MINIMAL DISCS IN HYPERBOLIC SPACE BOUNDED BY A QUASICIRCLE AT INFINITY

Andrea Seppi

To cite this version:

Andrea Seppi. MINIMAL DISCS IN HYPERBOLIC SPACE BOUNDED BY A QUASICIRCLE AT INFINITY. 2016. hal-01300367v1

HAL Id: hal-01300367

https://hal.science/hal-01300367v1

Preprint submitted on 10 Apr 2016 (v1), last revised 23 Feb 2017 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MINIMAL DISCS IN HYPERBOLIC SPACE BOUNDED BY A QUASICIRCLE AT INFINITY

ANDREA SEPPI

Abstract

We prove that the supremum of principal curvatures of a minimal embedded disc in hyperbolic three-space spanning a quasicircle in the boundary at infinity is estimated in a sublinear way by the norm of the quasicircle in the sense of universal Teichmüller space, if the quasicircle is sufficiently close to being the boundary of a totally geodesic plane. As a by-product we prove that there is a universal constant C independent of the genus such that if the Teichmüller distance between the ends of a quasi-Fuchsian manifold M is at most C , then M is almost-Fuchsian. The main ingredients of the proofs are estimates on the convex hull of a minimal surface and Schauder-type estimates to control principal curvatures.

1. Introduction

Let \mathbb{H}^{3} be hyperbolic three-space and $\partial_{\infty} \mathbb{H}^{3}$ be its boundary at infinity. A surface S in hyperbolic space is minimal if its principal curvatures at every point x have opposite values. We will denote the principal curvatures by λ and $-\lambda$, where $\lambda=\lambda(x)$ is a nonnegative function on S. It was proved by Anderson (And83, Theorem 4.1]) that for every Jordan curve Γ in $\partial_{\infty} \mathbb{H}^{3}$ there exists a minimal embedded disc S whose boundary at infinity coincides with Γ. It can be proved that if the supremum $\|\lambda\|_{\infty}$ of the principal curvatures of S is in $(-1,1)$, then $\Gamma=\partial_{\infty} S$ is a quasicircle, namely Γ is the image of a round circle under a quasiconformal map of the sphere at infinity.

However, uniqueness does not hold in general. Anderson proved the existence of a Jordan curve $\Gamma \subset \partial_{\infty} \mathbb{H}^{3}$ invariant under the action of a quasi-Fuchsian group G spanning several distinct minimal embedded discs, see [And83, Theorem 5.3]. In this case, Γ is a quasicircle and coincides with the limit set of G. More recently in HW13a invariant curves spanning an arbitrarily large number of minimal discs were constructed. On the other hand, if the supremum of the principal curvatures of a minimal embedded disc S satisfies $\|\lambda\|_{\infty} \in(-1,1)$ then, by an application of the maximum principle, S is the unique minimal disc asymptotic to the quasicircle $\Gamma=\partial_{\infty} S$.

The aim of this paper is to study the supremum $\|\lambda\|_{\infty}$ of the principal curvatures of a minimal embedded disc, in relation with the norm of the quasicircle at infinity, in the sense of universal Teichmüller space. The relations we obtain are interesting for "small" quasicircles, that are close in universal Teichmüller space to a round circle. The main result of this paper is the following:

Theorem A. There exist universal constants $K_{0}>1$ and $C>0$ such that every minimal embedded disc in \mathbb{H}^{3} with boundary at infinity a K-quasicircle $\Gamma \subset \partial_{\infty} \mathbb{H}^{3}$, with $1 \leq K \leq K_{0}$, has principal curvatures bounded by

$$
\|\lambda\|_{\infty} \leq C \log K
$$

Recall that the minimal disc with prescribed quasicircle at infinity is unique if $\|\lambda\|_{\infty}<1$. Hence we can draw the following consequence, by choosing $K_{0}^{\prime}<\min \left\{K_{0}, e^{1 / C}\right\}$:
Theorem B. There exists a universal constant K_{0}^{\prime} such that every K-quasicircle $\Gamma \subset \partial_{\infty} \mathbb{H}^{3}$ with $K \leq K_{0}^{\prime}$ is the boundary at infinity of a unique minimal embedded disc.

Applications to quasi-Fuchsian manifolds. Theorem A has a direct application to quasi-Fuchsian manifolds. Recall that a quasi-Fuchsian manifold M is isometric to the quotient of \mathbb{H}^{3} by a quasi-Fuchsian group G, isomorphic to the fundamental group of a closed surface Σ, whose limit set is a Jordan curve Γ in $\partial_{\infty} \mathbb{H}^{3}$. The topology of M is $\Sigma \times \mathbb{R}$. We denote by Ω_{+}and Ω_{-}the two connected components of $\partial_{\infty} \mathbb{H}^{3} \backslash \Gamma$. Then Ω_{+} / G and Ω_{-} / G inherit natural structures of Riemann surfaces on Σ and therefore determine two points of $\mathcal{T}(\Sigma)$, the Teichmüller space of Σ. Let $d_{\mathcal{T}(\Sigma)}$ denote the Teichmüller distance on $\mathcal{T}(\Sigma)$.
Corollary A. There exist universal constants $C>0$ and $d_{0}>0$ such that, for every quasiFuchsian manifold $M=\mathbb{H}^{3} / G$ with $d_{\mathcal{T}(\Sigma)}\left(\Omega_{+} / G, \Omega_{-} / G\right)<d_{0}$ and every minimal surface S in M homotopic to $\Sigma \times\{0\}$, the supremum of the principal curvatures of S satisfies:

$$
\|\lambda\|_{\infty} \leq C d_{\mathcal{T}(\Sigma)}\left(\Omega_{+} / G, \Omega_{-} / G\right)
$$

Indeed, under the hypothesis of Corollary A the Teichmüller map from one hyperbolic end of M to the other is K-quasiconformal for $K \leq e^{2 d_{0}}$. Hence the lift to the universal cover \mathbb{H}^{3} of any closed minimal surface in M is a minimal embedded disc with boundary at infinity a K-quasicircle, namely the limit set of the corresponding quasi-Fuchsian group. Choosing $d_{0}=(1 / 2) \log K_{0}$, where K_{0} is the constant of Theorem A. and choosing C as in Theorem A (up to a factor 2 which arises from the definition of Teichmüller distance), the statement of Corollary A follows.

We remark here that the constant C of Corollary A is independent of the genus of Σ.
A quasi-Fuchsian manifold contaning a closed minimal surface with principal curvatures in $(-1,1)$ is called almost-Fuchsian, according to the definition given in KS07. The minimal surface in an almost-Fuchsian manifold is unique, by the above discussion, as first observed by Uhlenbeck (Uhl83). Hence, applying Theorem B to the case of quasi-Fuchsian manifolds, the following corollary is proved.

Corollary B. If the Teichmüller distance between the conformal metrics at infinity of a quasi-Fuchsian manifold M is smaller than a universal constant d_{0}^{\prime}, then M is almostFuchsian.

Indeed, it suffices as above to pick $d_{0}^{\prime}=(1 / 2) \log K_{0}^{\prime}$, which is again independent on the genus of Σ. By Bers' Simultaneous Uniformization Theorem, the Riemann surfaces $\Omega_{ \pm} / G$ determine the manifold M. Hence the space $\mathcal{Q F}(\Sigma)$ of quasi-Fuchsian manifolds homeomorphic to $\Sigma \times \mathbb{R}$, considered up to isometry isotopic to the identity, can be identified to $\mathcal{T}(\Sigma) \times \mathcal{T}(\Sigma)$. Under this identification, the subset of $\mathcal{Q} \mathcal{F}(\Sigma)$ composed of Fuchsian manifolds coincides with the diagonal. Let us denote by $\mathcal{A} \mathcal{F}(\Sigma)$ the subset of $\mathcal{Q F}(\Sigma)$ composed of almost-Fuchsian manifolds. Corollary B can be restated in the following way:

Corollary C. The space $\mathcal{A} \mathcal{F}(\Sigma)$ of almost-Fuchsian manifolds contains a uniform neighborhood of the diagonal in $\mathcal{Q F}(\Sigma) \cong \mathcal{T}(\Sigma) \times \mathcal{T}(\Sigma)$.

We remark that Corollary A is a partial converse of results presented in GHW10, giving a bound on the Teichmüller distance between the hyperbolic ends of an almost-Fuchsian manifold in terms of the maximum of the principal curvatures. Another invariant which has been studied in relation with the properties of minimal surfaces in hyperbolic space is the Hausdorff dimension of the limit set. Corollary A and Corollary B can be compared with the following theorem given in [San14]: for every ϵ and ϵ_{0} there exists a constant $\delta=\delta\left(\epsilon, \epsilon_{0}\right)$ such that any stable minimal surface with injectivity radius bounded by ϵ_{0} in a quasi-Fuchsian manifold M are in $(-\epsilon, \epsilon)$ provided the Hausdorff dimension of the limit set of M is at most $1+\delta$. In particular, M is almost Fuchsian if one chooses $\epsilon<1$. Conversely, in HW13b the authors give an estimate of the Hausdorff dimension of the limit set in an almost-Fuchsian manifold M in terms of the maximum of the principal curvatures of the (unique) minimal surface. The degeneration of almost-Fuchsian manifolds is also studied in San13.

The main steps of the proof. The proof of Theorem A is composed of several steps.
By using the technique of "description from infinity" (see Eps84 and KS08), we construct a foliation \mathcal{F} of \mathbb{H}^{3} by equidistant surfaces, such that all the leaves of the foliation have the same boundary at infinity, a quasicircle Γ. By using a theorem proved in [Z77] and [KS08, Appendix], which relates the curvatures of the leaves of the foliation with the Schwarzian derivative of the map which uniformizes the conformal structure of one component of $\partial_{\infty} \mathbb{H}^{3} \backslash \Gamma$, we obtain an explicit bound for the distance between two surfaces F_{+} and F_{-}of \mathcal{F}, where F_{+}is concave and F_{-}is convex, in terms of the Bers norm of Γ. The distance $d_{\mathbb{H}^{3}}\left(F_{-}, F_{+}\right)$goes to 0 when Γ approaches a circle in $\partial_{\infty} \mathbb{H}^{3}$.

A fundamental property of a minimal surface S with boundary at infinity a curve Γ is that S is contained in the convex hull of Γ. The surfaces F_{-}and F_{+}of the previous step lie outside the convex hull of Γ, on the two different sides. Hence every point x of S lies on a geodesic segment orthogonal to two planes P_{-}and P_{+}(tangent to F_{-}and F_{+}respectively) such that S is contained in the region bounded by P_{-}and P_{+}. The length of such geodesic segment is bounded by the Bers norm of the quasicircle at infinity, in a way which does not depend on the chosen point $x \in S$.

The next step in the proof is then a Schauder-type estimate. Considering the function u, defined on S, which is the hyperbolic sine of the distance from the plane P_{-}, it turns out that u solves the equation

$$
\Delta_{S} u-2 u=0,
$$

where Δ_{S} is the Laplace-Beltrami operator of S. We then apply classical theory of linear PDEs, in particular Schauder estimates, to the equation ($\mathbb{\star}$) in order to prove that

$$
\|u\|_{C^{2}\left(\Omega^{\prime}\right)} \leq C\|u\|_{C^{0}(\Omega)},
$$

where $\Omega^{\prime} \subset \subset \Omega$ and u is expressed in normal coordinates centered at x. Recall that Δ_{S} is the Laplace-Beltrami operator, which depends on the surface S. In order to have this kind of inequality, it is then necessary to control the coefficients of Δ_{S}. This is obtained by a compactness argument for conformal harmonic mappings, adapted from Cus09, recalling that minimal discs in \mathbb{H}^{3} are precisely the image of conformal harmonic mapping from the disc to \mathbb{H}^{3}. However, to ensure that compact sets in the conformal parametrization are comparable to compact sets in normal coordinates, we will first need to prove a uniform bound of the curvature. For this reason we will assume (as in the statement of Theorem A) that the minimal discs we consider have boundary at infinity a K-quasicircle, with $K \leq K_{0}$.

The final step is then an explicit estimate of the principal curvatures at $x \in S$, by observing that the shape operator can be expressed in terms of u and the first and second derivatives of u. The Schauder estimate above then gives a bound on the principal curvatures just in terms of the supremum of u in a geodesic ball of fixed radius centered at x. By using the first step, since S is contained between P_{-}and the nearby plane P_{+}, we finally get an estimate of the principal curvatures of a minimal embedded disc only in terms of the Bers norm of the quasicircle at infinity.

All the previous estimates do not depend on the choice of $x \in S$. Hence the following theorem is actually proved.

Theorem C. There exist constants $K_{0}>1$ and $C>4$ such that the principal curvatures $\pm \lambda$ of every minimal surface S in \mathbb{H}^{3} with $\partial_{\infty} S=\Gamma$ a K-quasicircle, with $K \leq K_{0}$, are bounded by:

$$
\begin{equation*}
\|\lambda\|_{\infty} \leq \frac{C\|\Psi\|_{\mathcal{B}}}{\sqrt{1-C| | \Psi \|_{\mathcal{B}}^{2}}} \tag{1}
\end{equation*}
$$

where $\Gamma=\Psi\left(S^{1}\right), \Psi: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is a quasiconformal map, conformal on $\widehat{\mathbb{C}} \backslash \mathbb{D}$, and $\|\Psi\|_{\mathcal{B}}$ denotes the Bers norm of Ψ.

Observe that the estimate holds in a neighborhood of the identity (which represents circles in $\partial_{\infty} \mathbb{H}^{3}$), in the sense of universal Teichmüller space. Theorem A is then a consequence of Theorem C using the well-known fact that the Bers embedding is locally bi-Lipschitz.

Organization of the paper. The structure of the paper is as follows. In Section 2 we introduce the necessary notions on hyperbolic space and some properties of minimal surfaces and convex hulls. In Section 3 we introduce the theory of quasiconformal maps and universal Teichmüller space. In Section 4 we prove Theorem A The Section is split in several subsections, containing the steps of the proof.

Acknowledgements. I am very grateful to Jean-Marc Schlenker for his guidance and patience. Most of this work was done during my (very pleasent) stay at University of Luxembourg; I would like to thank the Institution for the hospitality. I am very thankful to my advisor Francesco Bonsante and to Zeno Huang for many interesting discussions and suggestions.

2. Minimal surfaces in hyperbolic space

We consider (3+1)-dimensional Minkowski space $\mathbb{R}^{3,1}$ as \mathbb{R}^{4} endowed with the bilinear form

$$
\begin{equation*}
\langle x, y\rangle=x^{1} y^{1}+x^{2} y^{2}+x^{3} y^{3}-x^{4} y^{4} \tag{2}
\end{equation*}
$$

The hyperboloid model of hyperbolic 3 -space is

$$
\mathbb{H}^{3}=\left\{x \in \mathbb{R}^{3,1}:\langle x, x\rangle=-1, x^{4}>0\right\}
$$

The induced metric from $\mathbb{R}^{3,1}$ gives \mathbb{H}^{3} a Riemannian metric of constant curvature -1. The group of orientation-preserving isometries of \mathbb{H}^{3} is $\operatorname{Isom}\left(\mathbb{H}^{3}\right) \cong \mathrm{SO}_{+}(3,1)$, namely the group of linear isometries of $\mathbb{R}^{3,1}$ which preserve orientation and do not switch the two connected components of the quadric $\{\langle x, x\rangle=-1\}$. Geodesics in hyperbolic space are the intersection of \mathbb{H}^{3} with linear planes X of $\mathbb{R}^{3,1}$ (when nonempty); totally geodesic planes are the intersections with linear hyperplanes and are isometric copies of hyperbolic plane \mathbb{H}^{2}.

We denote by $d_{\mathbb{H}^{3}}(\cdot, \cdot)$ the metric on \mathbb{H}^{3} induced by the Riemannian metric. It is easy to show that

$$
\begin{equation*}
\cosh \left(d_{\mathbb{H}^{3}}(p, q)\right)=|\langle p, q\rangle| \tag{3}
\end{equation*}
$$

and other similar formulae which will be used in the paper.
Note that \mathbb{H}^{3} can also be regarded as the projective domain

$$
P(\{\langle x, x\rangle<0\}) \subset \mathbb{R} P^{3}
$$

Let us denote by $\widehat{\mathrm{dS}}{ }^{3}$ the region

$$
\widehat{\mathrm{d} \mathbb{S}^{3}}=\left\{x \in \mathbb{R}^{3,1}:\langle x, x\rangle=1\right\}
$$

and we call de Sitter space the projectivization of $\widehat{\mathrm{dS}^{3}}$,

$$
\mathrm{d} \mathbb{S}^{3}=P(\{\langle x, x\rangle>0\}) \subset \mathbb{R} P^{3}
$$

Totally geodesic planes in hyperbolic space, of the form $P=X \cap \mathbb{H}^{3}$, are parametrized by the dual points X^{\perp} in $d \mathbb{S}^{3} \subset \mathbb{R} P^{3}$.

In an affine chart $\left\{x_{4} \neq 0\right\}$ for the projective model of \mathbb{H}^{3}, hyperbolic space is represented as the unit ball $\left\{(x, y, z): x^{2}+y^{2}+z^{2}<1\right\}$, using the affine coordinates $(x, y, z)=$ $\left(x^{1} / x^{4}, x^{2} / x^{4}, x^{3} / x^{4}\right)$. This is called the Klein model; although in this model the metric of \mathbb{H}^{3} is not conformal to the Euclidean metric of \mathbb{R}^{3}, the Klein model has the good property that geodesics are straight lines, and totally geodesic planes are intersections of the unit ball with planes of \mathbb{R}^{3}. It is well-known that \mathbb{H}^{3} has a natural boundary at infinity, $\partial_{\infty} \mathbb{H}^{3}=P(\{\langle x, x\rangle=0\})$, which is a 2 -sphere and is endowed with a natural complex projective structure - and therefore also with a conformal structure.

Given an embedded surface S in \mathbb{H}^{3}, we denote by $\partial_{\infty} S$ its asymptotic boundary, namely, the intersection of the topological closure of S with $\partial_{\infty} \mathbb{H}^{3}$.
2.1. Minimal surfaces. This paper is mostly concerned with smoothly embedded surfaces in hyperbolic space. Let $\sigma: S \rightarrow \mathbb{H}^{3}$ be a smooth embedding and let N be a unit normal vector field to the embedded surface $\sigma(S)$. We denote again by $\langle\cdot, \cdot\rangle$ the Riemannian metric of \mathbb{H}^{3}, which is the restriction to the hyperboloid of the bilinear form (2) of $\mathbb{R}^{3,1} ; \nabla$ and ∇^{S} are the ambient connection and the Levi-Civita connection of the surface S, respectively. The second fundamental form of S is defined as

$$
\nabla_{\tilde{v}} \tilde{w}=\nabla_{\tilde{v}}^{S} \tilde{w}+\Pi(v, w) N
$$

if \tilde{v} and \tilde{w} are vector fields extending v and w. The shape operator is the (1,1)-tensor defined as $B(v)=-\nabla_{v} N$. It satisfies the property

$$
I(v, w)=\langle B(v), w\rangle .
$$

Definition 2.1. An embedded surface S in \mathbb{H}^{3} is minimal if $\operatorname{tr}(B)=0$.
The shape operator is symmetric with respect to the first fundamental form of the surface S; hence the condition of minimality amounts to the fact that the principal curvatures (namely, the eigenvalues of B) are opposite at every point.

An embedded disc in \mathbb{H}^{3} is said to be area minimizing if any compact subdisc is locally the smallest area surface among all surfaces with the same boundary. It is well-known that area minimizing surfaces are minimal. The problem of existence for minimal surfaces with prescribed curve at infinity was solved by Anderson; see And83 for the original source and Cos13 for a survey on this topic.

Theorem 2.2 (And83). Given a simple closed curve Γ in $\partial_{\infty} \mathbb{H}^{3}$, there exists a complete area minimizing embedded disc S with $\partial_{\infty} S=\Gamma$.

The following property is a well-known application of the maximum principle.
Proposition 2.3. If a simple closed curve Γ in $\partial_{\infty} \mathbb{H}^{3}$ spans a minimal disc S with principal curvatures in $[-1+\epsilon, 1-\epsilon]$, then S is the unique minimal surface with boundary at infinity Γ.

A key property used in this paper is that minimal surfaces with boundary at infinity a Jordan curve Γ are contained in the convex hull of Γ. Although this fact is known, we prove it here by applying maximum principle to a simple linear PDE describing minimal surfaces.

Definition 2.4. Given a curve Γ in $\partial_{\infty} \mathbb{H}^{3}$, the convex hull of Γ, which we denote by $\mathcal{C H}(\Gamma)$, is the intersection of half-spaces bounded by totally geodesic planes P such that $\partial_{\infty} P$ does not intersect Γ, and the half-space is taken on the side of P containing Γ.

Hereafter Hess u denotes the Hessian of a smooth function u on the surface S, i.e. the $(1,1)$ tensor

$$
\operatorname{Hess} u(v)=\nabla_{v}^{S} \operatorname{grad} u .
$$

Sometimes the Hessian is also considered as a $(2,0)$ tensor, which we denote (in the rare occurrences) with

$$
\nabla^{2} u(v, w)=\langle\operatorname{Hess} u(v), w\rangle
$$

Finally, Δ_{S} denotes the Laplace-Beltrami operator of S, which can be defined as

$$
\Delta_{S} u=\operatorname{tr}(\operatorname{Hess} u)
$$

Observe that, with this definition, Δ_{S} is a negative definite operator.

Proposition 2.5. Given a minimal surface $S \subset \mathbb{H}^{3}$ and a plane P, let $u: S \rightarrow \mathbb{R}$ be the function $u(x)=\sinh d_{\mathbb{H}^{3}}(x, P)$. Here $d_{\mathbb{H}^{3}}(x, P)$ is considered as a signed distance from the plane P. Let N be the unit normal to S and $B=-\nabla N$ the shape operator. Then

$$
\begin{equation*}
\operatorname{Hess} u-u E=\sqrt{1+u^{2}-\|\operatorname{grad} u\|^{2}} B \tag{4}
\end{equation*}
$$

as a consequence, u satisfies
(*)

$$
\Delta_{S} u-2 u=0 .
$$

Proof. Consider the hyperboloid model for \mathbb{H}^{3}. Let us assume P is the plane dual to the point $p \in \mathrm{~d} \mathbb{S}^{3}$, meaning that $P=p^{\perp} \cap \mathbb{H}^{3}$. Then u is the restriction to S of the function U defined on \mathbb{H}^{3} :

$$
\begin{equation*}
U(x)=\sinh d_{\mathbb{H}^{3}}(x, P)=\langle x, p\rangle \tag{5}
\end{equation*}
$$

Let N be the unit normal vector field to S; we compute $\operatorname{grad} u$ by projecting the gradient ∇U of U to the tangent plane to S :

$$
\begin{gather*}
\nabla U=p+\langle p, x\rangle x \tag{6}\\
\operatorname{grad} u(x)=p+\langle p, x\rangle x-\langle p, N\rangle N \tag{7}
\end{gather*}
$$

Now Hessu(v) $=\nabla_{v}^{S} \operatorname{grad} u$, where ∇^{S} is the Levi-Civita connection of S, namely the projection of the flat connection of $\mathbb{R}^{3,1}$, and so

$$
\operatorname{Hess} u(x)(v)=\langle p, x\rangle v-\langle p, N\rangle \nabla_{v}^{S} N=u(x) v+\langle\nabla U, N\rangle B(v) .
$$

Moreover, $\nabla U=\operatorname{grad} u+\langle\nabla U, N\rangle N$ and thus

$$
\langle\nabla U, N\rangle^{2}=\langle\nabla U, \nabla U\rangle-\|\operatorname{grad} u\|^{2}=1+u^{2}-\|\operatorname{grad} u\|^{2}
$$

which proves (4). By taking the trace, (図) follows.
Corollary 2.6. Let S be a minimal surface in \mathbb{H}^{3}, with $\partial_{\infty}(S)=\Gamma$ a Jordan curve. Then S is contained in the convex hull $\mathcal{C H}(\Gamma)$.

Proof. If Γ is a circle, then S is a totally geodesic plane which coincides with the convex hull of Γ. Hence we can suppose Γ is not a circle. Consider a plane P_{-}which does not intersect Γ and the function u defined as in Equation (5) in Proposition [2.5 with respect to P_{-}. Suppose their mutual position is such that $u \geq 0$ in the region of S close to the boundary at infinity (i.e. in the complement of a large compact set). If there exists some point where $u<0$, then at a minimum point $\Delta_{S} u=2 u<0$, which gives a contradiction. The proof is analogous for a plane P_{+}on the other side of Γ, by switching the signs. Therefore every convex set containing Γ contains also S.

3. Universal Teichmüller space

The aim of this section is to introduce the theory of quasiconformal mappings and universal Teichmüller space. We will give a brief account of the very rich and developed theory. Useful references are Gar87, GL00, Ah106, FM07, and the nice survey Sug07.
3.1. Quasiconformal mappings and universal Teichmüller space. We recall the definition of quasiconformal map.

Definition 3.1. Given a domain $\Omega \subset \mathbb{C}$, an orientation-preserving homeomorphism

$$
f: \Omega \rightarrow f(\Omega) \subset \mathbb{C}
$$

is quasiconformal if f is absolutely continuous on lines and there exists a constant $k<1$ such that

$$
\left|\partial_{\bar{z}} f\right| \leq k\left|\partial_{z} f\right| .
$$

Let us denote $\mu_{f}=\partial_{\bar{z}} f / \partial_{z} f$, which is called complex dilatation of f. This is well-defined almost everywhere, hence it makes sense to take the L_{∞} norm. Thus a homeomorphism $f: \Omega \rightarrow f(\Omega) \subset \mathbb{C}$ is quasiconformal if $\left\|\mu_{f}\right\|_{\infty}<1$. Moreover, a quasiconformal map as in Definition 3.1 is called K-quasiconformal, where

$$
K=\frac{1+k}{1-k}
$$

It turns out that the best such constant $K \in[1,+\infty)$ represents the maximal dilatation of f, i.e. the supremum over all $z \in \Omega$ of the ratio between the major axis and the minor axis of the ellipse which is the image of a unit circle under the differential $d_{z} f$.

It is known that a 1-quasiconformal map is conformal, and that the composition of a K_{1} quasiconformal map and a K_{2}-quasiconformal map is $K_{1} K_{2}$-quasiconformal. Hence composing with conformal maps does not change the maximal dilatation.

Actually, there is an explicit formula for the complex dilatation of the composition of two quasiconformal maps f, g on Ω :

$$
\begin{equation*}
\mu_{g \circ f-1}=\frac{\partial_{z} f}{\overline{\partial_{z} f}} \frac{\mu_{g}-\mu_{f}}{1-\overline{\mu_{f}} \mu_{g}} . \tag{8}
\end{equation*}
$$

Using Equation (8), one can see that f and g differ by post-composition with a conformal map if and only if $\mu_{f}=\mu_{g}$ almost everywhere. We now mention the classical and important result of existence of quasiconformal maps with given complex dilatation.

Measurable Riemann mapping Theorem. Given any measurable function μ on \mathbb{C} there exists a unique quasiconformal map $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $f(0)=0, f(1)=1$ and $\mu_{f}=\mu$ almost everywhere in \mathbb{C}.

The uniqueness part of Measurable Riemann mapping Theorem means that every two solutions (which can be thought as maps on the sphere $\widehat{\mathbb{C}}$) of the equation

$$
\left(\partial_{z} f\right) \mu=\partial_{\bar{z}} f
$$

differ by post-composition with a Möbius transformation of $\widehat{\mathbb{C}}$.
Given any fixed $K \geq 1, K$-quasiconformal mappings have an important compactness property. See Gar87 or Leh87.

Theorem 3.2. Let $K>1$ and $f_{n}: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ be a sequence of K-quasiconformal mappings such that, for three fixed points $z_{1}, z_{2}, z_{3} \in \widehat{\mathbb{C}}$, the mutual spherical distances are bounded from below: there exists a constant $C_{0}>0$ such that

$$
d_{\mathbb{S}^{2}}\left(f_{n}\left(z_{i}\right), f_{n}\left(z_{j}\right)\right)>C_{0}
$$

for every n and for every choice of $i, j=1,2,3, i \neq j$. Then there exists a subsequence $f_{n_{k}}$ which converges uniformly to a K-quasiconformal map $f_{\infty}: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$.
3.2. Quasiconformal deformations of the disc. It turns out that every quasiconformal homeomorphisms of \mathbb{D} to itself extends to the boundary $\partial \mathbb{D}=S^{1}$. Let us consider the space:

$$
Q C(\mathbb{D})=\{\Phi: \mathbb{D} \rightarrow \mathbb{D} \text { quasiconformal }\} / \sim
$$

where $\Phi \sim \Phi^{\prime}$ if and only if $\left.\Phi\right|_{S^{1}}=\left.\Phi^{\prime}\right|_{S^{1}}$. Universal Teichmüller space is then defined as

$$
\mathcal{T}(\mathbb{D})=Q C(\mathbb{D}) / \operatorname{Möb}(\mathbb{D}),
$$

where $\operatorname{Möb}(\mathbb{D})$ is the subgroup of Möbius transformations of \mathbb{D}. Equivalently, $\mathcal{T}(\mathbb{D})$ is the space of quasiconformal homeomorphisms $\Phi: \mathbb{D} \rightarrow \mathbb{D}$ which fix $1, i$ and -1 up to the same relation \sim.

Such quasiconformal homeomorphisms of the disc can be obtained in the following way. Given a domain Ω, elements in the unit ball of the (complex-valued) Banach space $L^{\infty}(\mathbb{D})$ are called Beltrami differentials on Ω. Let us denote this unit ball by:

$$
\operatorname{Belt}(\mathbb{D})=\left\{\mu \in L^{\infty}(\mathbb{D}) \mid\|\mu\|_{\infty}<1\right\} .
$$

Given any μ in $\operatorname{Belt}(\mathbb{D})$, let us define $\hat{\mu}$ on \mathbb{C} by extending μ on $\mathbb{C} \backslash \mathbb{D}$ so that

$$
\hat{\mu}(z)=\overline{\mu(1 / \bar{z})}
$$

The quasiconformal map $f^{\mu}: \mathbb{C} \rightarrow \mathbb{C}$ such that $\mu_{f^{\mu}}=\hat{\mu}$ fixing $1, i$ and -1 , whose existence is provided by Measurable Riemann mapping Theorem, maps $\partial \mathbb{D}$ to itself by the uniqueness part. Therefore f^{μ} restricts to a quasiconformal homeomorphism of \mathbb{D} to itself.

The Teichmüller distance on $\mathcal{T}(\mathbb{D})$ is defined as

$$
d_{\mathcal{T}(\mathbb{D})}\left([\Phi],\left[\Phi^{\prime}\right]\right)=\frac{1}{2} \inf \log K\left(\Phi_{1}^{-1} \circ \Phi_{1}^{\prime}\right),
$$

where the infimum is taken over all quasiconformal maps $\Phi_{1} \in[\Phi]$ and $\Phi_{1}^{\prime} \in\left[\Phi^{\prime}\right]$. It can be shown that $d_{\mathcal{T}(\mathbb{D})}$ is a well-defined distance on Teichmüller space, and $\left(\mathcal{T}(\mathbb{D}), d_{\mathcal{T}(\mathbb{D})}\right)$ is a complete metric space.
3.3. Quasicircles and Bers embedding. We now want to discuss another interpretation of Teichmüller space, as the space of quasidiscs, and the relation with the Schwartzian derivative and the Bers embedding.
Definition 3.3. A quasicircle is a simple closed curve Γ in $\widehat{\mathbb{C}}$ such that $\Gamma=\Psi\left(S^{1}\right)$ for a quasiconformal map Ψ. Analogously, a quasidisc is a domain Ω in $\widehat{\mathbb{C}}$ such that $\Omega=\Psi(\mathbb{D})$ for a quasiconformal map $\Psi: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$.

Let us remark that in the definition of quasicircle, it would be equivalent to say that Γ is the image of S^{1} by a K^{\prime}-quasiconformal map of $\widehat{\mathbb{C}}$ (not necessarily conformal on \mathbb{D}^{*}). However, the maximal dilatation K^{\prime} might be different, with $K \leq K^{\prime} \leq 2 K$. Hence we consider the space of quasidiscs:

$$
Q D(\mathbb{D})=\left\{\Psi: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}:\left.\Psi\right|_{\mathbb{D}} \text { is quasiconformal and }\left.\Psi\right|_{\mathbb{D}^{*}} \text { is conformal }\right\} / \sim
$$

where the equivalence relation is $\Psi \sim \Psi^{\prime}$ if and only if $\left.\Psi\right|_{\mathbb{D}^{*}}=\left.\Psi^{\prime}\right|_{\mathbb{D}^{*}}$. We will again consider the quotient of $Q D(\mathbb{D})$ by Möbius transformation.

Given a Beltrami differential $\mu \in \operatorname{Belt}(\mathbb{D})$, one can construct a quasiconformal map on $\widehat{\mathbb{C}}$, by applying Measurable Riemann mapping Theorem to the Beltrami differential obtained by extending μ to 0 on $\mathbb{D}^{*}=\{z \in \widehat{\mathbb{C}}:|z|>1\}$. The quasiconformal map obtained in this way (fixing the three points 0,1 and ∞) is denoted by f_{μ}. A well-known lemma (see Gar87, §5.4, Lemma 3]) shows that, given two Beltrami differentials $\mu, \mu^{\prime} \in \operatorname{Belt}(\mathbb{D}),\left.f^{\mu}\right|_{S^{1}}=\left.f^{\mu^{\prime}}\right|_{S^{1}}$ if and only if $\left.f_{\mu}\right|_{\mathbb{D}^{*}}=\left.f_{\mu^{\prime}}\right|_{\mathbb{D}^{*}}$. Using this fact it can be shown that $\mathcal{T}(\mathbb{D})$ is identified to $Q D(\mathbb{D}) / \operatorname{Möb}(\widehat{\mathbb{C}})$, or equivalently to the subset of $Q D(\mathbb{D})$ which fix 0,1 and ∞.

We will say that a quasicircle Γ is a K-quasicircle if

$$
K=\inf _{\substack{\Gamma=\Psi\left(S^{1}\right) \\ \Psi \in Q D(\mathbb{D})}} K(\Psi)
$$

It is easily seen that the condition that $\Gamma=\Psi\left(S^{1}\right)$ is a K-quasicircle is equivalent to the fact that the element $[\Phi]$ of the first model $\mathcal{T}(\mathbb{D})=Q C(\mathbb{D}) / \operatorname{Möb}(\mathbb{D})$ which corresponds to $[\Psi]$ has Teichmüller distance from the identity $d_{\mathcal{T}(\mathbb{D})}([\Phi],[\mathrm{id}])=(\log K) / 2$.

By using the model of quasidiscs for Teichmüller space, we now introduce the Bers norm on $\mathcal{T}(\mathbb{D})$. Recall that, given a holomorphic function $f: \Omega \rightarrow \mathbb{C}$ with $f^{\prime} \neq 0$ in Ω, the Schwarzian derivative of f is the holomorphic function

$$
S_{f}=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}
$$

It can be easily checked that $S_{1 / f}=S_{f}$, hence the Schwarzian derivative can be defined also for meromorphic functions at simple poles. The Schwarzian derivative vanishes precisely on Möbius transformations.

Let us now consider the space of holomorphic quadratic differentials on \mathbb{D}. We will consider the following norm, for a holomorphic quadratic differential $q=h(z) d z^{2}$:

$$
\|q\|_{\infty}=\sup _{z \in \mathbb{D}} e^{-2 \eta(z)}|h(z)|,
$$

where $e^{2 \eta(z)}|d z|^{2}$ is the Poincaré metric of constant curvature -1 on \mathbb{D}. Observe that $\|q\|_{\infty}$ behaves like a function, in the sense that it is invariant by pre-composition with Möbius transformations of \mathbb{D}, which are isometries for the Poincaré metric.

We now define the Bers embedding of universal Teichmüller space. This is the map $\beta_{\mathbb{D}}$ which associates to $[\Psi] \in \mathcal{T}(\mathbb{D})=Q D(\mathbb{D}) / \operatorname{Möb}(\widehat{\mathbb{C}})$ the Schwarzian derivative S_{Ψ}. Let us denote by $\|\cdot\|_{\mathcal{Q}\left(\mathbb{D}^{*}\right)}$ the norm on holomorphic quadratic differentials on \mathbb{D}^{*} obtained from the $\|\cdot\|_{\infty}$ norm on \mathbb{D}, by identifying \mathbb{D} with \mathbb{D}^{*} by an inversion in S^{1}. Then

$$
\beta_{\mathbb{D}}: \mathcal{T}(\mathbb{D}) \rightarrow \mathcal{Q}\left(\mathbb{D}^{*}\right)
$$

is an embedding of $\mathcal{T}(\mathbb{D})$ in the Banach space $\left(\mathcal{Q}\left(\mathbb{D}^{*}\right),\|\cdot\|_{\mathcal{Q}\left(\mathbb{D}^{*}\right)}\right)$ of bounded holomorphic quadratic differentials (i.e. for which $\left.\|q\|_{\mathcal{Q}\left(\mathbb{D}^{*}\right)}<+\infty\right)$. Finally, the Bers norm of en element $\Psi \in \mathcal{T}(\mathbb{D})$ is

$$
\|\Psi\|_{\mathcal{B}}=\left\|\beta_{\mathbb{D}}[\Psi]\right\|_{\infty}=\left\|S_{\Psi}\right\|_{\mathcal{Q}\left(\mathbb{D}^{*}\right)}
$$

The fact that the Bers embedding is locally bi-Lipschitz will be used in the following. See for instance FKM13, Theorem 4.3]. In the statement, we again implicitly identify the models of universal Teichmüller space by quasiconformal homeomorphisms of the disc (denoted by $[\Phi]$) and by quasicircles (denoted by $[\Psi]$).

Theorem 3.4. Let $r>0$. There exist constants b_{1} and $b_{2}=b_{2}(r)$ such that, for every $[\Psi],\left[\Psi^{\prime}\right]$ in the ball of radius r for the Teichmüller distance centered at the origin (i.e. $\left.d_{\mathcal{T}(\mathbb{D})}([\Psi],[\mathrm{id}]), d_{\mathcal{T}(\mathbb{D})}\left(\left[\Psi^{\prime}\right],[\mathrm{id}]\right)<r\right)$,

$$
b_{1}\left\|\beta_{\mathbb{D}}[\Psi]-\beta_{\mathbb{D}}[\Psi]\right\|_{\infty} \leq d_{\mathcal{T}(\mathbb{D})}\left([\Psi],\left[\Psi^{\prime}\right]\right) \leq b_{2}\left\|\beta_{\mathbb{D}}[\Psi]-\beta_{\mathbb{D}}[\Psi]\right\|_{\infty}
$$

We conclude this preliminary part by mentioning a theorem by Nehari, see for instance Leh87 or FM07.

Nehari Theorem. The image of the Bers embedding is contained in the ball of radius $3 / 2$ in $\left(\mathcal{Q}\left(\mathbb{D}^{*}\right),\|\cdot\|_{\mathcal{Q}\left(\mathbb{D}^{*}\right)}\right)$, and contains the ball of radius $1 / 2$.

4. Minimal surfaces in \mathbb{H}^{3}

The goal of this section is to prove Theorem A. The proof is divided into several steps, whose general idea is the following:
(1) Given $\Psi \in Q D(\mathbb{D})$, if $\|\Psi\|_{\mathcal{B}}$ is small, then there is a foliation \mathcal{F} of a convex subset \mathcal{C} of \mathbb{H}^{3} by equidistant surfaces. All the surfaces F of \mathcal{F} have asymptotic boundary the quasicircle $\Gamma=\Psi\left(S^{1}\right)$. Hence the convex hull of Γ is trapped between two parallel surfaces, whose distance is estimated in terms of $\|\Psi\|_{\mathcal{B}}$.
(2) As a consequence of point (11), given a minimal surface S in \mathbb{H}^{3} with $\partial_{\infty}(S)=\Gamma$, for every point $x \in S$ there is a geodesic segment through x of small length orthogonal at the endpoints to two planes P_{-}, P_{+}which do not intersect \mathcal{C}. Moreover S is contained between P_{-}and P_{+}.
(3) Since S is contained between two parallel planes close to x, the principal curvatures of S in a neighborhood of x cannot be too large. In particular, we use Schauder theory to show that the principal curvatures of S at a point x are uniformly bounded in terms of the distance from P_{-}of points in a neighborhood of x.
(4) Finally, the distance from P_{-}of points of S in a neighborhood of x is estimated in terms of the distance of points in P_{+}from P_{-}, hence is bounded in terms of the Bers norm $\|\Psi\|_{\mathcal{B}}$.
It is important to remark that the estimates we give are uniform, in the sense that they do not depend on the point x or on the surface S, but just on the Bers norm of the quasicircle at infinity. The above heuristic arguments are formalized in the following subsections.
4.1. Description from infinity. The main result of this part is the following. See Figure 4.1

Proposition 4.1. Let $A<1 / 2$. Given an embedded minimal disc S in \mathbb{H}^{3} with boundary at infinity a quasicircle $\partial_{\infty} S=\Psi\left(S^{1}\right)$ with $\|\Psi\|_{\mathcal{B}} \leq A$, every point of S lies on a geodesic segment of length at most $\operatorname{arctanh}(2 A)$ orthogonal at the endpoints to two planes P_{-}and P_{+}, such that the convex hull $\mathcal{C H}(\Gamma)$ is contained between P_{-}and P_{+}.

Figure 4.1. The statement of Proposition 4.1 The geodesic segment through x_{0} has length $\leq w$, for $w=\operatorname{arctanh}\left(2\|\Psi\|_{\mathcal{B}}\right)$, and this does not depend on $x_{0} \in S$.

We review here some important facts on the so-called description from infinity of surfaces in hyperbolic space. For details, see Eps84 and [KS08]. Given an embedded surface S in \mathbb{H}^{3} with bounded principal curvatures, let I be its first fundamental form and $I I$ the second fundamental form. Recall we defined $B=-\nabla N$ its shape operator, for N the oriented unit normal vector field (we fix the convention that N points towards the $x_{4}>0$ direction in $\mathbb{R}^{3,1}$), so that $I I=I(B \cdot, \cdot)$. Denote by E the identity operator. Let S_{ρ} be the ρ-equidistant surface from S (where the sign of ρ agrees with the choice of unit normal vector field to S). For small ρ, there is a map from S to S_{ρ} obtained following the geodesics orthogonal to S at every point.

Lemma 4.2. Given a smooth surface S in \mathbb{H}^{3}, let S_{ρ} be the surface at distance ρ from S, obtained by following the normal flow at time ρ. Then the pull-back to S of the induced metric on the surface S_{ρ} is given by:

$$
\begin{equation*}
I_{\rho}=I((\cosh (\rho) E-\sinh (\rho) B) \cdot,(\cosh (\rho) E-\sinh (\rho) B) \cdot) \tag{9}
\end{equation*}
$$

The second fundamental form and the shape operator of S_{ρ} are given by

$$
\begin{gather*}
I_{\rho}=I((-\sinh (\rho) E+\cosh (\rho) B) \cdot,(\cosh (\rho) E-\sinh (\rho) B) \cdot) \tag{10}\\
B_{\rho}=(\cosh (\rho) E-\sinh (\rho) B)^{-1}(-\sinh (\rho) E+\cosh (\rho) B) \tag{11}
\end{gather*}
$$

Proof. In the hyperboloid model, let $\sigma: \mathbb{D} \rightarrow \mathbb{H}^{2}$ be the minimal embedding of the surface S, with oriented unit normal N. The geodesics orthogonal to S at a point x can be written as

$$
\gamma_{x}(\rho)=\cosh (\rho) \sigma(x)+\sinh (\rho) N(x) .
$$

Then we compute

$$
\begin{aligned}
I_{\rho}(v, w) & =\left\langle d \gamma_{x}(\rho)(v), d \gamma_{x}(\rho)(w)\right\rangle \\
& =\left\langle\cosh (\rho) d \sigma_{x}(v)+\sinh (\rho) d N_{x}(v), \cosh (r) d \sigma_{x}(w)+\sinh (\rho) d N_{x}(w)\right\rangle \\
& =I(\cosh (\rho) v-\sinh (\rho) B(v), \cosh (\rho) w-\sinh (\rho) B(w)) .
\end{aligned}
$$

The formula for the second fundamental form follows from the fact that $I_{\rho}=-\frac{1}{2} \frac{d I_{\rho}}{d \rho}$.
It follows that, if the principal curvatures of a minimal surface S are λ and $-\lambda$, then the principal curvatures of S_{ρ} are

$$
\lambda_{\rho}=\frac{\lambda-\tanh (\rho)}{1-\lambda \tanh (\rho)} \quad \lambda_{\rho}^{\prime}=\frac{-\lambda-\tanh (\rho)}{1+\lambda \tanh (\rho)}
$$

In particular, if $-1 \leq \lambda \leq 1$, then I_{ρ} is a non-singular metric for every ρ. The surfaces S_{ρ} foliate \mathbb{H}^{3} and they all have asymptotic boundary $\partial_{\infty} S_{\rho}=\partial_{\infty} S$.

We now define the first, second and third fundamental form at infinity associated to S. Recall the second and third fundamental form of S are $I I=I(B \cdot, \cdot)$ and $I I I=I(B \cdot, B \cdot)$.

$$
\begin{gather*}
I^{*}=\lim _{\rho \rightarrow \infty} 2 e^{-2 \rho} I_{\rho}=\frac{1}{2} I((E-B) \cdot,(E-B) \cdot)=\frac{1}{2}(I-2 I I+I I I) \tag{12}\\
B^{*}=(E-B)^{-1}(E+B) \tag{13}\\
I^{*}=\frac{1}{2} I((E+B) \cdot,(E-B) \cdot)=I^{*}\left(B^{*} \cdot, \cdot\right) \tag{14}\\
I I^{*}=I^{*}\left(B^{*} \cdot, B^{*} \cdot\right) \tag{15}
\end{gather*}
$$

We observe that the metric I_{ρ} and the second fundamental form can be recovered as

$$
\begin{gather*}
I_{\rho}=\frac{1}{2} e^{2 \rho} I^{*}+I^{*}+\frac{1}{2} e^{-2 \rho} I I{ }^{*} \tag{16}\\
I_{\rho}=-\frac{1}{2} \frac{d I_{\rho}}{d \rho}=\frac{1}{2} I^{*}\left(\left(e^{\rho} E+e^{-\rho} B^{*}\right) \cdot,\left(-e^{\rho} E+e^{-\rho} B^{*}\right) \cdot\right) \tag{17}\\
B_{\rho}=\left(e^{\rho} E+e^{-\rho} B^{*}\right)^{-1}\left(-e^{\rho} E+e^{-\rho} B^{*}\right) \tag{18}
\end{gather*}
$$

The following relation can be proved by some easy computation:
Lemma 4.3 ($\underline{\text { KS08 }}$, Remark 5.4 and 5.5]). The embedding data at infinity $\left(I^{*}, B^{*}\right)$ associated to an embedded surface S in \mathbb{H}^{3} satisfy the equation

$$
\begin{equation*}
\operatorname{tr}\left(B^{*}\right)=-K_{I^{*}}, \tag{19}
\end{equation*}
$$

where $K_{I^{*}}$ is the curvature of I^{*}. Moreover, B^{*} satisfies the Codazzi equation with respect to I^{*} :

$$
\begin{equation*}
d^{\nabla_{I^{*}}} B^{*}=0 \tag{20}
\end{equation*}
$$

A partial converse of this fact, which can be regarded as a fundamental theorem from infinity, is the following theorem. This follows again by the results in KS08, although it is not stated in full generality here.
Theorem 4.4. Given a Jordan curve $\Gamma \subset \partial_{\infty} \mathbb{H}^{3}$, let $\left(I^{*}, B^{*}\right)$ be a pair of a metric in the conformal class of a connected component of $\partial_{\infty} \mathbb{H}^{3} \backslash \Gamma$ and a self-adjoint (1,1)-tensor, satisfiying the conditions (19) and (20) as in Lemma 4.3. Assume the eigenvalues of B^{*} are positive at every point. Then there exists a foliation of \mathbb{H}^{3} by equidistant surfaces S_{ρ}, for which the first fundamental form at infinity (with respect to $S=S_{0}$) is I^{*} and the shape operator at infinity is B^{*}.

We want to give a relation between the Bers norm of the quasicircle Γ and the existence of a foliation of \mathbb{H}^{3} by equidistant surfaces with boundary Γ, containing both convex and concave surfaces. We identify $\partial_{\infty} \mathbb{H}^{3}$ to $\widehat{\mathbb{C}}$ by means of the stereographic projection, so that \mathbb{D} correponds to the lower hemisphere of the sphere at infinity. The following property will be used, see [ZT87] or KS08, Appendix A].
Theorem 4.5. Let $\Gamma \subset \partial_{\infty} \mathbb{H}^{3}$ be a Jordan curve. If I^{*} is the complete hyperbolic metric in the conformal class of a connected component Ω of $\partial_{\infty} \mathbb{H}^{3} \backslash \Gamma$, and I_{0}^{*} is the traceless part of the second fundamental form at infinity I^{*}, then $-I_{0}^{*}$ is the real part of the Schwarzian derivative of the isometry $\Psi: \mathbb{D}^{*} \rightarrow \Omega$, namely the map Ψ which uniformizes the conformal structure of Ω :

$$
\begin{equation*}
\Pi_{0}^{*}=-\operatorname{Re}\left(S_{\Psi}\right) \tag{21}
\end{equation*}
$$

We now derive, by straightforward computation, a useful relation.
Lemma 4.6. Let $\Gamma=\Psi\left(S^{1}\right)$ be a quasicircle, for $\Psi \in Q D(\mathbb{D})$. If I^{*} is the complete hyperbolic metric in the conformal class of a connected component Ω of $\partial_{\infty} \mathbb{H}^{3} \backslash \Gamma$, and B_{0}^{*} is the traceless part of the shape operator at infinity B^{*}, then

$$
\begin{equation*}
\sup _{z \in \Omega}\left|\operatorname{det} B_{0}^{*}(z)\right|=\|\Psi\|_{\mathcal{B}}^{2} \tag{22}
\end{equation*}
$$

Proof. From Theorem4.5, B_{0}^{*} is the real part of the holomorphic quadratic differential $-S_{\Psi}$. In complex conformal coordinates, we can assume that

$$
I^{*}=e^{2 \eta}|d z|^{2}=\left(\begin{array}{cc}
0 & \frac{1}{2} e^{2 \eta} \\
\frac{1}{2} e^{2 \eta} & 0
\end{array}\right)
$$

and $S_{\Psi}=h(z) d z^{2}$, so that

$$
\Pi_{0}^{*}=-\frac{1}{2}\left(h(z) d z^{2}+\overline{h(z)} d \bar{z}^{2}\right)=-\left(\begin{array}{cc}
\frac{1}{2} h & 0 \\
0 & \frac{1}{2} \bar{h}
\end{array}\right)
$$

and finally

$$
B_{0}^{*}=\left(I^{*}\right)^{-1} I_{0}^{*}=-\left(\begin{array}{cc}
0 & e^{-2 \eta} \bar{h} \\
e^{-2 \eta} h & 0
\end{array}\right)
$$

Therefore $\left|\operatorname{det} B_{0}^{*}(z)\right|=e^{-4 \eta(z)}|h(z)|^{2}$. Moreover, by definition of Bers embedding, $\mathcal{B}([\Psi])=$ S_{Ψ}, because Ψ is a holomorphic map from \mathbb{D}^{*} which maps $S^{1}=\partial \mathbb{D}$ to Γ. Since

$$
\|\Psi\|_{\mathcal{B}}^{2}=\sup _{z \in \Omega}\left(e^{-4 \eta(z)}|h(z)|^{2}\right),
$$

this concludes the proof.
We are finally ready to prove Proposition 4.1
Proof of Proposition 4.1. Suppose again I^{*} is a hyperbolic metric in the conformal class of Ω. Since $\operatorname{tr}\left(B^{*}\right)=1$ by Lemma 4.3, we can write $B^{*}=B_{0}^{*}+(1 / 2) E$, where B_{0}^{*} is the traceless part of B^{*}. The symmetric operator B^{*} is diagonalizable; therefore we can suppose its eigenvalues at every point are $(a+1 / 2)$ and $(-a+1 / 2)$, where a is a positive number depending on the point. Hence $\pm a$ are the eigenvalues of the traceless part B_{0}^{*}.

By using Equation (22) of Lemma 4.6, and observing that $\left|\operatorname{det} B_{0}^{*}\right|=a^{2}$, one obtains $\|\Psi\|_{\mathcal{B}}=\|a\|_{\infty}$. Since this quantity is less than $A<1 / 2$ by hypothesis, at every point $a<1 / 2$, and therefore B^{*} is positive at every point.

By Theorem 4.4 there exists a smooth foliation \mathcal{F} of \mathbb{H}^{3} by equidistant surfaces S_{ρ}, whose first fundamental form and shape operator are as in equations (16) and (18) above. We are going to compute

$$
\rho_{1}=\inf \left\{\rho: B_{\rho} \text { is non-singular and negative definite }\right\}
$$

and

$$
\rho_{2}=\sup \left\{\rho: B_{\rho} \text { is non-singular and positive definite }\right\} .
$$

Hence $S_{\rho_{1}}$ is concave and $S_{\rho_{2}}$ is convex. By Corollary [2.6, S is contained in the region bounded by $S_{\rho_{1}}$ and $S_{\rho_{2}}$. We are therefore going to compute $\rho_{1}-\rho_{2}$. From the expression (18), the eigenvalues of B_{ρ} are

$$
\lambda_{\rho}=\frac{-2 e^{2 \rho}+(2 a+1)}{2 e^{2 \rho}+(2 a+1)}
$$

and

$$
\lambda_{\rho}^{\prime}=\frac{-2 e^{2 \rho}+(1-2 a)}{2 e^{2 \rho}+(1-2 a)}
$$

Since $a<1 / 2$, the denominators of λ_{ρ} and λ_{ρ}^{\prime} are always positive; one has $\lambda_{\rho}<0$ if and only if $e^{2 \rho}>a+1 / 2$, whereas $\lambda_{\rho}^{\prime}<0$ if and only if $e^{2 \rho}>-a+1 / 2$. Therefore

$$
\rho_{1}-\rho_{2}=\frac{1}{2}\left(\log \left(A+\frac{1}{2}\right)-\log \left(-A+\frac{1}{2}\right)\right)=\frac{1}{2} \log \left(\frac{1+2 A}{1-2 A}\right)=\operatorname{arctanh}(2 A) .
$$

This shows that every point x on S lies on a geodesic orthogonal to the leaves of the foliation, and the distance between the concave surface $S_{\rho_{1}}$ and the convex surface $S_{\rho_{2}}$, on the two sides of x, is less than $\operatorname{arctanh}(2 A)$. Taking P_{-}and P_{+}the planes tangent to $S_{\rho_{1}}$ and $S_{\rho_{2}}$, the claim is proved.

Remark 4.7. The proof relies on the observation - given in KS08 and expressed here implicitly in Theorem 4.4- that if the shape operator at infinity B^{*} is positive definite, then one reconstructs the shape operator B_{ρ} as in Equation (18), and for $\rho=0$ the principal curvatures are in $(-1,1)$. Hence from our argument it follows that, if the Bers norm $\|\Psi\|_{\mathcal{B}}$ is less than $1 / 2$, then one finds a surface S with $\partial_{\infty} S=\Psi\left(S^{1}\right)$, with principal curvatures in $(-1,1)$. This is a special case of the results in Eps86, where the existence of such surface is used to prove (using techniques of hyperbolic geometry) a generalization of the univalence criterion of Nehari.
4.2. Boundedness of curvature. Recall that the curvature of a minimal surface S is given by $K_{S}=-1-\lambda^{2}$, where $\pm \lambda$ are the principal curvatures of S. We will need to show that the curvature of a complete minimal surface S is also bounded below in a uniform way, depending only on the complexity of $\partial_{\infty} S$. This is the content of Lemma 4.10,

We will use a conformal identification of S with \mathbb{D}. Under this identification the metric takes the form $g_{S}=e^{2 f}|d z|^{2},|d z|^{2}$ being the Euclidean metric on \mathbb{D}. The following uniform bounds on f are known (see [Ah138]).
Lemma 4.8. Let $g=e^{2 f}|d z|^{2}$ be a conformal metric on \mathbb{D}. Suppose the curvature of g is bounded above, $K_{g}<-\epsilon^{2}<0$. Then

$$
\begin{equation*}
e^{2 f}<\frac{4}{\epsilon^{2}\left(1-|z|^{2}\right)^{2}} \tag{23}
\end{equation*}
$$

Analogously, if $-\delta^{2}<K_{g}$, then

$$
\begin{equation*}
e^{2 f}>\frac{4}{\delta^{2}\left(1-|z|^{2}\right)^{2}} \tag{24}
\end{equation*}
$$

Remark 4.9. A consequence of Lemma 4.8 is that, for a conformal metric $g=e^{2 f}|d z|^{2}$ on \mathbb{D}, if the curvature of g is bounded from above by $K_{g}<-\epsilon^{2}<0$, then a conformal ball $B_{0}(p, R)$ (i.e. a ball of radius R for the Euclidean metric $|d z|^{2}$) is contained in the geodesic ball of radius R^{\prime} (for the metric g) centered at the same point, where R^{\prime} only depends from R. This can be checked by a simple integration argument, and R^{\prime} is actually obtained by multiplying R for the square root of the constant in the RHS of Equation (23). Analogously, a lower bound on the curvature, of the form $-\delta^{2}<K_{g}$, ensures that the geodesic ball of
radius R centered at p is contained in the conformal ball $B_{0}\left(p, R^{\prime}\right)$, where R^{\prime} depends on R and δ.

Lemma 4.10. For every $K_{0}>1$, there exists a constant $\Lambda_{0}>0$ such that all minimal surfaces S with $\partial_{\infty} S$ a K-quasicircle, $K \leq K_{0}$, have principal curvatures bounded by $\|\lambda\|_{\infty}<$ Λ_{0}.

We will prove Lemma 4.10 by giving a compactness argument. It is known that a conformal embedding $\sigma: \mathbb{D} \rightarrow \mathbb{H}^{3}$ is harmonic if and only if $\sigma(\mathbb{D})$ is a minimal surface, see ES64. The following Lemma is proved in Cus09 in the more general case of CMC surfaces. We give a sketch of the proof here for convenience of the reader.

Lemma 4.11. Let $\sigma_{n}: \mathbb{D} \rightarrow \mathbb{H}^{3}$ a sequence of conformal harmonic maps such that $\sigma(0)=x_{0}$ and $\partial_{\infty}\left(\sigma_{n}(\mathbb{D})\right)=\Gamma_{n}$ is a Jordan curve, and assume $\Gamma_{n} \rightarrow \Gamma$ in the Hausdoff topology. Then there exists a subsequence $\sigma_{n_{k}}$ which converges C^{∞} on compact subsets to a conformal harmonic map $\sigma_{\infty}: \mathbb{D} \rightarrow \mathbb{H}^{3}$ with $\partial_{\infty}\left(\sigma_{\infty}(\mathbb{D})\right)=\Gamma$.

Sketch of proof. Consider the coordinates on \mathbb{H}^{3} given by the Poincaré model, namely \mathbb{H}^{3} is the unit ball in \mathbb{R}^{3}. Let σ_{n}^{l}, for $l=1,2,3$, be the components of σ_{n} in such coordinates. Fix $R>0$ for the moment.

Since the curvature of the minimal surfaces $\sigma_{n}(\mathbb{D})$ is less than -1 , from Lemma 4.8 (setting $\epsilon=1$) and Remark 4.9, for every n we have that $\sigma_{n}\left(B_{0}(0,2 R)\right)$ is contained in a geodesic ball for the induced metric of fixed radius R^{\prime} centered at x_{0}. In turn, the geodesic ball for the induced metric is clearly contained in the ball $B_{\mathbb{H}^{3}}\left(x_{0}, R^{\prime}\right)$, for the hyperbolic metric of \mathbb{H}^{3}. We remark that the radius R^{\prime} only depends on R.

We will apply standard Schauder theory (compare also similar applications in Sections 4.3) to the harmonicity condition

$$
\begin{equation*}
\Delta_{0} \sigma_{n}^{l}=-\left(\Gamma_{j k}^{l} \circ \sigma\right)\left(\frac{\partial \sigma_{i}^{j}}{\partial x^{1}} \frac{\partial \sigma_{i}^{k}}{\partial x^{1}}+\frac{\partial \sigma_{i}^{j}}{\partial x^{2}} \frac{\partial \sigma_{i}^{k}}{\partial x^{2}}\right)=: h_{n}^{l} \tag{25}
\end{equation*}
$$

for the Euclidean Laplace operator Δ_{0}, where $\Gamma_{j k}^{l}$ are the Christoffel symbols of the hyperbolic metric in the Poincaré model.

The RHS in Equation (25), which is denoted by h_{n}^{l}, is uniformly bounded on $B_{0}(0,2 R)$. Indeed Christoffel symbols are uniformly bounded, since $\sigma_{n}\left(B_{0}(0,2 R)\right)$ is contained in a compact subset of \mathbb{H}^{3}, as already remarked. The partial derivatives of σ_{n}^{l} are bounded too, since one can observe that, if the induced metric on S is $e^{2 f}|d z|^{2}$, then $2 e^{2 f}=\|d \sigma\|^{2}$, where
$\|d \sigma\|^{2}=\frac{4}{\left(1-\Sigma_{i}\left(\sigma_{n}^{i}\right)^{2}\right)^{2}}\left(\left(\frac{\partial \sigma_{n}^{1}}{\partial x}\right)^{2}+\left(\frac{\partial \sigma_{n}^{2}}{\partial x}\right)^{2}+\left(\frac{\partial \sigma_{n}^{3}}{\partial x}\right)^{2}+\left(\frac{\partial \sigma_{n}^{1}}{\partial y}\right)^{2}+\left(\frac{\partial \sigma_{n}^{2}}{\partial y}\right)^{2}+\left(\frac{\partial \sigma_{n}^{3}}{\partial y}\right)^{2}\right)$.
Hence from Lemma 4.8 and again the fact that $\sigma_{n}\left(B_{0}(0,2 R)\right)$ is contained in a compact subset of \mathbb{H}^{3}, all partial derivatives of σ_{n} are uniformly bounded.

The Schauder estimate for the equation $\Delta_{0} \sigma_{n}^{l}=h_{n}^{l}(\underline{G T 83})$ give (for every $\alpha \in(0,1)$) a constant C_{1} such that:

$$
\left\|\sigma_{n}^{l}\right\|_{C^{1, \alpha}\left(B_{0}\left(0, R_{1}\right)\right)} \leq C_{1}\left(\left\|\sigma_{n}^{l}\right\|_{C^{0}\left(B_{0}(0,2 R)\right)}+\left\|h_{n}^{l}\right\|_{C^{0}\left(B_{0}(0,2 R)\right)}\right)
$$

Hence one obtains uniform $C^{1, \alpha}\left(B_{0}\left(0, R_{1}\right)\right)$ bounds on σ_{n}^{l}, where $R<R_{1}<2 R$, and this provides $C^{0, \alpha}\left(B_{0}\left(0, R_{1}\right)\right)$ bounds on h_{n}^{l}. Then the following estimate of Schauder-type

$$
\left\|\sigma_{n}^{l}\right\|_{C^{2, \alpha}\left(B_{0}\left(0, R_{2}\right)\right)} \leq C_{2}\left(\left\|\sigma_{n}^{l}\right\|_{C^{0}\left(B_{0}\left(0, R_{1}\right)\right)}+\left\|h_{n}^{l}\right\|_{C^{1, \alpha}\left(B_{0}\left(0, R_{1}\right)\right)}\right)
$$

provide $C^{2, \alpha}$ bounds on $B_{0}\left(0, R_{2}\right)$, for $R<R_{2}<R_{1}$. By a boot-strap argument which repeats this construction, uniform $C^{k, \alpha}\left(B_{0}(0, R)\right)$ for σ_{n}^{l} are obtained for every k.

By Ascoli-Arzelà theorem, one can extract a subsequence of σ_{n} converging uniformly in $C^{k, \alpha}\left(B_{0}(0, R)\right)$ for every k. By applying a diagonal procedure one can find a subsequence
converging C^{∞}. One concludes the proof by a diagonal process again on a sequence of compact subsets $B_{0}\left(0, R_{n}\right)$ which exhausts \mathbb{D}.

The limit function $\sigma_{\infty}: \mathbb{D} \rightarrow \mathbb{H}^{3}$ is conformal and harmonic, and thus gives a parametrization of a minimal surface. It remains to show that $\partial_{\infty}\left(\sigma_{\infty}(\mathbb{D})\right)=\Gamma$. Since each $\sigma_{n}(\mathbb{D})$ is contained in the convex hull of Γ_{n}, the Hausdorff convergence on the boundary at infinity ensures that $\sigma_{\infty}(\mathbb{D})$ is contained in the convex hull of Γ, and thus $\partial_{\infty}\left(\sigma_{\infty}(\mathbb{D})\right) \subseteq \Gamma$.

For the other inclusion, assume there exists a point $p \in \Gamma$ which is not in the boundary at infinity of $\sigma_{\infty}(\mathbb{D})$. Then there is a neighborhood of p which does not intersect $\sigma_{\infty}(\mathbb{D})$, and one can find a totally geodesic plane P such that a half-space bounded by P intersects Γ (in p, for instance), but does not intersect $\sigma_{\infty}(\mathbb{D})$. But such half-space intersects $\sigma_{n}(\mathbb{D})$ for large n and this gives a contradiction.

Proof of Lemma 4.10. We argue by contradiction. Suppose there exists a sequence of minimal surfaces S_{n} bounded by K-quasicircles Γ_{n}, with $K \leq K_{0}$, with curvature in a point $K_{S_{n}}\left(x_{n}\right) \leq-n$. Let us consider isometries T_{n} of \mathbb{H}^{3}, so that $T_{n}\left(x_{n}\right)=x_{0}$.

Using the fact that the point x_{0} is contained in the convex hull of $T_{n}\left(\Gamma_{n}\right)$ for every n, it is easy to see that the quasicircles $T_{n}\left(\Gamma_{n}\right)$ can be assumed to be the image of K_{0}-quasiconformal maps $\Psi_{n}: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$, such that Ψ_{n} maps three points of S^{1} (say $1, i$ and -1) to points of $T_{n}\left(\Gamma_{n}\right)$ at uniformly positive distance from one another. By the compactness property in Theorem 3.2. there exists a subsequence $T_{n_{k}}\left(\Gamma_{n_{k}}\right)$ converging to a K-quasicircle Γ_{∞}, with $K \leq K_{0}$. By Lemma 4.11, the minimal surfaces $T_{n_{k}}\left(S_{n_{k}}\right)$ converge C^{∞} on compact subsets (up to a subsequence) to a smooth minimal surface S_{∞} with $\partial_{\infty}\left(S_{\infty}\right)=\Gamma_{\infty}$. Hence the curvature of $T_{n_{k}}\left(S_{n_{k}}\right)$ at the point x_{0} converges to the curvature of S_{∞} at x_{0}. This contradicts the assumption that the curvature at the points x_{n} goes to infinity.

It follows that the curvature of S is bounded by $-\delta^{2}<K_{S}<-\epsilon^{2}$, where δ is some constant, whereas we can take $\epsilon=1$.

Remark 4.12. The main result of this section, Theorem A is indeed a quantitative version of Lemma 4.10, which gives a control of how an optimal constant Λ_{0} would vary if K_{0} is chosen close to 0 .
4.3. Schauder estimates. By using equation (4), we will eventually obtain bounds on the principal curvatures of S. For this purpose, we need bounds on $u=\sinh d_{\mathbb{H}^{3}}\left(\cdot, P_{-}\right)$and its derivatives. Schauder theory plays again an important role: since u satisfies the equation
(因)

$$
\Delta_{S} u-2 u=0 .
$$

we will use uniform estimates of the form

$$
\|u\|_{C^{2}\left(B_{0}\left(0, \frac{R}{2}\right)\right)} \leq C\|u\|_{C^{0}\left(B_{0}(0, R)\right)}
$$

for the function u, written in a suitable coordinate system. The main difficulty is basically to show that the operators

$$
u \mapsto \Delta_{S} u-2 u
$$

are strictly elliptic and have uniformly bounded coefficients.
Proposition 4.13. Let $K_{0}>1$ and $R>0$ be fixed. There exist a constant $C>0$ (only depending on K_{0} and R) such that for every choice of:

- A minimal embedded disc $S \subset \mathbb{H}^{3}$ with $\partial_{\infty} S$ a K-quasicircle, with $K \leq K_{0}$;
- A point $x \in S$;
- A plane P_{-};
the function $u(\cdot)=d_{\mathbb{H}^{3}}\left(\cdot, P_{-}\right)$expressed in terms of normal coordinates of S centered at x, namely

$$
u(z)=\sinh d_{\mathbb{H}^{3}}\left(\exp _{x}(z), P_{-}\right)
$$

where $\exp _{x}: \mathbb{R}^{2} \cong T_{x} S \rightarrow S$ denotes the exponential map, satisfies the Schauder-type inequality

$$
\begin{equation*}
\|u\|_{C^{2}\left(B_{0}\left(0, \frac{R}{2}\right)\right)} \leq C\|u\|_{C^{0}\left(B_{0}(0, R)\right)} . \tag{26}
\end{equation*}
$$

Proof. This will be again an argument by contradiction, using the compactness property.
Suppose our assertion is not true, and find a sequence of minimal surfaces S_{n} with $\partial_{\infty}\left(S_{n}\right)=\Gamma_{n}$ a K-quasicircle $\left(K \leq K_{0}\right)$, a sequence of points $x_{n} \in S_{n}$, and a sequence of planes P_{n}, such that the functions $u_{n}(z)=\sinh d_{\mathbb{H}^{3}}\left(\exp _{x_{n}}(z), P_{n}\right)$ have the property that

$$
\left\|u_{n}\right\|_{C^{2}\left(B_{0}\left(0, \frac{R}{2}\right)\right)} \geq n\|u\|_{C^{0}\left(B_{0}(0, R)\right)}
$$

We can compose with isometries T_{n} of \mathbb{H}^{3} so that $T_{n}\left(x_{n}\right)=x_{0}$ for every n and the tangent plane to $T_{n}\left(S_{n}\right)$ at x_{0} is a fixed plane. Let $S_{n}^{\prime}=T_{n}\left(S_{n}\right), \Gamma_{n}^{\prime}=T_{n}\left(\Gamma_{n}\right)$ and $P_{n}^{\prime}=T_{n}\left(P_{n}\right)$. Note that Γ_{n}^{\prime} are again K-quasicircles, for $K \leq K_{0}$, and the convex hull of each Γ_{n}^{\prime} contains x_{0}.

Using this fact, it is then easy to see - as in the proof of Lemma 4.10 - that one can find K_{0}-quasiconformal maps Ψ_{n} such that $\Psi_{n}\left(S^{1}\right)=\Gamma_{n}^{\prime}$ and $\Psi_{n}(1), \Psi_{n}(i)$ and $\Psi_{n}(-1)$ are at uniformly positive distance from one another. Therefore, using Theorem 3.2 there exists a subsequence of Ψ_{n} converging uniformly to a K_{0}-quasiconformal map. This gives a subsequence $\Gamma_{n_{k}}^{\prime}$ converging to Γ_{∞}^{\prime} in the Hausdorff topology.

By Lemma 4.11 considering S_{n}^{\prime} as images of conformal harmonic embeddings $\sigma_{n}^{\prime}: \mathbb{D} \rightarrow$ \mathbb{H}^{3}, we find a subsequence of $\sigma_{n_{k}}^{\prime}$ converging C^{∞} on compact subsets to the conformal harmonic embedding of a minimal surface S_{∞}^{\prime}. Moreover, by Lemma 4.10 and Remark 4.9, the convergence is also C^{∞} on the image under the exponential map of compact subsets containing the origin of \mathbb{R}^{2}.

It follows that the coefficients of the Laplace-Beltrami operators $\Delta_{S_{n}^{\prime}}$ on a Euclidean ball $B_{0}(0, R)$ of the tangent plane at x_{0}, for the coordinates given by the exponential map, converge to the coefficients of $\Delta_{S_{\infty}^{\prime}}$. Therefore the operators $\Delta_{S_{n}^{\prime}}-2$ are uniformly strictly elliptic with uniformly bounded coefficients. Using these two facts, one can apply Schauder estimates to the functions u_{n}, which are solutions of the equations $\Delta_{S_{n}^{\prime}}\left(u_{n}\right)-2 u_{n}=0$. See again GT83 for a reference. We deduce that there exists a constant c such that

$$
\left\|u_{n}\right\|_{C^{2}\left(B_{0}\left(0, \frac{R}{2}\right)\right)} \leq c\left\|u_{n}\right\|_{C^{0}\left(B_{0}(0, R)\right)}
$$

for all n, and this gives a contradiction.
4.4. Principal curvatures. We can now proceed to complete the proof of Theorem A. Fix some $w>0$. We know from Section 4.1 that if the Bers norm is smaller than the constant $(1 / 2) \tanh (w)$, then every point x on S lies on a geodesic segment l orthogonal to two planes P_{-}and P_{+}at distance $d_{\mathbb{H}^{3}}\left(P_{-}, P_{+}\right)<w$. Obviously the distance is achieved along l.

Fix a point $x \in S$. Denote again $u=\sinh d_{\mathbb{H}^{3}}\left(\cdot, P_{-}\right)$. By Proposition 4.13 first and second partial derivatives of u in normal coordinates on a geodesic ball $B_{S}(x, R)$ of fixed radius R are bounded by $C\|u\|_{C^{0}\left(B_{S}(x, R)\right)}$. The last step for the proof is an estimate of the latter quantity in terms of w.

We first need a simple lemma which controls the distance of points in two parallel planes, close to the common orthogonal geodesic. Compare Figure 4.2

Lemma 4.14. Let $p \in P_{-}, q \in P_{+}$be the endpoints of a geodesic segment l orthogonal to P_{-}and P_{+}of length w. Let $p^{\prime} \in P_{-}$a point at distance r from p and let $d=$ $d_{\mathbb{H}^{3}}\left(\left(\left.\pi\right|_{P_{+}}\right)^{-1}\left(p^{\prime}\right), P_{-}\right)$. Then

$$
\begin{gather*}
\tanh d=\cosh r \tanh w \tag{27}\\
\sinh d=\cosh r \frac{\sinh w}{\sqrt{1-(\sinh r)^{2}(\sinh w)^{2}}} . \tag{28}
\end{gather*}
$$

Proof. This is easy hyperbolic trigonometry, which can actually be reduced to a 2-dimensional problem. However, we give a short proof for convenience of the reader. In the hyperboloid model, we can assume P_{-}is the plane $x_{3}=0, p=(0,0,0,1)$ and the geodesic l is given by $l(t)=(0,0, \sinh t, \cosh t)$. Hence P_{+}is the plane orthogonal to $l^{\prime}(w)=(0,0, \cosh w, \sinh w)$ passing through $l(w)=(0,0, \sinh w, \cosh w)$. The point p^{\prime} has coordinates

$$
p^{\prime}=(\cos \theta \sinh r, \sin \theta \sinh r, 0, \cosh r)
$$

and the geodesic l_{1} orthogonal to P_{-}through p^{\prime} is given by

$$
l_{1}(d)=(\cosh d)\left(p^{\prime}\right)+(\sinh d)(0,0,1,0)
$$

We have $l_{1}(d) \in P_{+}$if and only if $\left\langle l_{1}(d), l^{\prime}(w)\right\rangle=0$, which is satisfied for

$$
\tanh d=\cosh r \tanh w,
$$

provided $\cosh r \tanh w<1$. The second expression follows straightforwardly.

Figure 4.2. The setting of Lemma 4.14 Here $d_{\mathbb{H}^{3}}\left(p, p^{\prime}\right)=r$ and $q^{\prime}=\left(\left.\pi\right|_{P_{+}}\right)^{-1}\left(p^{\prime}\right)$.
We are finally ready to prove Theorem C] The key point for the proof is that all the quantitative estimates previously obtained in this section are independent on the point $x \in S$.
Theorem C, There exist constants $K_{0}>1$ and $C>4$ such that the principal curvatures $\pm \lambda$ of every minimal surface S in \mathbb{H}^{3} with $\partial_{\infty} S=\Gamma$ a K-quasicircle, with $K \leq K_{0}$, are bounded by:

$$
\begin{equation*}
\|\lambda\|_{\infty} \leq \frac{C\|\Psi\|_{\mathcal{B}}}{\sqrt{1-C\|\Psi\|_{\mathcal{B}}^{2}}} \tag{29}
\end{equation*}
$$

where $\Gamma=\Psi\left(S^{1}\right)$, for $\Psi \in Q D(\mathbb{D})$.
Proof. Fix $K_{0}>1$. Let S a minimal surface with $\partial_{\infty} S$ a K-quasicircle, $K \leq K_{0}$. Let $x \in S$ an arbitrary point on a minimal surface S. By Proposition4.1 we find two planes P_{-}and P_{+} whose common orthogonal geodesic passes through x, and has length $w=\operatorname{arctanh}\left(2\|\Psi\|_{\mathcal{B}}\right)$.

Now fix $R>0$. By Proposition 4.13, applied to the point x and the plane P_{-}, we obtain that the first and second derivatives of the function

$$
u=\sinh d_{\mathbb{H}^{3}}\left(\exp _{x}(\cdot), P_{-}\right)
$$

on a geodesic ball $B_{S}(x, R / 2)$ for the induced metric on S, are bounded by the supremum of u itself, on the geodesic ball $B_{S}(x, R)$, multiplied by a universal constant $C=C\left(K_{0}, R\right)$.

Let $\pi: \mathbb{H}^{3} \rightarrow P_{-}$the orthogonal projection to the plane P_{-}. The map π is contracting distances, by negative curvature in the ambient manifold. Hence $\pi\left(B_{S}(x, R)\right)$ is contained in $B_{P_{-}}(\pi(x), R)$. Moreover, since S is contained in the region bounded by P_{-}and P_{+}, clearly $\sup \left\{u(x): x \in B_{S}(0, R)\right\}$ is less than the hyperbolic sine of the distance of points in $\left(\left.\pi\right|_{P_{+}}\right)^{-1}\left(B_{P_{-}}(\pi(x), R)\right)$ from P_{-}. See Figure 4.3,

Figure 4.3. Projection to a plane P_{-}in \mathbb{H}^{3} is distance contracting. The dashdotted ball schematically represents a geodesic ball of \mathbb{H}^{3}.

Hence, using Proposition 4.14 (in particular Equation (28)), we get:

$$
\begin{equation*}
\|u\|_{C^{0}\left(B_{S}(x, R)\right)} \leq \cosh R \frac{\sinh w}{\sqrt{1-(\sinh R)^{2}(\sinh w)^{2}}} \tag{30}
\end{equation*}
$$

where we recall that $w=\operatorname{arctanh}\left(2\|\Psi\|_{\mathcal{B}}\right)$.
We finally give estimates on the principal curvatures of S, in terms of the complexity of $\partial_{\infty}(S)=\Psi\left(S^{1}\right)$. We compute such estimate only at the point $x \in S$; by the independence of all the above construction from the choice of x, the proof will be concluded. From Equation (4), we have

$$
B=\frac{1}{\sqrt{1+u^{2}-\|\operatorname{grad} u\|^{2}}}(\operatorname{Hess} u-u E)
$$

Moreover, in normal coordinates centered at the point x, the expression for the Hessian and the norm of the gradient at x are just

$$
(\operatorname{Hess} u)_{i}^{j}=\frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}, \quad \quad\|\operatorname{grad} u\|^{2}=\left(\frac{\partial u}{\partial x^{1}}\right)^{2}+\left(\frac{\partial u}{\partial x^{2}}\right)^{2}
$$

It then turns out that the principal curvatures $\pm \lambda$ of S, i.e. the eigenvalues of B, are bounded by

$$
\begin{equation*}
|\lambda| \leq \frac{C_{1}\|u\|_{C^{0}\left(B_{S}(x, R)\right)}}{\sqrt{1-C_{1}\|u\|_{C^{0}\left(B_{S}(x, R)\right)}^{2}}} \tag{31}
\end{equation*}
$$

The constant C_{1} involves the constant C of Equation (26) in the statement of Proposition 4.13. Substituting Equation (30) into Equation (31), with some manipulation one obtains

$$
\begin{equation*}
\|\lambda\|_{\infty} \leq \frac{C_{1}(\cosh R)(\tanh w)}{\sqrt{1-\left(1+C_{1}\right)(\cosh R)^{2}(\tanh w)^{2}}} \tag{32}
\end{equation*}
$$

On the other hand $\tanh w=2\|\Psi\|_{\mathcal{B}}$. Upon relabelling C with a larger constant, the inequality

$$
\|\lambda\|_{\infty} \leq \frac{C\|\Psi\|_{\mathcal{B}}}{\sqrt{1-C\|\Psi\|_{\mathcal{B}}^{2}}}
$$

is obtained.
Remark 4.15. Actually, the statement of Theorem C is true for any choice of $K_{0}>1$ (and the constant C varies accordingly with the choice of K_{0}). However, the estimate in Equation (29) does not make sense when $\|\Psi\|^{2} \geq 1 / C$. Indeed, our procedure seems to be quite uneffective when the quasicircle at infinity is "far" from being a circle - in the sense of universal Teichmüller space. Applying Theorem [3.4, this possibility is easily ruled out, by replacing K_{0} in the statement of Theorem C with a smaller constant.

Observe that the function $x \mapsto C x / \sqrt{1-C x^{2}}$ is differentiable with derivative C at $x=0$. As a consequence of Theorem [3.4] there exists a constant L (with respect to the statement of Theorem 3.4 above, $\left.L=1 / b_{1}\right)$ such that $\|\Psi\|_{\mathcal{B}} \leq L d_{\mathcal{T}}([\Psi]$, [id] $)$ if $d_{\mathcal{T}}([\Psi]$, [id] $) \leq r$ for some small radius r. Then the proof of Theorem A follows, replacing the constant C by a larger constant if necessary.

Theorem A. There exist universal constants K_{0} and C such that every minimal embedded disc in \mathbb{H}^{3} with boundary at infinity a K-quasicircle $\Gamma \subset \partial_{\infty} \mathbb{H}^{3}$, with $K \leq K_{0}$, has principal curvatures bounded by

$$
\|\lambda\|_{\infty} \leq C \log K
$$

Remark 4.16. With the techniques used in this paper, it seems difficult to give explicit estimates for the best possible value of the constant C of Theorem A. In our argument, this constant actually depends on several choices, one of which is the choice of the radius R in Subsection 4.3 (see Proposition 4.13).

ANDREA SEPPI

References

[Ahl38] L. V. Ahlfors. An extension of Schwarz's lemma. Trans. Amer. Math. Soc., 43:359-364, 1938.
[Ahl06] Lars V. Ahlfors. Lectures on quasiconformal mappings, volume 38 of University Lecture Series. American Mathematical Society, Providence, RI, second edition, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard.
[And83] Michael T. Anderson. Complete minimal hypersurfaces in hyperbolic n-manifolds. Comment. Math. Helv., 58(2):264-290, 1983.
[Cos13] Baris Coskunuzer. Asymptotic plateau problem. In Proc. Gokova Geom. Top. Conf., pages 120146, 2013.
[Cus09] Thomas Cuschieri. Complete Noncompact CMC Surfaces in Hyperbolic 3-Space. PhD thesis, University of Warwick, 2009.
[Eps84] Charles L. Epstein. Envelopes of horospheres and Weingarten surfaces in hyperbolic 3-space. Princeton Univ, 1984.
[Eps86] Charles L. Epstein. The hyperbolic Gauss map and quasiconformal reflections. J. Reine Angew. Math., 372:96-135, 1986.
[ES64] J. Eells and J.H. Sampson. Harmonic mappings of Riemannian manifolds. Amer. J. Math, 86:109159, 1964.
[FKM13] Alastair Fletcher, Jeremy Kahn, and Vladimir Markovic. The moduli space of Riemann surfaces of large genus. Geom. Funct. Anal., 23(3):867-887, 2013.
[FM07] A. Fletcher and V. Markovic. Quasiconformal maps and Teichmüller theory, volume 11 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2007.
[Gar87] F. P. Gardiner. Teichmüller theory and quadratic differentials. Wiley, 1987.
[GHW10] Ren Guo, Zheng Huang, and Biao Wang. Quasi-Fuchsian 3-manifolds and metrics on Teichmüller space. Asian J. Math., 14(2):243-256, 2010.
[GL00] F. P. Gardiner and N. Lakic. Quasiconformal Teichmüller Theory. American Mathematical Soc., 2000.
[GT83] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1983.
[HW13a] Zheng Huang and Biao Wang. Counting minimal surfaces in quasi-fuchsian manifolds. To appear in Trans. Amer. Math. Soc., 2013.
[HW13b] Zheng Huang and Biao Wang. On almost-Fuchsian manifolds. Trans. Amer. Math. Soc., 365(9):4679-4698, 2013.
[KS07] Kirill Krasnov and Jean-Marc Schlenker. Minimal surfaces and particles in 3-manifolds. Geom. Dedicata, 126:187-254, 2007.
[KS08] Kirill Krasnov and Jean-Marc Schlenker. On the renormalized volume of hyperbolic 3-manifolds. Comm. Math. Phys., 279(3):637-668, 2008.
[Leh87] O. Lehto. Univalent functions and Teichmüller spaces. Springer Verlag, Berlin 1987.
[San13] Andrew Sanders. Domains of discontinuity for almost-Fuchsian groups. To appear on Trans. Amer. Math. Soc., 2013. ArXiv: 1310.6412.
[San14] Andrew Sanders. Entropy, minimal surfaces, and negatively curved manifolds. Arxiv: 1404.1105, 2014.
[Sug07] Toshiyuki Sugawa. The universal Teichmüller space and related topics. In Quasiconformal mappings and their applications, pages 261-289. Narosa, New Delhi, 2007.
[Uhl83] Karen K. Uhlenbeck. Closed minimal surfaces in hyperbolic 3-manifolds. In Seminar on minimal submanifolds, volume 103 of Ann. of Math. Stud., pages 147-168. Princeton Univ. Press, Princeton, NJ, 1983.
[ZT87] P. G. Zograf and L. A. Takhtadzhyan. On the uniformization of Riemann surfaces and on the WeilPetersson metric on the Teichmüller and Schottky spaces. Mat. Sb. (N.S.), 132(174)(3):304-321, 444, 1987.
A. Seppi: Dipartimento di Matematica "Felice Casorati", Università degli Studi di Pavia, Via Ferrata 1, 27100, Pavia, Italy.

E-mail address: andrea.seppi01@ateneopv.it

