse the dataset.

Similarly, the second corpus also has a semantic
organization: high and mid level classes categorize
musical instruments according to the means by which
sound is produced, while leaf level classes are related to
specific instruments (string > plucked-string > viola;
brass > ordinario > trumpet).

2 J. Audio Eng. Sco., Vol. 1, No. 1, 2016 January



PAPERS

Fig. 3. Acoustical Display for the urban sound dataset (AD).
Colors and legend are removed during the experiment.

3 Displays

The aim of the displays described in this section is to
allow the user to efficiently browse the sound datasets
without any written textual help. In all displays, each
sound is graphically represented by a filled circle which,
once clicked, plays the actual sound. The spatial
organization of circles is specific to each display.

As a reference, an Acoustic Display (AD) provides a
spatial representation based on acoustic descriptors. Each
sound is described by time-averaged Mel-Frequency
Cepstrum Coefficients (MFCCs) computed with standard
parameter settings (13 lowest quefrency coefficients are
kept out of 40). The Euclidean distance between time
averaged features is then computed for each sound pair. A
non metric multidimensional scaling (MDS) with
Kruskal’s normalized stress [11] is then employed to
project the data into two dimensions according to this
distance, as shown on Figures 3 and 4. The latter exhibit a
clear distinction between percussive (left) and sustained
sounds (right).

Among the several alternatives that exists, MFCCs
features are chosen as they are widely used in the audio
processing community. MDS is selected for 2D projection
as it has a lower sensitivity to outliers than the PCA and
do not relyi on any parameter optimization, unlike the
SOM approach.

Two semantically oriented displays are then proposed,
called Full Semantic Display (FSD) and Progressive
Semantic Display (PSD). Both display consider the
hierarchical structure of the dataset to organize sounds.
Each sound class is represented by a filled circle. Circles
are then packed together according to the hierarchical
semantic organization of the dataset, as shown in Figure 2.

Fig. 4. Acoustical Display for the musical sound dataset (AD).
Colors and legend are removed during the experiment.

Thus, subclasses belonging to the same class are close to
each others. Circle packing functions of the D3.js
(Data-Driven Documents) javascript library [1] are used to
distribute the sound classes in the space. Depending on the
display, the user can either access each leaf class directly
(FSD), or has to click through intermediate levels of the
hierarchy (PSD).

More precisely, with the FSD display, users can directly
visualize the whole hierarchy, down to the leaf classes,
while with the PSD display, users only have access, at
first, to the intermediate semantic levels of the hierarchy.
Upon first using PSD, they observe circles representing
the top classes of the semantic hierarchical structure of the
dataset. When users click on a circle, they hear the sound
prototype of the class and the subclasses are progressively
revealed, represented by white circles contained in the
circle that has just been clicked. The same action is
repeated until the user reaches the leaf classes of the
hierarchy. The leaf classes are represented with small gray
circles, indicating that there is no subclass to uncover.
Thus the PSD has a constrained exploration system. Each
time a sub-circle is automatically revealed, its sound
prototype is played. Users may stop the discovery process
by clicking on an other circle. In this display, the leaf
classes are distributed in the same manner as FSD. Thus,
the spatial configuration of the unfolded version of PSD,
which may be obtained after discovering all the classes
and subclasses, is identical to the one of FSD.

J. Audio Eng. Sco., Vol. 1, No. 1, 2016 January 3
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4 Experiments

4.1 Objective
During this experiment, the three displays are compared

using two corpora: the urban sound corpus and the
musical sound corpus. By comparing AD and xSD (the
two semantic displays), the goal is to evaluate the relative
efficiencies of semantic based and acoustic based spatial
configurations. By comparing FSD and PSD, we study the
impact of an enforced hierarchical exploration of the
corpus by the user. The goal is to check if constraining the
user to first browse the high levels of the hierarchy helps
him to grasp and memorize the spatial configuration and
the organization of the sound classes.

4.2 Experimental protocol
We evaluate and compare those three displays with a

crowdsourcing web-based experiment1 for which we
adopt a between subject approach, i.e. a subject can only
test one display. In this experiment, subjects are asked to
successively retrieve 13 target sounds among the whole
dataset. The target sounds are selected such that there are
at least two target sounds in each top-level class of the
semantic hierarchical structure of the dataset. To reduce
order effects, target sounds are presented to each subject
in a random order.

First, the subject clicks a button to listen to the target
sound. They may then replay the target sound as many
times as they like, even while browsing. A timer starts
when the subject clicks on a circle for the first time. When
the target sound is found, the subject puts an end to the
search by clicking on the Click if found button. This action
1) stops the timer and 2) loads a new target sound. If the
subject designates an incorrect sound, an error message
appears, and the experiment goes on with the same target
sound.

The experiment ends when all the target sounds have
been found. An important feature of the PSD display is
that it is not reinitialized at each change of target sound.
Thus, when a circle is unfolded, its content remains
visible during the whole experiment.

4.3 Data Collection
Four types of data are collected during the experiment:

r the absolute duration, which is the total duration of the
entire experiment, including breaks between two target
sound searches;r the duration of each search. The sum of the 13 search du-
rations, which is the absolute duration minus the break
times between two target sound searches, is called the
total search duration;

1The tests are available at http://soundthings.
org/research/speedSoundFinding/index.html
and http://soundthings.org/research/
speedSoundFindingMusic/index.html, each of
the 3 displays is also available by appending a digit from 1 to 3
to index in the above cited url.

r the name of each sound which has been listened to (from
which the number of heard sounds can be deduced);r the time at which each sound has been heard.

4.4 Apparatus
A crowdsourcing approach is adopted. Subjects are

recruited using research mailing list and are only allowed
to perform the experiment once, and on one interface only.
All sounds of the dataset are normalized to the same root
mean square (RMS) level.

4.5 Participants
60 subjects have completed the experiment for the

urban sound dataset, 20 for each interface. 48 subjects
have completed the experiment for the urban sound
dataset: 17 for the PSD interface, 16 for the FSD interface
and 15 for the AD interface.

4.6 Outliers Detection
Outlier detection is an important step of any

crowdsourcing experiment as experimenters do not
control the environment in which the subjects perform the
experiment [10, 3]. A commonly used method to detect
outliers in human-computer interaction studies is to
consider as outlier an observation which deviates of at
least ±2 standard deviation from the average [10].
However, as this latter method is not robust to the
presence of isolated extreme observations (as it is often
the case for crowdsourcing experiment), we follow the
method proposed by [10] and use the Inter-Quartile Range
(IQR). With this approach, an observation is considered to
be an outlier if its value is more than 3 ∗ IQR higher than
the third quartile or more than 3 ∗ IQR less than the first
quartile. This methods is applied in this study to the four
following criteria :

1. the absolute duration: to detect subjects who took ab-
normally long breaks between searches;

2. the total search duration: to detect subjects who spent
an abnormally long time to complete the experiment;

3. number of heard sounds: to detect subjects who had to
hear an abnormally high number of sounds to complete
the experiment;

4. the maximum number of times a target sound had to be
heard before being found: to detect subjects who had
difficulty to recognize the target sounds.

4.7 Statistical analysis
We use one-way ANOVA to test for statistical

significance. Post hoc analyses are done using two
samples t tests with Bonferroni correction. All statistical
analyses are performed at the 5% significance level.

5 Results on Urban Sounds

5.1 Outliers
Using the IQR method, 5 subjects are detected as

outliers for the urban experiment, and removed from the
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Fig. 5. Average and standard deviation for (a,d) the total search
durations, (b,e) the number of heard sounds and (c,f) the num-
ber of unique heard sounds; considering respectively the urban
dataset (a,b,c) and the music dataset (d,e,f).

analysis. 2 of those subjects used PSD and 3 used AD. 3
subjects are detected by considering the absolute
duration; they spent respectively 50 minutes, 5 hours and
17.5 hours to complete the experiment. One subject is
detected by considering the total search duration (46
minutes), and another by observing the total number of
heard sounds (1800 heard sounds, roughly 12 times the
total size of the corpus). Lastly, 2 subjects are detected by
observing the maximum number of times they had to hear
a target sound before finding it (4 and 8 times). It should
be noted that some subjects met several of the criteria.
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Fig. 6. Evolution of (a) the average search durations, (b) the av-
erage numbers of heard sounds, and (c) the average numbers of
unique heard sounds at each target sound search, considering the
urban dataset. Lines are linear regression fits.

5.2 Efficiency
To study the relative efficiency of the three displays,

three metrics are considered:

r the total search duration,r the number of heard sounds during the whole experi-
ment,r the number of unique sounds heard during the whole ex-
periment. By ”unique” we mean that, if a same sound is
heard 10 times during the 13 searches of the experiment,
it counts only for one.

The first two metrics quantify the notion of efficiency
by considering the time and the number of clicks needed
to achieve the task, ie. reach the target. The goal for those
values is to be as low as possible. The third data allows us
to measure the selectivity of the interfaces. A low number
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Fig. 7. Evolution of (a) the average search durations, (b) the av-
erage numbers of heard sounds, and (c) the average numbers of
unique heard sounds at each target sound search, considering the
music dataset. Lines are linear regression fits.

of unique heard sounds indicates that subjects understood
the spatial organisation of the dataset, and used this
knowledge to improve their searches. On the contrary, a
high number of heard sounds without duplication suggests
that the subject did not understand the way sounds are
organized in space, and tended to play all the sounds at
each search. The maximum number of unique heard
sounds is the corpus size: 149 sounds.

The averages and standard deviations for the three
metrics are presented in Figure 5. The type of display has
a significant effect on the the total search duration
(F [2,52] = 4; p < 0.05), the number of heard sounds
(F [2,52] = 6; p < 0.01) and the number of unique heard
sounds (F [2,52] = 9; p < 0.01).

Post hoc analysis on the total search duration
(Figure 5.a) shows no significant differences between the
three interfaces (PSD-FSD: p = 0.09; PSD-AD: p = 1;

FSD-AD: p = 0.07), although the FSD interface achieves
the best results.

Concerning the numbers of heard sounds (Figure 5.b),
FSD significantly outperforms the AD interface
(FSD-AD: p < 0.01), whereas PSD and FSD as well as
PSD and AD show similar outcomes (PSD-FSD:
p = 0.06; PSD-AD: p = 1).

Figure 5.c shows the results for the number of unique
heard sounds. This time the results of AD are significantly
higher (indicating an inferior performance) than those of
both PSD and FSD (PSD-AD: p < 0.01; FSD-AD:
p < 0.01). For AD, 75% of the subjects heard more than
140 sounds, and 25% heard at least 148 sounds, that is
almost the entire database. Considering PSD, 75% of the
subjects heard less than 134 sounds, versus 143 for FSD.
This time PSD and FSD perform equivalently (PSD-FSD:
p = 1).

According to those results, a spatial display following a
hierarchical organization of the dataset based on semantic
values (PSD and FSD) is more efficient than an
organization based on acoustic descriptors (AD) as it
allows the users to quickly apprehend the dataset range
and thus to specify their search. Furthermore the FSD
interface allows the users to retrieve the 13 target sounds
by listening to a smaller amount of sounds than the AD.
However, those two effects are significantly compromised
when users have to parse the entire hierarchy to reach the
first target sound, as in the PSD display. It seems that
enforcing an explicit exploration of the hierarchy disturbs
or confuses the user instead of allowing him to learn the
semantically motivated spatial organization of the classes.

5.3 Learning
We now study if and how users progressively acquire

knowledge about the spatial organization of the classes.
To do that, the evolution of the above described metrics
with respect to the search indexes is considered. Three
sets of collected data are used:

r the duration of each target sound search,r the number of heard sounds for each target sound search,r the number of unique heard sounds for each target sound
search.

Figure 6.a shows the evolution of the average duration
of each target sound search observed for AD, FSD and
PSD. As shown by a linear regression of the data, there is
an overall increase of efficiency with respect to the index
of the search. For the duration and the number of heard
sounds (Figure 6.b), AD and PSD perform equivalently,
whereas FSD exhibits better performance. In the case of
the number of unique heard sounds (Figure 6.c), the two
semantic displays are equivalent. This latter result
suggests that for both semantic displays, users have parsed
the same range of the dataset, although users of FSD have
done so by listening to fewer sounds and more quickly.

6 J. Audio Eng. Sco., Vol. 1, No. 1, 2016 January
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6 Results on Musical Sounds

6.1 Outliers
2 subjects are detected as outliers for the music

experiment and removed from the analysis. 1 subject used
PSD and 1 subject used FSD. The first outlier is detected
by considering the absolute duration (5 hours to complete
the experiment) and the second by looking at the absolute
duration (1 hour and 30 minutes) as well as the total
search duration (1 hour and 15 minutes) and the total
number of heard sounds (901).

6.2 Efficiency
The averages and standard deviations for the three

metrics are presented in Figure 5. The type of display has
a significant effect on the the total search duration
(F [2,43] = 13; p < 0.01), the number of heard sounds
(F [2,43] = 14; p < 0.01) and the number of unique heard
sounds (F [2,43] = 5; p < 0.05).

Considering the total search duration (Figure 5.d), post
hoc analyses shows that PSD and FSD perform better than
the AD interfaces (PSD-AD: p < 0.01; FSD-AD:
p < 0.01;). No significant difference is found between
PSD and FSD (PSD-FSD: p = 0.20).

Figure 5.e shows the results for the numbers of heard
sounds. This time AD and PSD exhibit similar results
(PSD-AD: p = 0.19), while being both outperformed by
FSD (FSD-PSD: p < 0.01; FSD-AD: p < 0.01).

Considering the numbers of unique heard sounds
(Figure 5.f), FSD significantly outperforms the AD
interface (FSD-AD: p < 0.05), while both PSD vs. FSD
and PSD vs. AD show similar outcomes (PSD-FSD:
p = 0.06; PSD-AD: p = 1). Those results confirms the
trends observed for the urban sounds (see Section 5):

r A semantic organization of the dataset significantly re-
duces the number of heard sounds needed to find a target
sound.r Forcing the users to parse the entire hierarchical organi-
zation of the dataset seems to diminish the interface effi-
ciency by increasing the number of sounds to be listened
to.

PSD and FSD significantly reduce the search durations
compared to an acoustic organization (AD), which was
not the case for the urban sound dataset. This may be
explained by the fact that the musical corpus has perhaps a
more obvious semantic organization.

6.3 Learning
Figure 7 shows the evolution of the metrics with respect

to the target sound index. Results for the music dataset are
similar to those observed for the urban dataset. An overall
increase of efficiency with respect to the index of the
search is observed for the tree interfaces. For the duration
and the number of heard sounds (Figure 7.a and .b) the
FSD interface exhibits better performance. Considering
the number of unique heard sounds (Figure 7.c), the

learning of the dataset range seems to be quicker for the
FSD interface than for the PSD interface. Once again,
results show that enforcing the parsing of the hierarchy is
not beneficial.

7 Conclusion

In this paper, two displays allowing users to explore a
semantically organized sound dataset without written
textual help are presented. The interfaces distribute sounds
represented by circles on a 2D space, following an
underlying hierarchical semantic organization. Those two
semantic displays are assessed and compared to a third
display in which the spatial configuration depends upon
acoustic features. The tests consists in data retrieval tasks
done using two different corpora. The Full Semantic
Display (FSD), that allows users to directly visualize the
leaf classes of the semantic hierarchical structure, proves
to be the most effective interface for the task. This display
has been integrated as a sound selector into a acoustic
scene simulator that benefit from the advantages of such
an approach: no need of localization and reduction of the
potential bias of using description tags2.

Two main conclusions may be derived from this
experiment. First, a spatial configuration based on
semantic features is more effective to retrieve target
sounds than a spatial configuration based on acoustic
features. Second, imposing the exploration of the semantic
hierarchical structure by constraining its visibility does
not help the user understand and learn the spatial
configuration of the semantic class, but instead disturbs
the navigation.

In the datasets considered in this study, there are as
many leaf classes as sounds in the dataset, which would be
unrealistic for larger datasets. In that case, the
organization can easily be adapted by considering the leaf
classes as collections of semantically similar sound
samples. Thus, two sounds of male-yelling would be
grouped into a single leaf class with the tag male-yelling.
The leaf class would then also have a prototype sound
being the most representative item of the different
male-yelling sounds belonging to the leaf class.
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