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MINIMAL DISCS IN HYPERBOLIC SPACE BOUNDED BY A

QUASICIRCLE AT INFINITY

ANDREA SEPPI

Abstract. We prove that the supremum of principal curvatures of a minimal embed-
ded disc in hyperbolic three-space spanning a quasicircle in the boundary at infinity is
estimated in a sublinear way by the norm of the quasicircle in the sense of universal Te-
ichmüller space, if the quasicircle is sufficiently close to being the boundary of a totally
geodesic plane. As a by-product we prove that there is a universal constant C independent
of the genus such that if the Teichmüller distance between the ends of a quasi-Fuchsian
manifold M is at most C, then M is almost-Fuchsian. The main ingredients of the proofs
are estimates on the convex hull of a minimal surface and Schauder-type estimates to
control principal curvatures.

1. Introduction

Let H3 be hyperbolic three-space and ∂∞H3 be its boundary at infinity. A surface S in
hyperbolic space is minimal if its principal curvatures at every point x have opposite values.
We will denote the principal curvatures by λ and −λ, where λ = λ(x) is a nonnegative
function on S. It was proved by Anderson ([And83, Theorem 4.1]) that for every Jordan
curve Γ in ∂∞H3 there exists a minimal embedded disc S whose boundary at infinity coincides
with Γ. It can be proved that if the supremum ||λ||∞ of the principal curvatures of S is
in (−1, 1), then Γ = ∂∞S is a quasicircle, namely Γ is the image of a round circle under a
quasiconformal map of the sphere at infinity.

However, uniqueness does not hold in general. Anderson proved the existence of a Jordan
curve Γ ⊂ ∂∞H3 invariant under the action of a quasi-Fuchsian group G spanning several
distinct minimal embedded discs, see [And83, Theorem 5.3]. In this case, Γ is a quasicircle
and coincides with the limit set of G. More recently in [HW13a] invariant curves spanning
an arbitrarily large number of minimal discs were constructed. On the other hand, if the
supremum of the principal curvatures of a minimal embedded disc S satisfies ||λ||∞ ∈ (−1, 1)
then, by an application of the maximum principle, S is the unique minimal disc asymptotic
to the quasicircle Γ = ∂∞S.

The aim of this paper is to study the supremum ||λ||∞ of the principal curvatures of a
minimal embedded disc, in relation with the norm of the quasicircle at infinity, in the sense of
universal Teichmüller space. The relations we obtain are interesting for “small” quasicircles,
that are close in universal Teichmüller space to a round circle. The main result of this paper
is the following:

Theorem A. There exist universal constants K0 > 1 and C > 0 such that every minimal
embedded disc in H3 with boundary at infinity a K-quasicircle Γ ⊂ ∂∞H3, with 1 ≤ K ≤ K0,
has principal curvatures bounded by

||λ||∞ ≤ C logK .

Recall that the minimal disc with prescribed quasicircle at infinity is unique if ||λ||∞ < 1.
Hence we can draw the following consequence, by choosing K ′

0 < min{K0, e
1/C}:

Theorem B. There exists a universal constant K ′
0 such that every K-quasicircle Γ ⊂ ∂∞H3

with K ≤ K ′
0 is the boundary at infinity of a unique minimal embedded disc.
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Applications to quasi-Fuchsian manifolds. Theorem A has a direct application to
quasi-Fuchsian manifolds. Recall that a quasi-Fuchsian manifold M is isometric to the quo-
tient of H3 by a quasi-Fuchsian group G, isomorphic to the fundamental group of a closed
surface Σ, whose limit set is a Jordan curve Γ in ∂∞H3. The topology of M is Σ× R. We
denote by Ω+ and Ω− the two connected components of ∂∞H3 \ Γ. Then Ω+/G and Ω−/G
inherit natural structures of Riemann surfaces on Σ and therefore determine two points of
T (Σ), the Teichmüller space of Σ. Let dT (Σ) denote the Teichmüller distance on T (Σ).

Corollary A. There exist universal constants C > 0 and d0 > 0 such that, for every quasi-
Fuchsian manifold M = H3/G with dT (Σ)(Ω+/G,Ω−/G) < d0 and every minimal surface S
in M homotopic to Σ× {0}, the supremum of the principal curvatures of S satisfies:

||λ||∞ ≤ CdT (Σ)(Ω+/G,Ω−/G) .

Indeed, under the hypothesis of Corollary A, the Teichmüller map from one hyperbolic
end of M to the other is K-quasiconformal for K ≤ e2d0 . Hence the lift to the universal
cover H3 of any closed minimal surface in M is a minimal embedded disc with boundary
at infinity a K-quasicircle, namely the limit set of the corresponding quasi-Fuchsian group.
Choosing d0 = (1/2) logK0, where K0 is the constant of Theorem A, and choosing C as in
Theorem A (up to a factor 2 which arises from the definition of Teichmüller distance), the
statement of Corollary A follows.

We remark here that the constant C of Corollary A is independent of the genus of Σ.
A quasi-Fuchsian manifold contaning a closed minimal surface with principal curvatures

in (−1, 1) is called almost-Fuchsian, according to the definition given in [KS07]. The minimal
surface in an almost-Fuchsian manifold is unique, by the above discussion, as first observed
by Uhlenbeck ([Uhl83]). Hence, applying Theorem B to the case of quasi-Fuchsian manifolds,
the following corollary is proved.

Corollary B. If the Teichmüller distance between the conformal metrics at infinity of a
quasi-Fuchsian manifold M is smaller than a universal constant d′0, then M is almost-
Fuchsian.

Indeed, it suffices as above to pick d′0 = (1/2) logK ′
0, which is again independent on

the genus of Σ. By Bers’ Simultaneous Uniformization Theorem, the Riemann surfaces
Ω±/G determine the manifold M . Hence the space QF(Σ) of quasi-Fuchsian manifolds
homeomorphic to Σ×R, considered up to isometry isotopic to the identity, can be identified
to T (Σ) × T (Σ). Under this identification, the subset of QF(Σ) composed of Fuchsian
manifolds, which we denote by F(Σ), coincides with the diagonal in T (Σ) × T (Σ). Let us
denote by AF(Σ) the subset of QF(Σ) composed of almost-Fuchsian manifolds. Corollary
B can be restated in the following way:

Corollary C. There exists a uniform neighborhood N(F(Σ)) of the Fuchsian locus F(Σ)
in QF(Σ) ∼= T (Σ)× T (Σ) such that N(F(Σ)) ⊂ AF(Σ).

We remark that Corollary A is a partial converse of results presented in [GHW10], giving
a bound on the Teichmüller distance between the hyperbolic ends of an almost-Fuchsian
manifold in terms of the maximum of the principal curvatures. Another invariant which has
been studied in relation with the properties of minimal surfaces in hyperbolic space is the
Hausdorff dimension of the limit set. Corollary A and Corollary B can be compared with the
following theorem given in [San14]: for every ǫ and ǫ0 there exists a constant δ = δ(ǫ, ǫ0) such
that any stable minimal surface with injectivity radius bounded by ǫ0 in a quasi-Fuchsian
manifold M are in (−ǫ, ǫ) provided the Hausdorff dimension of the limit set of M is at most
1 + δ. In particular, M is almost Fuchsian if one chooses ǫ < 1. Conversely, in [HW13b] the
authors give an estimate of the Hausdorff dimension of the limit set in an almost-Fuchsian
manifold M in terms of the maximum of the principal curvatures of the (unique) minimal
surface. The degeneration of almost-Fuchsian manifolds is also studied in [San13].



MINIMAL DISCS IN HYPERBOLIC SPACE BOUNDED BY A QUASICIRCLE AT INFINITY 3

The main steps of the proof. The proof of Theorem A is composed of several steps.
By using the technique of “description from infinity” (see [Eps84] and [KS08]), we con-

struct a foliation F of H3 by equidistant surfaces, such that all the leaves of the foliation
have the same boundary at infinity, a quasicircle Γ. By using a theorem proved in [ZT87]
and [KS08, Appendix], which relates the curvatures of the leaves of the foliation with the
Schwarzian derivative of the map which uniformizes the conformal structure of one compo-
nent of ∂∞H3 \ Γ, we obtain an explicit bound for the distance between two surfaces F+

and F− of F , where F+ is concave and F− is convex, in terms of the Bers norm of Γ. The
distance dH3(F−, F+) goes to 0 when Γ approaches a circle in ∂∞H

3.
A fundamental property of a minimal surface S with boundary at infinity a curve Γ is

that S is contained in the convex hull of Γ. The surfaces F− and F+ of the previous step lie
outside the convex hull of Γ, on the two different sides. Hence every point x of S lies on a
geodesic segment orthogonal to two planes P− and P+ (tangent to F− and F+ respectively)
such that S is contained in the region bounded by P− and P+. The length of such geodesic
segment is bounded by the Bers norm of the quasicircle at infinity, in a way which does not
depend on the chosen point x ∈ S.

The next step in the proof is then a Schauder-type estimate. Considering the function u,
defined on S, which is the hyperbolic sine of the distance from the plane P−, it turns out
that u solves the equation

(⋆) ∆Su− 2u = 0 ,

where ∆S is the Laplace-Beltrami operator of S. We then apply classical theory of linear
PDEs, in particular Schauder estimates, to the equation (⋆) in order to prove that

||u||C2(Ω′) ≤ C||u||C0(Ω) ,

where Ω′ ⊂⊂ Ω and u is expressed in normal coordinates centered at x. Recall that ∆S is
the Laplace-Beltrami operator, which depends on the surface S. In order to have this kind
of inequality, it is then necessary to control the coefficients of ∆S . This is obtained by a
compactness argument for conformal harmonic mappings, adapted from [Cus09], recalling
that minimal discs in H3 are precisely the image of conformal harmonic mapping from the
disc to H3. However, to ensure that compact sets in the conformal parametrization are
comparable to compact sets in normal coordinates, we will first need to prove a uniform
bound of the curvature. For this reason we will assume (as in the statement of Theorem A)
that the minimal discs we consider have boundary at infinity a K-quasicircle, with K ≤ K0.

The final step is then an explicit estimate of the principal curvatures at x ∈ S, by
observing that the shape operator can be expressed in terms of u and the first and second
derivatives of u. The Schauder estimate above then gives a bound on the principal curvatures
just in terms of the supremum of u in a geodesic ball of fixed radius centered at x. By using
the first step, since S is contained between P− and the nearby plane P+, we finally get an
estimate of the principal curvatures of a minimal embedded disc only in terms of the Bers
norm of the quasicircle at infinity.

All the previous estimates do not depend on the choice of x ∈ S. Hence the following
theorem is actually proved.

Theorem C. There exist constants K0 > 1 and C > 4 such that the principal curvatures
±λ of every minimal surface S in H3 with ∂∞S = Γ a K-quasicircle, with K ≤ K0, are
bounded by:

(1) ||λ||∞ ≤ C||Ψ||B√
1− C||Ψ||2B

,

where Γ = Ψ(S1), Ψ : Ĉ → Ĉ is a quasiconformal map, conformal on Ĉ \ D, and ||Ψ||B
denotes the Bers norm of Ψ.
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Observe that the estimate holds in a neighborhood of the identity (which represents circles
in ∂∞H3), in the sense of universal Teichmüller space. Theorem A is then a consequence of
Theorem C, using the well-known fact that the Bers embedding is locally bi-Lipschitz.

Organization of the paper. The structure of the paper is as follows. In Section 2,
we introduce the necessary notions on hyperbolic space and some properties of minimal
surfaces and convex hulls. In Section 3 we introduce the theory of quasiconformal maps
and universal Teichmüller space. In Section 4 we prove Theorem A. The Section is split in
several subsections, containing the steps of the proof. In Section 5 we discuss how Theorem
B, Corollary A, Corollary B and Corollary C follow from Theorem A.

Acknowledgements. I am very grateful to Jean-Marc Schlenker for his guidance and pa-
tience. Most of this work was done during my (very pleasent) stay at University of Lux-
embourg; I would like to thank the Institution for the hospitality. I am very thankful to
my advisor Francesco Bonsante and to Zeno Huang for many interesting discussions and
suggestions. I would like to thank an anonymous referee for many observations and advices
which highly improved the presentation of the paper.

2. Minimal surfaces in hyperbolic space

We consider (3+1)-dimensional Minkowski space R
3,1 as R

4 endowed with the bilinear
form

(2) 〈x, y〉 = x1y1 + x2y2 + x3y3 − x4y4 .

The hyperboloid model of hyperbolic 3-space is

H
3 =

{
x ∈ R

3,1 : 〈x, x〉 = −1, x4 > 0
}
.

The induced metric from R3,1 gives H3 a Riemannian metric of constant curvature -1. The
group of orientation-preserving isometries of H3 is Isom(H3) ∼= SO+(3, 1), namely the group
of linear isometries of R3,1 which preserve orientation and do not switch the two connected
components of the quadric {〈x, x〉 = −1}. Geodesics in hyperbolic space are the intersec-
tion of H3 with linear planes X of R3,1 (when nonempty); totally geodesic planes are the
intersections with linear hyperplanes and are isometric copies of hyperbolic plane H2.

We denote by dH3(·, ·) the metric on H3 induced by the Riemannian metric. It is easy to
show that

(3) cosh(dH3(p, q)) = |〈p, q〉|
and other similar formulae which will be used in the paper.

Note that H3 can also be regarded as the projective domain

P ({〈x, x〉 < 0}) ⊂ RP 3.

Let us denote by d̂S3 the region

d̂S3 =
{
x ∈ R

3,1 : 〈x, x〉 = 1
}

and we call de Sitter space the projectivization of d̂S3,

dS3 = P ({〈x, x〉 > 0}) ⊂ RP 3.

Totally geodesic planes in hyperbolic space, of the form P = X ∩ H3, are parametrized by
the dual points X⊥ in dS3 ⊂ RP 3.

In an affine chart {x4 6= 0} for the projective model of H3, hyperbolic space is repre-
sented as the unit ball

{
(x, y, z) : x2 + y2 + z2 < 1

}
, using the affine coordinates (x, y, z) =

(x1/x4, x2/x4, x3/x4). This is called the Klein model ; although in this model the metric
of H3 is not conformal to the Euclidean metric of R3, the Klein model has the good prop-
erty that geodesics are straight lines, and totally geodesic planes are intersections of the
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unit ball with planes of R
3. It is well-known that H

3 has a natural boundary at infin-
ity, ∂∞H3 = P ({〈x, x〉 = 0}), which is a 2-sphere and is endowed with a natural complex
projective structure - and therefore also with a conformal structure.

Given an embedded surface S in H3, we denote by ∂∞S its asymptotic boundary, namely,
the intersection of the topological closure of S with ∂∞H3.

2.1. Minimal surfaces. This paper is mostly concerned with smoothly embedded surfaces
in hyperbolic space. Let σ : S → H3 be a smooth embedding and let N be a unit normal
vector field to the embedded surface σ(S). We denote again by 〈·, ·〉 the Riemannian metric
of H3, which is the restriction to the hyperboloid of the bilinear form (2) of R3,1; ∇ and ∇S

are the ambient connection and the Levi-Civita connection of the surface S, respectively.
The second fundamental form of S is defined as

∇ṽw̃ = ∇S
ṽ w̃ + II(v, w)N

if ṽ and w̃ are vector fields extending v and w. The shape operator is the (1, 1)-tensor defined
as B(v) = −∇vN . It satisfies the property

II(v, w) = 〈B(v), w〉 .
Definition 2.1. An embedded surface S in H3 is minimal if tr(B) = 0.

The shape operator is symmetric with respect to the first fundamental form of the surface
S; hence the condition of minimality amounts to the fact that the principal curvatures
(namely, the eigenvalues of B) are opposite at every point.

An embedded disc in H3 is said to be area minimizing if any compact subdisc is locally
the smallest area surface among all surfaces with the same boundary. It is well-known that
area minimizing surfaces are minimal. The problem of existence for minimal surfaces with
prescribed curve at infinity was solved by Anderson; see [And83] for the original source and
[Cos13] for a survey on this topic.

Theorem 2.2 ([And83]). Given a simple closed curve Γ in ∂∞H
3, there exists a complete

area minimizing embedded disc S with ∂∞S = Γ.

A key property used in this paper is that minimal surfaces with boundary at infinity a
Jordan curve Γ are contained in the convex hull of Γ. Although this fact is known, we prove
it here by applying maximum principle to a simple linear PDE describing minimal surfaces.

Definition 2.3. Given a curve Γ in ∂∞H3, the convex hull of Γ, which we denote by CH(Γ),
is the intersection of half-spaces bounded by totally geodesic planes P such that ∂∞P does
not intersect Γ, and the half-space is taken on the side of P containing Γ.

Hereafter Hess u denotes the Hessian of a smooth function u on the surface S, i.e. the
(1,1) tensor

Hess u(v) = ∇S
v gradu .

Sometimes the Hessian is also considered as a (2,0) tensor, which we denote (in the rare
occurrences) with

∇2u(v, w) = 〈Hessu(v), w〉 .
Finally, ∆S denotes the Laplace-Beltrami operator of S, which can be defined as

∆Su = tr(Hess u) .

Observe that, with this definition, ∆S is a negative definite operator.

Proposition 2.4. Given a minimal surface S ⊂ H
3 and a plane P , let u : S → R be the

function u(x) = sinh dH3(x, P ). Here dH3(x, P ) is considered as a signed distance from the
plane P . Let N be the unit normal to S, B = −∇N the shape operator, and E the identity
operatior. Then

(4) Hess u− uE =
√
1 + u2 − || gradu||2B
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as a consequence, u satisfies

(⋆) ∆Su− 2u = 0 .

Proof. Consider the hyperboloid model for H3. Let us assume P is the plane dual to the
point p ∈ dS3, meaning that P = p⊥ ∩H3. Then u is the restriction to S of the function U
defined on H

3:

(5) U(x) = sinh dH3(x, P ) = 〈x, p〉 .
Let N be the unit normal vector field to S; we compute gradu by projecting the gradient
∇U of U to the tangent plane to S:

∇U = p+ 〈p, x〉x(6)

gradu(x) = p+ 〈p, x〉x − 〈p,N〉N(7)

Now Hessu(v) = ∇S
v gradu, where ∇S is the Levi-Civita connection of S, namely the pro-

jection of the flat connection of R3,1, and so

Hessu(x)(v) = 〈p, x〉v − 〈p,N〉∇S
vN = u(x)v + 〈∇U,N〉B(v) .

Moreover, ∇U = gradu+ 〈∇U,N〉N and thus

〈∇U,N〉2 = 〈∇U,∇U〉 − || gradu||2 = 1 + u2 − || gradu||2

which proves (4). By taking the trace, (⋆) follows. �

Corollary 2.5. Let S be a minimal surface in H3, with ∂∞(S) = Γ a Jordan curve. Then
S is contained in the convex hull CH(Γ).

Proof. If Γ is a circle, then S is a totally geodesic plane which coincides with the convex hull
of Γ. Hence we can suppose Γ is not a circle. Consider a plane P− which does not intersect
Γ and the function u defined as in Equation (5) in Proposition 2.4, with respect to P−.
Suppose their mutual position is such that u ≥ 0 in the region of S close to the boundary
at infinity (i.e. in the complement of a large compact set). If there exists some point where
u < 0, then at a minimum point ∆Su = 2u < 0, which gives a contradiction. The proof
is analogous for a plane P+ on the other side of Γ, by switching the signs. Therefore every
convex set containing Γ contains also S. �

3. Universal Teichmüller space

The aim of this section is to introduce the theory of quasiconformal mappings and uni-
versal Teichmüller space. We will give a brief account of the very rich and developed theory.
Useful references are [Gar87, GL00, Ahl06, FM07] and the nice survey [Sug07].

3.1. Quasiconformal mappings and universal Teichmüller space. We recall the def-
inition of quasiconformal map.

Definition 3.1. Given a domain Ω ⊂ C, an orientation-preserving homeomorphism

f : Ω → f(Ω) ⊂ C

is quasiconformal if f is absolutely continuous on lines and there exists a constant k < 1
such that

|∂zf | ≤ k|∂zf | .
Let us denote µf = ∂zf/∂zf , which is called complex dilatation of f . This is well-defined

almost everywhere, hence it makes sense to take the L∞ norm. Thus a homeomorphism
f : Ω → f(Ω) ⊂ C is quasiconformal if ||µf ||∞ < 1. Moreover, a quasiconformal map as in
Definition 3.1 is called K-quasiconformal, where

K =
1 + k

1− k
.
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It turns out that the best such constant K ∈ [1,+∞) represents the maximal dilatation of
f , i.e. the supremum over all z ∈ Ω of the ratio between the major axis and the minor axis
of the ellipse which is the image of a unit circle under the differential dzf .

It is known that a 1-quasiconformal map is conformal, and that the composition of a K1-
quasiconformal map and a K2-quasiconformal map is K1K2-quasiconformal. Hence com-
posing with conformal maps does not change the maximal dilatation.

Actually, there is an explicit formula for the complex dilatation of the composition of two
quasiconformal maps f, g on Ω:

(8) µg◦f−1 =
∂zf

∂zf

µg − µf

1− µfµg
.

Using Equation (8), one can see that f and g differ by post-composition with a conformal
map if and only if µf = µg almost everywhere. We now mention the classical and important
result of existence of quasiconformal maps with given complex dilatation.

Measurable Riemann mapping Theorem. Given any measurable function µ on C there
exists a unique quasiconformal map f : C → C such that f(0) = 0, f(1) = 1 and µf = µ
almost everywhere in C.

The uniqueness part of Measurable Riemann mapping Theorem means that every two

solutions (which can be thought as maps on the Riemann sphere Ĉ) of the equation

(∂zf)µ = ∂zf

differ by post-composition with a Möbius transformation of Ĉ.
Given any fixed K ≥ 1, K-quasiconformal mappings have an important compactness

property. See [Gar87] or [Leh87].

Theorem 3.2. Let K > 1 and fn : Ĉ → Ĉ be a sequence of K-quasiconformal mappings

such that, for three fixed points z1, z2, z3 ∈ Ĉ, the mutual spherical distances are bounded
from below: there exists a constant C0 > 0 such that

dS2(fn(zi), fn(zj)) > C0

for every n and for every choice of i, j = 1, 2, 3, i 6= j. Then there exists a subsequence fnk

which converges uniformly to a K-quasiconformal map f∞ : Ĉ → Ĉ.

3.2. Quasiconformal deformations of the disc. It turns out that every quasiconformal
homeomorphisms of D to itself extends to the boundary ∂D = S1. Let us consider the space:

QC(D) = {Φ : D → D quasiconformal} / ∼
where Φ ∼ Φ′ if and only if Φ|S1 = Φ′|S1 . Universal Teichmüller space is then defined as

T (D) = QC(D)/Möb(D) ,

where Möb(D) is the subgroup of Möbius transformations of D. Equivalently, T (D) is the
space of quasiconformal homeomorphisms Φ : D → D which fix 1, i and −1 up to the same
relation ∼.

Such quasiconformal homeomorphisms of the disc can be obtained in the following way.
Given a domain Ω, elements in the unit ball of the (complex-valued) Banach space L∞(D)
are called Beltrami differentials on Ω. Let us denote this unit ball by:

Belt(D) = {µ ∈ L∞(D)| ||µ||∞ < 1} .
Given any µ in Belt(D), let us define µ̂ on C by extending µ on C \ D so that

µ̂(z) = µ(1/z) .
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The quasiconformal map fµ : C → C such that µfµ = µ̂ fixing 1, i and −1, whose existence
is provided by Measurable Riemann mapping Theorem, maps ∂D to itself by the uniqueness
part. Therefore fµ restricts to a quasiconformal homeomorphism of D to itself.

The Teichmüller distance on T (D) is defined as

dT (D)([Φ], [Φ
′]) =

1

2
inf logK(Φ−1

1 ◦ Φ′
1) ,

where the infimum is taken over all quasiconformal maps Φ1 ∈ [Φ] and Φ′
1 ∈ [Φ′]. It can

be shown that dT (D) is a well-defined distance on Teichmüller space, and (T (D), dT (D)) is a
complete metric space.

3.3. Quasicircles and Bers embedding. We now want to discuss another interpretation
of Teichmüller space, as the space of quasidiscs, and the relation with the Schwartzian
derivative and the Bers embedding.

Definition 3.3. A quasicircle is a simple closed curve Γ in Ĉ such that Γ = Ψ(S1) for a

quasiconformal map Ψ. Analogously, a quasidisc is a domain Ω in Ĉ such that Ω = Ψ(D)

for a quasiconformal map Ψ : Ĉ → Ĉ.

Let us denote D∗ = {z ∈ Ĉ : |z| > 1} = {z ∈ C : |z| > 1} ∪ {∞}. We remark that
in the definition of quasicircle, it would be equivalent to say that Γ is the image of S1 by

a K ′-quasiconformal map of Ĉ (not necessarily conformal on D∗). However, the maximal
dilatation K ′ might be different, with K ≤ K ′ ≤ 2K. Hence we consider the space of
quasidiscs:

QD(D) = {Ψ : Ĉ → Ĉ : Ψ|D is quasiconformal and Ψ|D∗ is conformal}/ ∼ ,

where the equivalence relation is Ψ ∼ Ψ′ if and only if Ψ|D∗ = Ψ′|D∗ . We will again consider
the quotient of QD(D) by Möbius transformation.

Given a Beltrami differential µ ∈ Belt(D), one can construct a quasiconformal map on Ĉ,
by applying Measurable Riemann mapping Theorem to the Beltrami differential obtained
by extending µ to 0 on D∗. The quasiconformal map obtained in this way (fixing the three
points 0,1 and ∞) is denoted by fµ. A well-known lemma (see [Gar87, §5.4, Lemma 3])

shows that, given two Beltrami differentials µ, µ′ ∈ Belt(D), fµ|S1 = fµ′ |S1 if and only if

fµ|D∗ = fµ′ |D∗ . Using this fact it can be shown that T (D) is identified to QD(D)/Möb(Ĉ),
or equivalently to the subset of QD(D) which fix 0, 1 and ∞.

We will say that a quasicircle Γ is a K-quasicircle if

K = inf
Γ=Ψ(S1)
Ψ∈QD(D)

K(Ψ) .

It is easily seen that the condition that Γ = Ψ(S1) is a K-quasicircle is equivalent to the
fact that the element [Φ] of the first model T (D) = QC(D)/Möb(D) which corresponds to
[Ψ] has Teichmüller distance from the identity dT (D)([Φ], [id]) = (logK)/2.

By using the model of quasidiscs for Teichmüller space, we now introduce the Bers norm
on T (D). Recall that, given a holomorphic function f : Ω → C with f ′ 6= 0 in Ω, the
Schwarzian derivative of f is the holomorphic function

Sf =

(
f ′′

f ′

)′

− 1

2

(
f ′′

f ′

)2

.

It can be easily checked that S1/f = Sf , hence the Schwarzian derivative can be defined also
for meromorphic functions at simple poles. The Schwarzian derivative vanishes precisely on
Möbius transformations.
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Let us now consider the space of holomorphic quadratic differentials on D. We will
consider the following norm, for a holomorphic quadratic differential q = h(z)dz2:

||q||∞ = sup
z∈D

e−2η(z)|h(z)| ,

where e2η(z)|dz|2 is the Poincaré metric of constant curvature −1 on D. Observe that ||q||∞
behaves like a function, in the sense that it is invariant by pre-composition with Möbius
transformations of D, which are isometries for the Poincaré metric.

We now define the Bers embedding of universal Teichmüller space. This is the map βD

which associates to [Ψ] ∈ T (D) = QD(D)/Möb(Ĉ) the Schwarzian derivative SΨ. Let us
denote by ||·||Q(D∗) the norm on holomorphic quadratic differentials on D∗ obtained from

the ||·||∞ norm on D, by identifying D with D∗ by an inversion in S1. Then

βD : T (D) → Q(D∗)

is an embedding of T (D) in the Banach space (Q(D∗), ||·||Q(D∗)) of bounded holomorphic
quadratic differentials (i.e. for which ||q||Q(D∗) < +∞). Finally, the Bers norm of en element
Ψ ∈ T (D) is

||Ψ||B = ||βD[Ψ]||∞ = ||SΨ||Q(D∗) .

The fact that the Bers embedding is locally bi-Lipschitz will be used in the following.
See for instance [FKM13, Theorem 4.3]. In the statement, we again implicitly identify
the models of universal Teichmüller space by quasiconformal homeomorphisms of the disc
(denoted by [Φ]) and by quasicircles (denoted by [Ψ]).

Theorem 3.4. Let r > 0. There exist constants b1 and b2 = b2(r) such that, for every
[Ψ], [Ψ′] in the ball of radius r for the Teichmüller distance centered at the origin (i.e.
dT (D)([Ψ], [id]), dT (D)([Ψ

′], [id]) < r),

b1||βD[Ψ]− βD[Ψ]||∞ ≤ dT (D)([Ψ], [Ψ′]) ≤ b2||βD[Ψ]− βD[Ψ]||∞ .

We conclude this preliminary part by mentioning a theorem by Nehari, see for instance
[Leh87] or [FM07].

Nehari Theorem. The image of the Bers embedding is contained in the ball of radius 3/2
in (Q(D∗), ||·||Q(D∗)), and contains the ball of radius 1/2.

4. Minimal surfaces in H3

The goal of this section is to prove Theorem A. The proof is divided into several steps,
whose general idea is the following:

(1) Given Ψ ∈ QD(D), if ||Ψ||B is small, then there is a foliation F of a convex subset C
of H3 by equidistant surfaces. All the surfaces F of F have asymptotic boundary the
quasicircle Γ = Ψ(S1). Hence the convex hull of Γ is trapped between two parallel
surfaces, whose distance is estimated in terms of ||Ψ||B.

(2) As a consequence of point (1), given a minimal surface S in H3 with ∂∞(S) = Γ, for
every point x ∈ S there is a geodesic segment through x of small length orthogonal
at the endpoints to two planes P−,P+ which do not intersect C. Moreover S is
contained between P− and P+.

(3) Since S is contained between two parallel planes close to x, the principal curvatures
of S in a neighborhood of x cannot be too large. In particular, we use Schauder
theory to show that the principal curvatures of S at a point x are uniformly bounded
in terms of the distance from P− of points in a neighborhood of x.

(4) Finally, the distance from P− of points of S in a neighborhood of x is estimated in
terms of the distance of points in P+ from P−, hence is bounded in terms of the
Bers norm ||Ψ||B.
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It is important to remark that the estimates we give are uniform, in the sense that they do
not depend on the point x or on the surface S, but just on the Bers norm of the quasicircle
at infinity. The above heuristic arguments are formalized in the following subsections.

4.1. Description from infinity. The main result of this part is the following. See Figure
4.1.

Proposition 4.1. Let A < 1/2. Given an embedded minimal disc S in H3 with boundary
at infinity a quasicircle ∂∞S = Ψ(S1) with ||Ψ||B ≤ A, every point of S lies on a geodesic
segment of length at most arctanh(2A) orthogonal at the endpoints to two planes P− and
P+, such that the convex hull CH(Γ) is contained between P− and P+.

P
−

P+

x0

Γ

S

Figure 4.1. The statement of Proposition 4.1. The geodesic segment through x0

has length ≤ w, for w = arctanh(2||Ψ||B), and this does not depend on x0 ∈ S.

Remark 4.2. A consequence of Proposition 4.1 is that the Hausdorff distance between the
two boundary components of CH(Γ) is bounded by arctanh(2||Ψ||B). Hence it would be
natural to try to define in such a way a notion of thickness or width of the convex hull:

w(Γ) = max{ inf
x∈∂−CH(Γ)

d(x, ∂+CH(Γ)), inf
x∈∂+CH(Γ)

d(x, ∂−CH(Γ))}

However, a bound on the Hausdorff distance is not sufficient for the purpose of this paper.
It will become clear in the proof of Theorem C and Theorem A, and in particular for the
application of Lemma 4.15, that the necessary property is the existence of two support planes
which are both orthogonal to a geodesic segment of short length through any point x0 ∈ S.

We review here some important facts on the so-called description from infinity of surfaces
in hyperbolic space. For details, see [Eps84] and [KS08]. Given an embedded surface S in
H3 with bounded principal curvatures, let I be its first fundamental form and II the second
fundamental form. Recall we defined B = −∇N its shape operator, for N the oriented unit
normal vector field (we fix the convention that N points towards the x4 > 0 direction in
R3,1), so that II = I(B·, ·). Denote by E the identity operator. Let Sρ be the ρ-equidistant
surface from S (where the sign of ρ agrees with the choice of unit normal vector field to S).
For small ρ, there is a map from S to Sρ obtained following the geodesics orthogonal to S
at every point.

Lemma 4.3. Given a smooth surface S in H3, let Sρ be the surface at distance ρ from S,
obtained by following the normal flow at time ρ. Then the pull-back to S of the induced
metric on the surface Sρ is given by:

(9) Iρ = I((cosh(ρ)E − sinh(ρ)B)·, (cosh(ρ)E − sinh(ρ)B)·) .
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The second fundamental form and the shape operator of Sρ are given by

IIρ = I((− sinh(ρ)E + cosh(ρ)B)·, (cosh(ρ)E − sinh(ρ)B)·)(10)

Bρ = (cosh(ρ)E − sinh(ρ)B)−1(− sinh(ρ)E + cosh(ρ)B) .(11)

Proof. In the hyperboloid model, let σ : D → H2 be the minimal embedding of the surface
S, with oriented unit normal N . The geodesics orthogonal to S at a point x can be written
as

γx(ρ) = cosh(ρ)σ(x) + sinh(ρ)N(x) .

Then we compute

Iρ(v, w) =〈dγx(ρ)(v), dγx(ρ)(w)〉
=〈cosh(ρ)dσx(v) + sinh(ρ)dNx(v), cosh(r)dσx(w) + sinh(ρ)dNx(w)〉
=I(cosh(ρ)v − sinh(ρ)B(v), cosh(ρ)w − sinh(ρ)B(w)) .

The formula for the second fundamental form follows from the fact that IIρ = − 1
2
dIρ
dρ . �

It follows that, if the principal curvatures of a minimal surface S are λ and −λ, then the
principal curvatures of Sρ are

(12) λρ =
λ− tanh(ρ)

1− λ tanh(ρ)
λ′
ρ =

−λ− tanh(ρ)

1 + λ tanh(ρ)
.

In particular, if −1 ≤ λ ≤ 1, then Iρ is a non-singular metric for every ρ. The surfaces Sρ

foliate H3 and they all have asymptotic boundary ∂∞Sρ = ∂∞S.
We now define the first, second and third fundamental form at infinity associated to S.

Recall the second and third fundamental form of S are II = I(B·, ·) and III = I(B·, B·).

I∗ = lim
ρ→∞

2e−2ρIρ =
1

2
I((E −B)·, (E −B)·) = 1

2
(I − 2II + III)(13)

B∗ = (E −B)−1(E +B)(14)

II∗ =
1

2
I((E +B)·, (E −B)·) = I∗(B∗·, ·)(15)

III∗ = I∗(B∗·, B∗·)(16)

We observe that the metric Iρ and the second fundamental form can be recovered as

Iρ =
1

2
e2ρI∗ + II∗ +

1

2
e−2ρIII∗(17)

IIρ = −1

2

dIρ
dρ

=
1

2
I∗((eρE + e−ρB∗)·, (−eρE + e−ρB∗)·)(18)

Bρ = (eρE + e−ρB∗)−1(−eρE + e−ρB∗)(19)

The following relation can be proved by some easy computation:

Lemma 4.4 ([KS08, Remark 5.4 and 5.5]). The embedding data at infinity (I∗, B∗) associ-
ated to an embedded surface S in H3 satisfy the equation

(20) tr(B∗) = −KI∗ ,

where KI∗ is the curvature of I∗. Moreover, B∗ satisfies the Codazzi equation with respect
to I∗:

(21) d∇I∗B∗ = 0 .

A partial converse of this fact, which can be regarded as a fundamental theorem from
infinity, is the following theorem. This follows again by the results in [KS08], although it is
not stated in full generality here.
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Theorem 4.5. Given a Jordan curve Γ ⊂ ∂∞H
3, let (I∗, B∗) be a pair of a metric in

the conformal class of a connected component of ∂∞H3 \ Γ and a self-adjoint (1, 1)-tensor,
satisfiying the conditions (20) and (21) as in Lemma 4.4. Assume the eigenvalues of B∗

are positive at every point. Then there exists a foliation of H3 by equidistant surfaces Sρ,
for which the first fundamental form at infinity (with respect to S = S0) is I∗ and the shape
operator at infinity is B∗.

We want to give a relation between the Bers norm of the quasicircle Γ and the existence
of a foliation of H3 by equidistant surfaces with boundary Γ, containing both convex and

concave surfaces. We identify ∂∞H
3 to Ĉ by means of the stereographic projection, so that

D correponds to the lower hemisphere of the sphere at infinity. The following property will
be used, see [ZT87] or [KS08, Appendix A].

Theorem 4.6. Let Γ ⊂ ∂∞H3 be a Jordan curve. If I∗ is the complete hyperbolic metric in
the conformal class of a connected component Ω of ∂∞H3 \ Γ, and II∗0 is the traceless part
of the second fundamental form at infinity II∗, then −II∗0 is the real part of the Schwarzian
derivative of the isometry Ψ : D∗ → Ω, namely the map Ψ which uniformizes the conformal
structure of Ω:

(22) II∗0 = −Re(SΨ) .

We now derive, by straightforward computation, a useful relation.

Lemma 4.7. Let Γ = Ψ(S1) be a quasicircle, for Ψ ∈ QD(D). If I∗ is the complete
hyperbolic metric in the conformal class of a connected component Ω of ∂∞H3 \ Γ, and B∗

0

is the traceless part of the shape operator at infinity B∗, then

(23) sup
z∈Ω

| detB∗
0(z)| = ||Ψ||2B .

Proof. From Theorem 4.6, B∗
0 is the real part of the holomorphic quadratic differential −SΨ.

In complex conformal coordinates, we can assume that

I∗ = e2η|dz|2 =

(
0 1

2e
2η

1
2e

2η 0

)

and SΨ = h(z)dz2, so that

II∗0 = −1

2
(h(z)dz2 + h(z)dz̄2) = −

(
1
2h 0
0 1

2 h̄

)

and finally

B∗
0 = (I∗)−1II∗0 = −

(
0 e−2ηh̄

e−2ηh 0

)
.

Therefore | detB∗
0(z)| = e−4η(z)|h(z)|2. Moreover, by definition of Bers embedding, B([Ψ]) =

SΨ, because Ψ is a holomorphic map from D∗ which maps S1 = ∂D to Γ. Since

||Ψ||2B = sup
z∈Ω

(e−4η(z)|h(z)|2) ,

this concludes the proof. �

We are finally ready to prove Proposition 4.1.

Proof of Proposition 4.1. Suppose again I∗ is a hyperbolic metric in the conformal class
of Ω. Since tr(B∗) = 1 by Lemma 4.4, we can write B∗ = B∗

0 + (1/2)E, where B∗
0 is the

traceless part of B∗. The symmetric operator B∗ is diagonalizable; therefore we can suppose
its eigenvalues at every point are (a + 1/2) and (−a + 1/2), where a is a positive number
depending on the point. Hence ±a are the eigenvalues of the traceless part B∗

0 .
By using Equation (23) of Lemma 4.7, and observing that | detB∗

0 | = a2, one obtains
||Ψ||B = ||a||∞. Since this quantity is less than A < 1/2 by hypothesis, at every point
a < 1/2, and therefore the eigenvalues of B∗ are positive at every point.
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By Theorem 4.5 there exists a smooth foliation F of H3 by equidistant surfaces Sρ, whose
first fundamental form and shape operator are as in equations (17) and (19) above. We are
going to compute

ρ1 = inf {ρ : Bρ is non-singular and negative definite}
and

ρ2 = sup {ρ : Bρ is non-singular and positive definite} .
Hence Sρ1 is concave and Sρ2 is convex. By Corollary 2.5, S is contained in the region
bounded by Sρ1 and Sρ2 . We are therefore going to compute ρ1 − ρ2. From the expression
(19), the eigenvalues of Bρ are

λρ =
−2e2ρ + (2a+ 1)

2e2ρ + (2a+ 1)

and

λ′
ρ =

−2e2ρ + (1− 2a)

2e2ρ + (1 − 2a)
.

Since a < 1/2, the denominators of λρ and λ′
ρ are always positive; one has λρ < 0 if and

only if e2ρ > a+ 1/2, whereas λ′
ρ < 0 if and only if e2ρ > −a+ 1/2. Therefore

ρ1 − ρ2 =
1

2

(
log

(
A+

1

2

)
− log

(
−A+

1

2

))
=

1

2
log

(
1 + 2A

1− 2A

)
= arctanh(2A) .

This shows that every point x on S lies on a geodesic orthogonal to the leaves of the foliation,
and the distance between the concave surface Sρ1 and the convex surface Sρ2 , on the two
sides of x, is less than arctanh(2A). Taking P− and P+ the planes tangent to Sρ1 and Sρ2 ,
the claim is proved. �

Remark 4.8. The proof relies on the observation - given in [KS08] and expressed here im-
plicitly in Theorem 4.5 - that if the shape operator at infinity B∗ is positive definite, then
one reconstructs the shape operator Bρ as in Equation (19), and for ρ = 0 the principal
curvatures are in (−1, 1). Hence from our argument it follows that, if the Bers norm ||Ψ||B
is less than 1/2, then one finds a surface S with ∂∞S = Ψ(S1), with principal curvatures in
(−1, 1). This is a special case of the results in [Eps86], where the existence of such surface is
used to prove (using techniques of hyperbolic geometry) a generalization of the univalence
criterion of Nehari.

4.2. Boundedness of curvature. Recall that the curvature of a minimal surface S is given
by KS = −1 − λ2, where ±λ are the principal curvatures of S. We will need to show that
the curvature of a complete minimal surface S is also bounded below in a uniform way,
depending only on the complexity of ∂∞S. This is the content of Lemma 4.11.

We will use a conformal identification of S with D. Under this identification the metric
takes the form gS = e2f |dz|2, |dz|2 being the Euclidean metric on D. The following uniform
bounds on f are known (see [Ahl38]).

Lemma 4.9. Let g = e2f |dz|2 be a conformal metric on D. Suppose the curvature of g is
bounded above, Kg < −ǫ2 < 0. Then

(24) e2f <
4

ǫ2(1− |z|2)2 .

Analogously, if −δ2 < Kg, then

(25) e2f >
4

δ2(1− |z|2)2 .
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Remark 4.10. A consequence of Lemma 4.9 is that, for a conformal metric g = e2f |dz|2 on
D, if the curvature of g is bounded from above by Kg < −ǫ2 < 0, then a conformal ball
B0(p,R) (i.e. a ball of radius R for the Euclidean metric |dz|2) is contained in the geodesic
ball of radius R′ (for the metric g) centered at the same point, where R′ only depends from
R. This can be checked by a simple integration argument, and R′ is actually obtained by
multiplying R for the square root of the constant in the RHS of Equation (24). Analogously,
a lower bound on the curvature, of the form −δ2 < Kg, ensures that the geodesic ball of
radius R centered at p is contained in the conformal ball B0(p,R

′), where R′ depends on R
and δ.

Lemma 4.11. For every K0 > 1, there exists a constant Λ0 > 0 such that all minimal
surfaces S with ∂∞S a K-quasicircle, K ≤ K0, have principal curvatures bounded by ||λ||∞ <
Λ0.

We will prove Lemma 4.11 by giving a compactness argument. It is known that a confor-
mal embedding σ : D → H3 is harmonic if and only if σ(D) is a minimal surface, see [ES64].
The following Lemma is proved in [Cus09] in the more general case of CMC surfaces. We
give a sketch of the proof here for convenience of the reader.

Lemma 4.12. Let σn : D → H3 a sequence of conformal harmonic maps such that σ(0) = x0

and ∂∞(σn(D)) = Γn is a Jordan curve, and assume Γn → Γ in the Hausdoff topology.
Then there exists a subsequence σnk

which converges C∞ on compact subsets to a conformal
harmonic map σ∞ : D → H3 with ∂∞(σ∞(D)) = Γ.

Sketch of proof. Consider the coordinates on H3 given by the Poincaré model, namely H3 is
the unit ball in R3. Let σl

n, for l = 1, 2, 3, be the components of σn in such coordinates. Fix
R > 0 for the moment.

Since the curvature of the minimal surfaces σn(D) is less than −1, from Lemma 4.9
(setting ǫ = 1) and Remark 4.10, for every n we have that σn(B0(0, 2R)) is contained in a
geodesic ball for the induced metric of fixed radius R′ centered at x0. In turn, the geodesic
ball for the induced metric is clearly contained in the ball BH3(x0, R

′), for the hyperbolic
metric of H3. We remark that the radius R′ only depends on R.

We will apply standard Schauder theory (compare also similar applications in Sections
4.3) to the harmonicity condition

(26) ∆0σ
l
n = −

(
Γl
jk ◦ σ

)
(
∂σj

i

∂x1

∂σk
i

∂x1
+

∂σj
i

∂x2

∂σk
i

∂x2

)
=: hl

n

for the Euclidean Laplace operator ∆0, where Γl
jk are the Christoffel symbols of the hyper-

bolic metric in the Poincaré model.
The RHS in Equation (26), which is denoted by hl

n, is uniformly bounded on B0(0, 2R).
Indeed Christoffel symbols are uniformly bounded, since σn(B0(0, 2R)) is contained in a
compact subset of H3, as already remarked. The partial derivatives of σl

n are bounded too,
since one can observe that, if the induced metric on S is e2f |dz|2, then 2e2f = ||dσ||2, where

||dσ||2 =
4

(1− Σi(σi
n)

2)2

((
∂σ1

n

∂x

)2

+

(
∂σ2

n

∂x

)2

+

(
∂σ3

n

∂x

)2

+

(
∂σ1

n

∂y

)2

+

(
∂σ2

n

∂y

)2

+

(
∂σ3

n

∂y

)2
)

.

Hence from Lemma 4.9 and again the fact that σn(B0(0, 2R)) is contained in a compact
subset of H3, all partial derivatives of σn are uniformly bounded.

The Schauder estimate for the equation ∆0σ
l
n = hl

n ([GT83]) give (for every α ∈ (0, 1)) a
constant C1 such that:

||σl
n||C1,α(B0(0,R1)) ≤ C1

(
||σl

n||C0(B0(0,2R)) + ||hl
n||C0(B0(0,2R))

)
.
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Hence one obtains uniform C1,α(B0(0, R1)) bounds on σl
n, where R < R1 < 2R, and this

provides C0,α(B0(0, R1)) bounds on hl
n. Then the following estimate of Schauder-type

||σl
n||C2,α(B0(0,R2)) ≤ C2

(
||σl

n||C0(B0(0,R1)) + ||hl
n||C1,α(B0(0,R1))

)

provide C2,α bounds on B0(0, R2), for R < R2 < R1. By a boot-strap argument which
repeats this construction, uniform Ck,α(B0(0, R)) for σl

n are obtained for every k.
By Ascoli-Arzelà theorem, one can extract a subsequence of σn converging uniformly in

Ck,α(B0(0, R)) for every k. By applying a diagonal procedure one can find a subsequence
converging C∞. One concludes the proof by a diagonal process again on a sequence of
compact subsets B0(0, Rn) which exhausts D.

The limit function σ∞ : D → H
3 is conformal and harmonic, and thus gives a parametriza-

tion of a minimal surface. It remains to show that ∂∞(σ∞(D)) = Γ. Since each σn(D) is
contained in the convex hull of Γn, the Hausdorff convergence on the boundary at infinity
ensures that σ∞(D) is contained in the convex hull of Γ, and thus ∂∞(σ∞(D)) ⊆ Γ.

For the other inclusion, assume there exists a point p ∈ Γ which is not in the boundary
at infinity of σ∞(D). Then there is a neighborhood of p which does not intersect σ∞(D),
and one can find a totally geodesic plane P such that a half-space bounded by P intersects
Γ (in p, for instance), but does not intersect σ∞(D). But such half-space intersects σn(D)
for large n and this gives a contradiction. �

Proof of Lemma 4.11. We argue by contradiction. Suppose there exists a sequence of min-
imal surfaces Sn bounded by K-quasicircles Γn, with K ≤ K0, with curvature in a point
KSn

(xn) ≤ −n. Let us consider isometries Tn of H3, so that Tn(xn) = x0.
We claim that, since the point x0 is contained in the convex hull of Tn(Γn) for every n, the

quasicircles Tn(Γn) can be assumed to be the image of S1 under K0-quasiconformal maps

Ψn : Ĉ → Ĉ, such that Ψn maps three points of S1 (say 1, i and −1) to points of Tn(Γn)
at uniformly positive distance from one another in the spherical metric (thus satisfying
the hypothesis of Theorem 3.2). Indeed, recall that composing a K0-quasiconformal map
by a conformal map does not change the constant K0. Thus it suffices to prove that the
quasicircles Tn(Γn) = Ψn(S

1) (Ψn aK0-quasiconformal map) contain three points un, vn, wn

at uniformly positive distance from one another, and then one can re-parameterize the

quasicircle by pre-composing Ψn with a biholomorphism of Ĉ (which is determined by the
image of three points on S1) so that 1, i,−1 are mapped to un, vn, wn. Moreover, it suffices to
prove that the quasicircles Tn(Γn) contain two points un, vn with distance dS2(un, vn) > 2C,
where C is some constant independent from n. Indeed, the Jordan curve Tn(Γn) will then
necessarily contain a third point wn such that dS2(un, wn) and dS2(vn, wn) are larger than
C. The latter claim is easily proved by contradiction: if the statement was not true, then
for every integer j there would exists a quasicircle Tnj

(Γnj
) which is contained in a ball of

radius 1/j for the spherical metric on S2. But then it is clear that, for large j, the convex
hull of Tnj

(Γnj
) would not contain the fixed point x0. See Figure 4.2.

By the compactness property in Theorem 3.2, there exists a subsequence Tnk
(Γnk

) con-
verging to aK-quasicircle Γ∞, withK ≤ K0. By Lemma 4.12, the minimal surfaces Tnk

(Snk
)

converge C∞ on compact subsets (up to a subsequence) to a smooth minimal surface S∞

with ∂∞(S∞) = Γ∞. Hence the curvature of Tnk
(Snk

) at the point x0 converges to the
curvature of S∞ at x0. This contradicts the assumption that the curvature at the points xn

goes to infinity. �

It follows that the curvature of S is bounded by −δ2 < KS < −ǫ2, where δ is some
constant, whereas we can take ǫ = 1.

Remark 4.13. The main result of this section, Theorem A, is indeed a quantitative version
of Lemma 4.11, which gives a control of how an optimal constant Λ0 would vary if K0 is
chosen close to 0.
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x0

Tn(Γn)

Figure 4.2. If the quasicircle Tn(Γn) is contained in a small ball for the spherical
metric, then the (fixed) point x0 cannot be in the convex hull of the quasicircle.

4.3. Schauder estimates. By using equation (4), we will eventually obtain bounds on the
principal curvatures of S. For this purpose, we need bounds on u = sinh dH3(·, P−) and its
derivatives. Schauder theory plays again an important role: since u satisfies the equation

(⋆) ∆Su− 2u = 0 .

we will use uniform estimates of the form

||u||C2(B0(0,
R
2 )) ≤ C||u||C0(B0(0,R))

for the function u, written in a suitable coordinate system. The main difficulty is basically
to show that the operators

u 7→ ∆Su− 2u

are strictly elliptic and have uniformly bounded coefficients.

Proposition 4.14. Let K0 > 1 and R > 0 be fixed. There exist a constant C > 0 (only
depending on K0 and R) such that for every choice of:

• A minimal embedded disc S ⊂ H3 with ∂∞S a K-quasicircle, with K ≤ K0;
• A point x ∈ S;
• A plane P−;

the function u(·) = dH3(·, P−) expressed in terms of normal coordinates of S centered at x,
namely

u(z) = sinh dH3(expx(z), P−)

where expx : R2 ∼= TxS → S denotes the exponential map, satisfies the Schauder-type
inequality

(27) ||u||C2(B0(0,
R
2 )) ≤ C||u||C0(B0(0,R)) .

Proof. This will be again an argument by contradiction, using the compactness property.
Suppose our assertion is not true, and find a sequence of minimal surfaces Sn with

∂∞(Sn) = Γn a K-quasicircle (K ≤ K0), a sequence of points xn ∈ Sn, and a sequence
of planes Pn, such that the functions un(z) = sinh dH3(expxn

(z), Pn) have the property that

||un||C2(B0(0,
R
2 )) ≥ n||u||C0(B0(0,R)) .

We can compose with isometries Tn of H3 so that Tn(xn) = x0 for every n and the tangent
plane to Tn(Sn) at x0 is a fixed plane. Let S′

n = Tn(Sn), Γ
′
n = Tn(Γn) and P ′

n = Tn(Pn).
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Note that Γ′
n are again K-quasicircles, for K ≤ K0, and the convex hull of each Γ′

n contains
x0.

Using this fact, it is then easy to see - as in the proof of Lemma 4.11 - that one can
find K0-quasiconformal maps Ψn such that Ψn(S

1) = Γ′
n and Ψn(1), Ψn(i) and Ψn(−1)

are at uniformly positive distance from one another. Therefore, using Theorem 3.2 there
exists a subsequence of Ψn converging uniformly to a K0-quasiconformal map. This gives a
subsequence Γ′

nk
converging to Γ′

∞ in the Hausdorff topology.
By Lemma 4.12, considering S′

n as images of conformal harmonic embeddings σ′
n : D →

H3, we find a subsequence of σ′
nk

converging C∞ on compact subsets to the conformal
harmonic embedding of a minimal surface S′

∞. Moreover, by Lemma 4.11 and Remark 4.10,
the convergence is also C∞ on the image under the exponential map of compact subsets
containing the origin of R2.

It follows that the coefficients of the Laplace-Beltrami operators ∆S′
n
on a Euclidean

ball B0(0, R) of the tangent plane at x0, for the coordinates given by the exponential map,
converge to the coefficients of ∆S′

∞
. Therefore the operators ∆S′

n
− 2 are uniformly strictly

elliptic with uniformly bounded coefficients. Using these two facts, one can apply Schauder
estimates to the functions un, which are solutions of the equations ∆S′

n
(un)− 2un = 0. See

again [GT83] for a reference. We deduce that there exists a constant c such that

||un||C2(B0(0,
R
2 )) ≤ c||un||C0(B0(0,R))

for all n, and this gives a contradiction. �

4.4. Principal curvatures. We can now proceed to complete the proof of Theorem A. Fix
some w > 0. We know from Section 4.1 that if the Bers norm is smaller than the constant
(1/2) tanh(w), then every point x on S lies on a geodesic segment l orthogonal to two planes
P− and P+ at distance dH3(P−, P+) < w. Obviously the distance is achieved along l.

Fix a point x ∈ S. Denote again u = sinh dH3(·, P−). By Proposition 4.14, first and
second partial derivatives of u in normal coordinates on a geodesic ball BS(x,R/2) of fixed
radius R/2 are bounded by C||u||C0(BS(x,R)). The last step for the proof is an estimate of
the latter quantity in terms of w.

We first need a simple lemma which controls the distance of points in two parallel planes,
close to the common orthogonal geodesic. Compare Figure 4.3.

Lemma 4.15. Let p ∈ P−, q ∈ P+ be the endpoints of a geodesic segment l orthogo-
nal to P− and P+ of length w. Let p′ ∈ P− a point at distance r from p and let d =
dH3((π|P+ )

−1(p′), P−). Then

tanh d = cosh r tanhw(28)

sinh d = cosh r
sinhw√

1− (sinh r)2(sinhw)2
.(29)

Proof. This is easy hyperbolic trigonometry, which can actually be reduced to a 2-dimensional
problem. However, we give a short proof for convenience of the reader. In the hyperboloid
model, we can assume P− is the plane x3 = 0, p = (0, 0, 0, 1) and the geodesic l is given by
l(t) = (0, 0, sinh t, cosh t). Hence P+ is the plane orthogonal to l′(w) = (0, 0, coshw, sinhw)
passing through l(w) = (0, 0, sinhw, coshw). The point p′ has coordinates

p′ = (cos θ sinh r, sin θ sinh r, 0, cosh r)

and the geodesic l1 orthogonal to P− through p′ is given by

l1(d) = (cosh d)(p′) + (sinh d)(0, 0, 1, 0) .

We have l1(d) ∈ P+ if and only if 〈l1(d), l′(w)〉 = 0, which is satisfied for

tanh d = cosh r tanhw ,

provided cosh r tanhw < 1. The second expression follows straightforwardly. �
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p

q

P−

P+

π

BP−(p, r)
p′

q′

Figure 4.3. The setting of Lemma 4.15. Here dH3(p, p′) = r and q′ = (π|P+)
−1(p′).

We are finally ready to prove Theorem C. The key point for the proof is that all the
quantitative estimates previously obtained in this section are independent on the point
x ∈ S.

Theorem C. There exist constants K0 > 1 and C > 4 such that the principal curvatures
±λ of every minimal surface S in H3 with ∂∞S = Γ a K-quasicircle, with K ≤ K0, are
bounded by:

(30) ||λ||∞ ≤ C||Ψ||B√
1− C||Ψ||2B

where Γ = Ψ(S1), for Ψ ∈ QD(D).

Proof. Fix K0 > 1. Let S a minimal surface with ∂∞S a K-quasicircle, K ≤ K0. Let x ∈ S
an arbitrary point on a minimal surface S. By Proposition 4.1, we find two planes P− and P+

whose common orthogonal geodesic passes through x, and has length w = arctanh(2||Ψ||B).
Now fix R > 0. By Proposition 4.14, applied to the point x and the plane P−, we obtain

that the first and second derivatives of the function

u = sinh dH3(expx(·), P−)

on a geodesic ball BS(x,R/2) for the induced metric on S, are bounded by the supremum
of u itself, on the geodesic ball BS(x,R), multiplied by a universal constant C = C(K0, R).

Let π : H3 → P− the orthogonal projection to the plane P−. The map π is contracting
distances, by negative curvature in the ambient manifold. Hence π(BS(x,R)) is contained
in BP−

(π(x), R). Moreover, since S is contained in the region bounded by P− and P+,
clearly sup{u(x) : x ∈ BS(0, R)} is less than the hyperbolic sine of the distance of points in
(π|P+)

−1(BP−
(π(x), R)) from P−. See Figure 4.4.

Hence, using Proposition 4.15 (in particular Equation (29)), we get:

(31) ||u||C0(BS(x,R)) ≤ coshR
sinhw√

1− (sinhR)2(sinhw)2
,

where we recall that w = arctanh(2||Ψ||B).
We finally give estimates on the principal curvatures of S, in terms of the complexity of

∂∞(S) = Ψ(S1). We compute such estimate only at the point x ∈ S; by the independence of
all the above construction from the choice of x, the proof will be concluded. From Equation
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P
−

P+

π

BP
−

(π(x), R)

x

BS(x,R) BH3(x,R)

Figure 4.4. Projection to a plane P− in H
3 is distance contracting. The dash-

dotted ball schematically represents a geodesic ball of H3.

(4), we have

B =
1√

1 + u2 − || gradu||2
(Hess u− uE) .

Moreover, in normal coordinates centered at the point x, the expression for the Hessian and
the norm of the gradient at x are just

(Hessu)ji =
∂2u

∂xi∂xj
, || gradu||2 =

(
∂u

∂x1

)2

+

(
∂u

∂x2

)2

.

It then turns out that the principal curvatures ±λ of S, i.e. the eigenvalues of B, are
bounded by

(32) |λ| ≤ C1||u||C0(BS(x,R))√
1− C1||u||2C0(BS(x,R))

.

The constant C1 involves the constant C of Equation (27) in the statement of Proposition
4.14. Substituting Equation (31) into Equation (32), with some manipulation one obtains

(33) ||λ||∞ ≤ C1(coshR)(tanhw)√
1− (1 + C1)(coshR)2(tanhw)2

.

On the other hand tanhw = 2||Ψ||B. Upon relabelling C with a larger constant, the in-
equality

||λ||∞ ≤ C||Ψ||B√
1− C||Ψ||2B

is obtained. �

Remark 4.16. Actually, the statement of Theorem C is true for any choice of K0 > 1
(and the constant C varies accordingly with the choice of K0). However, the estimate in
Equation (30) does not make sense when ||Ψ||2 ≥ 1/C. Indeed, our procedure seems to be
quite uneffective when the quasicircle at infinity is “far” from being a circle - in the sense of
universal Teichmüller space. Applying Theorem 3.4, this possibility is easily ruled out, by
replacing K0 in the statement of Theorem C with a smaller constant.
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Observe that the function x 7→ Cx/
√
1− Cx2 is differentiable with derivative C at x = 0.

As a consequence of Theorem 3.4, there exists a constant L (with respect to the statement
of Theorem 3.4 above, L = 1/b1) such that ||Ψ||B ≤ LdT ([Ψ], [id]) if dT ([Ψ], [id]) ≤ r for
some small radius r. Then the proof of Theorem A follows, replacing the constant C by a
larger constant if necessary.

Theorem A. There exist universal constants K0 and C such that every minimal embedded
disc in H3 with boundary at infinity a K-quasicircle Γ ⊂ ∂∞H3, with K ≤ K0, has principal
curvatures bounded by

||λ||∞ ≤ C logK .

Remark 4.17. With the techniques used in this paper, it seems difficult to give explicit
estimates for the best possible value of the constant C of Theorem A. Indeed, in the proof
of Theorem C, the constant which occurs in the inequality (30) depends on the choices of
the bound K0 on the maximal dilatation of the quasicircle, and on the choice of a radius
R. The radius R does not really have a key role in the proof, since the estimate on the
principal curvatures is then used only for the point x (in a manner which does not depend
on x). However, the choice of R is essentially due to the form of Schauder estimates, which
provide a constant CSch such that

||u||C2(B0(0,
R
2 )) ≤ CSch||u||C0(B0(0,R)) ,

where CSch depends on the radius R. Moreover, CSch depends on the bounds on the coeffi-
cient of the equation satisfied by u, which in our case is

(⋆) ∆Su− 2u = 0 .

The bound on the coefficients of such equation, which depends on the Laplace-Beltrami
operator of the minimal surface S, thus depends implicitly on the choice ofK0 (a compactness
argument was used in this paper, in the proof of Proposition 4.14). Finally, the dependence
on the constant K0 appears again in the proof of Theorem A, when applying the fact that
the Bers embedding is locally bi-Lipschitz (Theorem 3.4). In fact, the local bi-Lipschitz
constant depends on the chosen neighborhood of the identity in universal Teichmüller space.

5. Some applications and open questions

In this section we discuss the proofs of Theorem B, of Corollaries A, B and C, and mention
some related questions.

5.1. Uniqueness of minimal discs. We recall here Theorem B, which was stated in the
introduction.

Theorem B. There exists a universal constant K ′
0 such that every K-quasicircle Γ ⊂ ∂∞H3

with K ≤ K ′
0 is the boundary at infinity of a unique minimal embedded disc.

To prove Theorem B, one applies the well-known fact that a minimal disc in H3 with
principal curvatures in [−1 + ǫ, 1− ǫ] for some ǫ > 0 is the unique one with fixed boundary
at infinity. Under this hypothesis, the curve at infinity is necessarily a quasicircle (one can
adapt the argument of [GHW10, Lemma 3.3]). For the convenience of the reader, we provide
here a sketch of a proof which uses the tools of this paper.

Lemma 5.1. Let S be a minimal embedded disc in H3 with ∂∞S = Γ. If the principal
curvatures of S satisfy ||λ||∞ < 1, then S is the unique minimal disc with ∂∞S = Γ.

Sketch of proof. Suppose Γ is such that there exists two minimal surfaces S and S′ with
∂∞S = ∂∞S′ = Γ, and that the principal curvatures of S are in [−1+ ǫ, 1− ǫ]. As observed
after the proof of Lemma 4.3, the ρ-equidistant surfaces from S give a foliation of a convex
subset C of H3, for ρ ∈ (− arctanh ||λ||∞, arctanh ||λ||∞). By Corollary 2.5, the minimal
surface S′ is also contained in C.
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Now, let ρ0 the supremum of the value of ρ on the minimal surface S′. If this supremum is
achieved on S′, then the minimal surface S′ is tangent to the smooth surface Sρ0 at distance
ρ0 from S. But by Equation (12), when ρ > 0 the mean curvature of Sρ is negative (in our
setting, a concave surface, for instance obtained for large positive ρ, has negative principal
curvatures). Hence by the maximum principle, necessarily ρ0 ≤ 0.

If the supremum is not attained, let us pick a sequence of points xn ∈ S′ such that the
value of ρ at xn converges to ρ0 as n → ∞. One can apply isometries Tn of H3 so that
xn is mapped to a fixed point x0. By the usual argument (see also Lemma 4.11), one can
apply Theorem 3.2 to ensure that the quasicircles Tn(Γ) converge to a quasicircle Γ∞, and
then Lemma 4.12 to get the C∞ convergence on compact sets of the minimal discs Tn(S

′)
to a minimal disc S′

∞ with ∂∞S′
∞ = Γ∞, up to a subsequence. Moreover, one can also

assume that the minimal discs Tn(S) converge to a minimal disc S∞. Indeed, consider
the points yn on S such that the geodesic of H3 through yn, perpendicular to S, contains
xn. The isometries Tn map yn to a compact region of yn (as d(x0, Tn(yn)) = d(xn, yn) ≤
arctanh ||λ||∞), thus one can repeat the previous argument (first compose with isometries
Rn which map Tn(yn) to a fixed point y0, and extract a subsequence of Rn converging
to an isometry R∞). By the C∞ convergence, the minimal surface S∞ still has principal
curvatures in [−1 + ǫ, 1 − ǫ], and therefore one can repeat the argument of the previous
paragraph, applied to S∞ and S′

∞, to show that ρ0 ≤ 0.
In the same way, one proves that the infimum of ρ on S′ must be nonnegative, and thus

ρ must always be zero on S′. This proves that S = S′. �

The proof of Theorem B then follows from Lemma 5.1. With respect to the constants
K0 and C of Theorem A, by choosing some constant K ′

0 < min{K0, e
1/C} one obtains that

every minimal embedded disc with boundary at infinity a K-quasicircle, with K ≤ K ′
0, has

principal curvatures bounded by ||λ||∞ < 1.

5.2. Quasi-Fuchsian manifolds. In this subsection we collect the applications of Theo-
rem A to quasi-Fuchsian manifolds. A quasi-Fuchsian manifold is a Riemannian manifold
isometric to H3/G, where G is subgroup of Isom(H3), which acts freely and properly dis-
continuously on H

3, isomorphic to the fundamental group of a closed surface Σ, and such
that the limit set (i.e. the set of accumulation points in ∂∞H3 of orbits of the action of G)
is a quasicircle. The topology of a quasi-Fuchsian manifold is Σ× R, where Σ is the closed
surface. Therefore the results obtained in the previous sections hold for the universal cover
S = Σ̃0 of any closed minimal surface Σ0 homotopic to Σ× {0}.

Recall that Teichmüller space T (Σ) of a closed surface Σ is the space of Riemann surface
structures on Σ, considered up to biholomorphisms isotopic to the identity. In the same
way, the classifying space for quasi-Fuchsian manifolds, which we denote by QF(Σ), is the
space of quasi-Fuchsian metrics on Σ × R up to isometries isotopic to the identity. By the
celebrated Bers’ Simultaneous Uniformization Theorem ([Ber60]), QF(Σ) is parameterized
by T (Σ)×T (Σ). The construction is as follows: since the limit set Λ of G is a Jordan curve,
the complement of Λ in ∂∞H3 has two connected components Ω+ and Ω− on which G acts
freely, properly discontinuously and by biholomorphisms. This construction thus provides
two Riemann surface structures on Σ, namely the structures given by the quotients Ω+/G
and Ω−/G. Bers proved that these two Riemann surface structures, as points in T (Σ), can
be prescribed and determine uniquely the quasi-Fuchsian structure in QF(Σ).

Finally, recall that the Teichmüller distance between two points of T (Σ), namely two
Riemann surface structures A1 and A2 on Σ, is defined as:

dT (Σ)((Σ,A1), (Σ,A2)) =
1

2
inf
f∼id

logK(f) ,

where K(f) is the maximal dilatation of f and the infimum is taken over all f : (Σ,A1) →
(Σ,A2) quasiconformal and isotopic to the identity.
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Corollary A. There exist universal constants C > 0 and d0 > 0 such that, for every quasi-
Fuchsian manifold M = H3/G with dT (Σ)(Ω+/G,Ω−/G) < d0 and every minimal surface S
in M homotopic to Σ× {0}, the supremum of the principal curvatures of S satisfies:

||λ||∞ ≤ CdT (Σ)(Ω+/G,Ω−/G) .

Corollary A follows directly from Theorem A. Indeed, let us choose d0 = (1/2) logK0. If
the Teichmüller distance between Ω+/G and Ω−/G is less than d0, then for every d < d0,
d larger than the Teichmüller distance, one can obtain (by lifting to the universal cover) a
K-quasiconformal map between Ω+ and Ω− with K = e2d ≤ K0. Thus the limit set Γ is a

K-quasicircle, with K ≤ K0. Thus by Theorem A the lift S = Σ̃0 of any minimal surface in
M satisfies

||λ||∞ ≤ C logK = 2Cd

Since the choice of d was arbitrary, one obtains

||λ||∞ ≤ 2CdT (Σ)(Ω+/G,Ω−/G)

and the statement is concluded, replacing C by 2C.
Clearly, the simplest example of quasi-Fuchsian manifolds are Fuchsian manifolds, namely

those quasi-Fuchsian manifolds which contain a totally geodesic (and thus minimal) surface
homotopic to Σ × {0}. The lift to H3 of such surface is a totally geodesic plane, whose
boundary at infinity is a circle. Fuchsian manifolds are parameterized by the induced metric
on this totally geodesic surface, and thus the space F of Fuchsian metrics on Σ × R, up
to isometry isotopic to the identity, is parameterized by T (Σ). As a subset of QF , F is
precisely the diagonal in T (Σ)× T (Σ).

It is easy to see that the totally geodesic surface in a quasi-Fuchsian manifold is the
unique minimal surface. Although the uniqueness of the minimal surface in a quasi-Fuchsian
manifold does not hold in general, there is a larger class of manifolds where uniqueness is
guaranteed. According to the terminology in [KS07], we have the following definition of
almost-Fuchsian manifolds:

Definition 5.2. A quasi-Fuchsian manifold is almost-Fuchsian if it contains a minimal
surface homotopic to Σ× {0} with principal curvatures in (−1, 1).

We will denote by AF(Σ) the subset of QF(Σ) of almost-Fuchsian manifolds. Uhlenbeck
in [Uhl83] first observed that the minimal surface in an almost-Fuchsian manifold is unique.
This follows also from the proof of Lemma 5.1, in a simplified version for the compact case.
A direct consequence of our results is the following:

Corollary B. If the Teichmüller distance between the conformal metrics at infinity of a
quasi-Fuchsian manifold M is smaller than a universal constant d′0, then M is almost-
Fuchsian.

Indeed, in Corollary A, if the Teichmüller distance is small enough, then the principal
curvatures are bounded by 1 in absolute value. Finally, if we endow QF ∼= T (Σ)×T (Σ) by
the 1-product metric, namely

dT (Σ)×T (Σ)((A1,A′
1), (A2,A′

2)) = dT (Σ)(A1,A2) + dT (Σ)(A′
1,A′

2) ,

then Corollary B can be restated by saying that if the distance of a point (Ω+/G,Ω−/G) from
the diagonal is less than d′0, then the quasi-Fuchsian manifold determined by (Ω+/G,Ω−/G)
is almost-Fuchsian. We state this in Corollary C below.

Corollary C. There exists a uniform neighborhood N(F(Σ)) of the Fuchsian locus F(Σ)
in QF(Σ) ∼= T (Σ)× T (Σ) such that N(F(Σ)) ⊂ AF(Σ).
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5.3. Further directions. There is a number of questions left open on quasi-Fuchsian and
almost-Fuchsian manifolds. In particular, the results presented in this paper hold for quasi-
Fuchsian manifolds such that the two Riemann surfaces at infinity are close in Teichmüller
space. The understanding of the subset of almost-Fuchsian manifolds far from the Fuchsian
locus is far from being completed. More in general, it is an interesting and challenging
problem to understand the geometric behavior of minimal discs in hyperbolic space with
boundary at infinity a Jordan curve, especially when this Jordan curve becomes more exotic
and phenomena of bifurcations occur.

The techniques of this paper, as observed in Remark 4.2, motivate towards a definition
of thickness or width of the convex core of a quasi-Fuchsian manifold or, more in general,
the convex hull of a quasicircle in ∂∞H3. One might expect to find a relation between such
notion of thickness and, for instance, the Teichmüller distance between the conformal ends
of the quasi-Fuchsian manifold, or the maximal dilatation of the quasicircle. Again, it seems
challenging to provide relations which hold far from the Fuchsian locus.
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