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1. Introduction

The estimation of conditional densities is an important statistical challenge with
applications in many practical problems, especially those connected with fore-
casting (economics . . . ). There is a vast literature in this area. We refer to the
papers of Li and Racine (2007), Akakpo and Lacour (2011), Chagny (2013) and
the references therein. In this note we focus our attention on a specific problem:
the estimation of a multivariate continuous-discrete conditional density. The
considered model is described as follows. Let d, d∗, ν and n be positive integers
and (X1,Y1), . . . , (Xn,Yn) be n iid random vectors defined on the probability
space (Ω,A, P ). We suppose that X1 is continuous with support [0, 1]d and Y1

is discrete with support {0, 1, . . . , ν}d∗ . Let f be the density of (X1,Y1). We
define the density function of X1 conditionally to the event {Y = m} by

g(x,m) = f(x| Y1 = m) =
f(x,m)

P (Y1 = m)
, (1.1)

(x,m) ∈ [0, 1]d×{0, 1, . . . , ν}d∗ . We aim to estimate g(x,m) from (X1,Y1), . . . ,
(Xn,Yn). The most common approach is based on the kernel methods devel-
oped by Li and Racine (2003). Applications and recent developments for these
methods are described in details in Li and Racine (2007).
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In this note we develop a new estimator ĝ(x,m) based on wavelet methods.
It is now an established fact: in comparison to kernel methods, wavelet methods
have the advantage to achieve a high degree of adaptivity for a large class of un-
known functions, with possible complex discontinuities (jumps, spikes. . . ). See,
for instance, Antoniadis (1997), Härdle et al. (1998) and Vidakovic (1999). This
fact motivates our interest to develop wavelet methods for the considered condi-
tional density estimation problem. The main ingredients in the construction of
ĝ(x,m) are: an estimation of f(x,m) with a new wavelet estimator f̂(x,m), an
estimation of P (Y1 = m) by an empirical estimator and a global thresholding
technique developed by Vasiliev (2014). In particular, the considered estimator

f̂(x,m) can be viewed as a multivariate (but ”non smooth”) version of the one
introduced in the univariate case, i.e., d = d∗ = 1, in Chesneau et al. (2014).
We prove that ĝ(x,m) is both adaptive and efficient; it don’t dependent on the
smoothness of g(x,m) in its construction and, under mild assumptions on the
smoothness of g(x,m) (we assume that it belongs to a wide class of functions,
the so-called Besov balls), it attains fast rates of convergence under the Lp risk
(with p ≥ 1). These theoretical guarantees are illustrated by a numerical study
showing the good practical performances of our estimator.

The remainder of the note is set out as follows. Next, in Section 2, we briefly
describe the considered multidimensional wavelet bases and Besov balls. Our
wavelet estimator and some of its theoretical properties are presented in Section
3. A short numerical study can be found in Section 4. Finally, the proofs are
postponed to Section 5.

2. Multidimensional wavelet bases and Besov balls

Let d be positive integers and p ≥ 1. First of all, we define the Lp([0, 1]d) spaces

as Lp([0, 1]d) =
{
f : [0, 1]d → R;

∫
[0,1]d

|f(x)|pdx <∞
}

.

In this study, we consider a wavelet bases on [0, 1]d based on the scaling and
wavelet functions φ and ψ respectively from Daubechies family (see Daubechies
(1992)). For any x = (x1, . . . , xd) ∈ [0, 1]d, we set

Φ(x) =

d∏
v=1

φ(xv), and Ψu(x) =


ψ(xu)

d∏
v=1
v 6=u

φ(xv) for u ∈ {1, . . . , d},

∏
v∈Au

ψ(xv)
∏
v 6∈Au

φ(xv) for u ∈ {d+ 1, . . . , 2d − 1},

where (Au)u∈{d+1,...,2d−1} forms the set of all non void subsets of {1, . . . , d} of
cardinality greater or equal to 2.

For any integer j and any k = (k1, . . . , kd), we consider

Φj,k(x) = 2jd/2Φ(2jx1 − k1, . . . , 2jxd − kd),
Ψj,k,u(x) = 2jd/2Ψu(2jx1 − k1, . . . , 2jxd − kd), for any u ∈ {1, . . . , 2d − 1}.

Let Dj = {0, . . . , 2j−1}d. Then, with an appropriate treatment at the bound-
aries, there exists an integer τ such that the collection
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{Φτ,k,k ∈ Dτ ; (Ψj,k,u)u∈{1,...,2d−1}, j ∈ N−{0, . . . , τ − 1}, k ∈ Dj} forms

an orthonormal basis of L2([0, 1]d). A function f ∈ L2([0, 1]d) can be expanded
into a wavelet series as

f(x) =
∑

k∈Dτ

cτ,kΦτ,k(x) +

2d−1∑
u=1

∞∑
j=τ

∑
k∈Dj

dj,k,uΨj,k,u(x), x ∈ [0, 1]d, (2.1)

where

cτ,k =

∫
[0,1]d

f(x)Φτ,k(x)dx, dj,k,u =

∫
[0,1]d

f(x)Ψj,k,u(x)dx. (2.2)

All the details about these wavelet bases, including the expansion into wavelet
series as described above, can be found in, e.g., Meyer (1992), Daubechies (1992),
Cohen et al. (1993) and Mallat (2009).

Let M > 0, s ∈ (0, N), p ≥ 1 and r ≥ 1. We say that a function f ∈ L2([0, 1]d)
belongs to the Besov balls Bs

r,q(M) if and only if there exists a constant M∗ > 0
such that the associated wavelet coefficients (2.2) satisfy

( ∑
k∈Dτ

|cτ,k|r
)1/r

+

 ∞∑
j=τ

2j(s+d(1/2−1/r))

2d−1∑
u=1

∑
k∈Dj

|dj,k,u|r
1/r


q

1/q

≤M∗

and with the usual modifications for r =∞ or q =∞.
These sets contain function classes of significant spatial inhomogeneity, in-

cluding Sobolev balls, Hölder balls. . . . Details about Besov balls can be found
in, e.g., Meyer (1992) and Härdle et al. (1998).

3. Conditional density estimation

We formulate the following assumptions.

(B1) There exists a known constant C > 0 such that

sup
x∈[0,1]d

sup
m∈{0,1,...,ν}d∗

f(x,m) ≤ C.

(B2) There exists a known constant c ∈ (0, 1) such that

c ≤ inf
m∈{0,1,...,ν}d∗

P (Y1 = m).

We propose the following ”ratio-thresholding estimator” ĝ(x,m) for g(x,m):

ĝ(x,m) =
f̂(x,m)

ρ̂m
1{ρ̂m≥c/2}, (3.1)
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(x,m) ∈ [0, 1]d×{0, 1, . . . , ν}d∗ , where 1 denotes the indicator function, c refers

to the constant in (B2), f̂(x,m) is defined by

f̂(x,m) =
∑

k∈Dτ

ĉτ,k(m)Φτ,k(x)

+

2d−1∑
u=1

j1∑
j=τ

∑
k∈Dj

d̂j,k,u(m)1{
|d̂j,k,u(m)|≥κ

√
ln(n)
n

}Ψj,k,u(x),

(3.2)

where

ĉτ,k(m) =
1

n

n∑
i=1

Φτ,k(Xi)1{Yi=m}, (3.3)

d̂j,k,u(m) =
1

n

n∑
i=1

Ψj,k,u(Xi)1{Yi=m}, (3.4)

κ is a large enough constant and j1 is an integer such that n/ ln(n) ≤ 2j1d ≤
2n/ ln(n), and ρ̂m is defined by

ρ̂m =
1

n

n∑
i=1

1{Yi=m}.

The estimator (3.2) uses a hard thresholding technique of the wavelet coefficients
estimators 3.4. Such a selection rule is at the heart of the adaptive nature of
wavelet methods which have the ability to capture the most important wavelet
coefficients of a function, i.e., those with the high magnitudes. We refer to Anto-
niadis (1997), Härdle et al. (1998) and Vidakovic (1999) for further details. The
definition of the threshold, i.e. λn = κ

√
ln(n)/n, corresponds to the universal

one proposed by Donoho and Johnstone (1994) and Donoho et al. (1996). It is
based on technical considerations ensuring good convergence properties of the
hard thresholding wavelet estimator (see also Theorem 5.1 in Appendix).

Note that (3.2) can be viewed as a non smooth multivariate version of the
estimator proposed by Chesneau et al. (2014). The main advantage of this esti-
mator is to be more easy to implement for a practical point of view (see Section
4 below for a numerical comparison in the univariate case). Concerning ρ̂n, let
us mention that it is a natural unbiased estimator for P (Y1 = m) with nice
convergence properties. They will be used in the proof of our main result.

The global construction of (3.1) follows the idea proposed by Vasiliev (2014)
for other statistical contexts. Note that a control on the lower bound of ρ̂m is
necessary; it must be large enough to ensure good statistical properties for (3.1).

The following result investigates the rates of convergence attained by (3.1)
under the Lp risk with p ≥ 1.
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Theorem 3.1. Let m ∈ {0, 1, . . . , ν}d∗ , p ≥ 1, g(x,m) be (1.1) and ĝ(x,m)
be defined by (3.1) with a large enough κ (the exact condition is described in
(5.3)). Suppose that (B1) and (B2) hold and f(x,m) ∈ Bs

r,q(M) with M > 0,
s > d/r, r ≥ 1 and q ≥ 1. Then there exists a constant C > 0 such that, for n
large enough,

E

(∫
[0,1]d

|ĝ(x,m)− g(x,m)|pdx

)
≤ CΘn,

where

Θn =



(
ln(n)

n

) sp
2s+d

, for 2rs > d(p− r),(
ln(n)

n

) (s−d(1/r−1/p))p
2s−2d/r+d

, for 2rs < d(p− r),(
ln(n)

n

) (s−d(1/r−1/p))p
2s−2d/r+d

(ln(n))
(p− 2r

q )
+ , for 2rs = d(p− r).

The proof of Theorem 3.1 is based on several technical inequalities and the
application of a general result derived from (Kerkyacharian and Picard, 2000,
Theorem 5.1) and (Delyon and Juditsky, 1996, Theorem 1) (see Theorem 5.1 in
Appendix).

Theorem 3.1 provides theoretical guaranties on the convergence of (3.1) under
mild assumptions on the smoothness of f(x,m), and a fortiori g(x,m), under
the Lp risk. The obtained rates of convergence are sharp. However, since the
lower minimax bounds are not established in our setting, we do not claim that
they are the optimal ones in the minimax sense. An important benchmark is
that they correspond to the optimal ones in the minimax sense for the standard
multivariate density estimation problem, corresponding to d∗ = 1 and Y1 is
constant almost surely, up to a logarithmic term (see Donoho et al. (1996)).

4. A short numerical study

In this section we investigate some practical aspects of our wavelet methods.
For ths sake of simplicity, we focus our attention on the univariate case, i.e.,
d = d∗ = 1 (so x = x, m = m, Y1 = Y . . . ). The codes are written in Matlab
and are adopted from Ramirez and Vidakovic (2010). First we compare the
performance of new estimators of density functions f(x,m) with those proposed
in our former publication, Chesneau et al. (2014) in two styles, accuracy and
speed of computation. In order to illustrate the rate of decrease of errors, as
Chesneau et al. (2014), we employ the indicator defined by

L2Norm =
1

100nN

N∑
i=1

n∑
j=1

(
f̂i

(
j

n

)
− f

(
j

n

))2

,
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where n and N are sample size and the number of replications respectively, f
represents the true density and f̂ an estimator. We consider three estimators
based on our statistical methodology: the linear wavelet estimator, i.e.,

f̂L(x,m) =

2j0−1∑
k=0

ĉj0,k(m)φj0,k(x), (4.1)

x ∈ [0, 1], the hard thresholding wavelet estimator defined by (3.2) and the
smooth version of the linear wavelet estimator after local linear regression (see,
e.g., Fan (1993)). The practical construction of this smooth version of linear
wavelet estimators was proposed by Ramirez and Vidakovic (2010). Several
studies confirm that this version of estimators have nice performance in different
fields (see, for instance, Abbaszadehet al. (2013) and Chesneau et al. (2016)).
We adopt similar set up from Chesneau et al. (2014) for our example, i.e., we
use Daubechies’s compactly supported ”Daubechies 3” and we take j0 = 6.
Also, we generate different sample sizes n = 20, 50, 100, 200, 500 and 1000 data
points X1, . . . , Xn, from Beta(2,3) distribution. The discrete random sample is
generated from Binomial(1, xi); the bivariate density function is

f(x,m) = 12x1+m(1− x)3−m,

(x,m) ∈ [0, 1]× {0, 1}. Table 1 gives the value of L2Norm computed from 100
simulations for different sample size. This table should be compare with Table 1
in page 70 Chesneau et al. (2014). As we see, similar results could be obtained;
L2Norm decreases while the sample size’s increasing. The performance of the
smooth version of linear wavelet estimator is the best. As we see there is no sig-
nificant difference between the new version of estimators with former versions
in Chesneau et al. (2014).

On the other hands, Table 2 depicts the speed of computation for two groups
of estimators in seconds. The codes are run with an ordinary laptop with 4.3
RAM. As we see the speed of new version of estimators is much less than the
formers. For example when the sample size is 1000, the speed of computation is
about 200 times less than the former version of wavelets estimators of densities.
This differences will be much bigger when the sample size increases.
In the second part of this section we show the performance of proposed estima-
tors of conditional density functions. Note that the conditional density function
in above examples satisfies

g(x,m) = f(x|Y = m) =

{
20x(1− x)3, for m = 0,

30x2(1− x)2, for m = 1,

x ∈ [0, 1]. Figures 1, 2 depict the g(x, 0) and g(x, 1), respectively. In each cases
the true conditional density function is shown in black line, the linear wavelet
estimator is blue (dashed curve), the hard thresholding wavelet estimator is red
(dotted curve) and the smooth version of linear one is green.
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Estimation of conditional density f(x|Y=0), n=500

Fig 1. The true conditional density function g(x, 0) is shown in black line, the wavelet linear
estimator is blue, the wavelet hard thresholding estimator is red and its smooth version is
green with n = 500.
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Estimation of conditional density f(x|Y=1), n=500

Fig 2. The true conditional density function g(x, 1) is shown in black line, the wavelet linear
estimator is blue, the wavelet hard thresholding estimator is red and its smooth version is
green with n = 500.
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Table 1
Computed values for L2Norm for various sample sizes.

Estimator Sample Size

Density n=20 n=50 n=100 n=200 n=500 n=1000

Linear f(x,0) 0.0188 0.0080 0.0038 0.0019 0.00080 0.00041

Linear f(x,1) 0.0132 0.0050 0.0027 0.0013 0.00051 0.00026

Hard Thresh. f(x,0) 0.0178 0.0073 0.0033 0.0016 0.0006 0.00034

Hard Thresh. f(x,1) 0.0123 0.0044 0.0021 0.00096 0.00036 0.00017

Smooth f(x,0) 0.0011 0.00047 0.00026 0.00017 .00012 0.00009

Smooth f(x,1) 0.00063 0.00028 0.00014 0.00007 0.00004 0.00002

Table 2
Elapsed time (Seconds)

Estimator Sample Size

n=20 n=50 n=100 n=200 n=500 n=1000

Chesneau et al. (2014) 64.3205 157.546 176.094 369.802 771.294 2277.76

New estimators 0.641954 0.89170 1.481340 2.62647 5.78828 11.267064

All the figures illustrate the good performances of our proposed linear and
nonlinear estimators of conditional density functions. It should be remind that
the hard thresholding one has no tuning parameter, it is entirely adaptive. The
smooth version of our wavelet linear estimator has the best performance. Fur-
thermore, Table 3 represents the impact of sample size on performance of our
estimators. This table also compares the performance of three estimators. The
number of replication is 500. As the sample size increases the value of indicator
decrease and the performance of smooth version of linear wavelet estimators are
the best.
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Table 3
Computed values for 100L2Norm for various sample sizes.

Estimator Sample Size

Conditional density n=20 n=50 n=100 n=200 n=500 n=1000

Linear g(x, 0) 5.3407 1.1357 1.0883 0.5421 0.2150 0.1131

Linear g(x, 1) 8.8589 3.2498 1.6118 0.7908 0.3255 0.1614

Hard Thresh. g(x, 0) 5.0716 1.9346 0.9430 0.4576 0.1745 0.0900

Hard Thresh. g(x, 1) 8.1867 2.7903 1.2612 0.5851 0.2287 0.1064

Smooth g(x, 0) 0.2303 0.1064 0.0682 0.0433 0.0286 0.0261

Smooth g(x, 1) 0.3351 0.1297 0.0684 0.0377 0.0196 0.0145
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5. Proof of Theorem 3.1

In what follows, C denotes any constant that does not depend on j, k and n.
Its value may change from one term to another. For the sake of simplicity, we
set ρm = P (Y1 = m). Observe that

ĝ(x,m)− g(x,m) =
f̂(x,m)

ρ̂m
1{ρ̂m≥c/2} −

f(x,m)

ρm

=
1

ρ̂mρm

(
ρm(f̂(x,m)− f(x,m)) + f(x,m)(ρm − ρ̂m)

)
1{ρ̂m≥c/2}

− f(x,m)

ρm
1{ρ̂m<c/2}.

Owing to (B2), we have {ρ̂m < c/2} ⊆ {|ρ̂m − ρm| > c/2} implying 1{ρ̂m<c/2} ≤
(2/c)|ρ̂m − ρm| and (1/(ρ̂mρm))1{ρ̂m≥c/2} ≤ 2/c2. Moreover, note that ρm ≤ 1
and, thanks to (B1), f(x,m) ≤ C. It follows from the triangular inequality and
the above inequalities that

|ĝ(x,m)− g(x,m)| ≤ C(|f̂(x,m)− f(x,m)|+ |ρ̂m − ρm|).

By the inequality: |x+ y|p ≤ 2p−1(|x|p + |y|p), (x, y) ∈ R2, we obtain

E

(∫
[0,1]d

|ĝ(x,m)− g(x,m)|pdx

)
≤ C(S + T ), (5.1)

where

S = E

(∫
[0,1]d

|f̂(x,m)− f(x,m)|pdx

)
, T = E (|ρ̂m − ρm|p) .

Let us now bound S and T in tun.

Upper bound for S. We investigate an upper bound for S by using Theorem
5.1 in the Appendix. First of all, thanks to (B1) implying f(x,m) ∈ L2([0, 1]d),
let us expand the density f(x,m) on the considered wavelet basis :

f(x,m) =
∑

k∈Dτ

cτ,k(m)Φτ,k(x) +

2d−1∑
u=1

j1∑
j=τ

∑
k∈Dj

dj,k,u(m)Ψj,k,u(x),

where cτ,k(m) =
∫
[0,1]d

f(x,m)Φτ,k(x)dx and dj,k,u(m) =
∫
[0,1]d

f(x,m)Ψj,k,u(x)dx.

Let us now prove that the wavelet coefficients estimators ĉj,k(m) and d̂j,k,u(m)
satisfy Assumptions (C1) and (C2) of Theorem 5.1.

First of all, observe that ĉτ,k(m) and d̂j,k,u(m) are unbiased estimators for
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cτ,k(m) and dj,k,u(m) respectively:

E(d̂j,k,u(m)) = E
(
Ψj,k,u(X1)1{Y1=m}

)
=

∑
v∈{0,1,...,q}d∗

∫
[0,1]d

Ψj,k,u(x)1{v=m}f(x,v)dx

=

∫
[0,1]d

Ψj,k,u(x)f(x,m)dx = dj,k,u(m).

We prove similarly that E(ĉτ,k(m)) = cτ,k(m)
Investigation of (C1). Let us focus on the second inequality in (C1); the

first one can be prove with similar arguments. For any i ∈ {1, . . . , n}, set Vi =
Ψj,k,u(Xi)1{Yi=m} − dj,k,u(m). Then V1, . . . , Vn be n zero mean iid random

variables with, by (B1) and 2dj ≤ 2n,

E(|V1|2p) ≤ CE(|Ψj,k,u(X1)1{Y1=m}|2p)

= C
∑

v∈{0,1,...,q}d∗

∫
[0,1]d

|Ψj,k,u(x)1{v=m}|2pf(x,v)dx

= C

∫
[0,1]d

|Ψj,k,u(x)|2pf(x,m)dx ≤ C
∫
[0,1]d

|Ψj,k,u(x)|2pdx

≤ C2jd(p−1)
∫
[0,1]d

|Ψj,k,u(x)|2dx ≤ Cnp−1. (5.2)

It follows from the Rosenthal inequality (see Appendix) that

E
(
|d̂j,k,u − dj,k,u|2p

)
= E

∣∣∣∣∣ 1n
n∑
i=1

Vi

∣∣∣∣∣
2p


=
1

n2p
E

∣∣∣∣∣
n∑
i=1

Vi

∣∣∣∣∣
2p
 ≤ C 1

n2p
max

(
nE(|V1|2p), np

(
E(V 2

1 )
)p)

≤ C
1

n2p
× np ≤ C 1

np
≤ C

(
ln(n)

n

)p
.

Investigation of (C2). With the same random variables V1, . . . , Vn defined
as above, using 2jd ≤ 2n/ ln(n), note that |V1| ≤ 2 supx∈[0,1]d |Ψj,k,u(x)| ≤
C2jd/2 ≤ C

√
n/ ln(n). It follows from the Bernstein inequality (see Appendix)

with υ = (κ/2)
√
n ln(n), M = C

√
n/ ln(n) and, by (5.2) with p = 1, E(V 2

1 ) ≤

imsart-generic ver. 2014/10/16 file: cond-mult-08Avril.tex date: April 8, 2016



Chesneau & Doosti/ 12

C, that

P

(
|d̂j,k,u − dj,k,u| ≥

κ

2

√
ln(n)

n

)
= P

(
1

n

∣∣∣∣∣
n∑
i=1

Vi

∣∣∣∣∣ ≥ κ

2

√
ln(n)

n

)

= P

(∣∣∣∣∣
n∑
i=1

Vi

∣∣∣∣∣ ≥ υ
)
≤ 2 exp

(
− υ2

2 (nE(V 2
1 ) + υM/3)

)

≤ 2 exp

− ((κ/2)
√
n ln(n))2

2C
(
n+ (κ/2)

√
n ln(n)

√
n/ ln(n)/3

)
 ≤ 2n−θ(κ),

where θ(κ) = κ2/ (8C (1 + κ/6)). Taking κ such that θ(κ) = p, we obtain

P

(
|d̂j,k,u − dj,k,u| ≥

κ

2

√
ln(n)

n

)
≤ Cn−p ≤ C

(
ln(n)

n

)p
. (5.3)

It follows from Theorem 5.1 that

S = E

(∫
[0,1]d

|f̂(x,m)− f(x,m)|pdx

)
≤ CΘn. (5.4)

Upper bound for T . For any i ∈ {1, . . . , n}, set Vi = 1{Yi=m} − ρm. Then
V1, . . . , Vn be n zero mean iid random variables with |V1| ≤ 2. It follows from
the Rosenthal inequality (see Appendix) that

T = E (|ρ̂m − ρm|p) = E

(∣∣∣∣∣ 1n
n∑
i=1

Vi

∣∣∣∣∣
p)

=
1

np
E

(∣∣∣∣∣
n∑
i=1

Vi

∣∣∣∣∣
p)
≤ C 1

np
max

(
nE(|V1|p), np/2

(
E(V 2

1 )
)p/2)

≤ C
1

np
× np/2 ≤ C 1

np/2
. (5.5)

Combining (5.1), (5.4) and (5.5), we obtain

E

(∫
[0,1]d

|ĝ(x,m)− g(x,m)|pdx

)
≤ C(S + T ) ≤ max(Θn, n

−p/2) ≤ CΘn.

This complete the proof of Theorem 3.1.

�

Appendix

Here we state the two results that have been used for proving our theorem.
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Lemma 5.1 (Rosenthal (1970)). Let n be a positive integer, p ≥ 2 and V1, . . . , Vn
be n zero mean iid random variables such that E(|V1|p) <∞. Then there exists
a constant C > 0 such that

E

(∣∣∣∣∣
n∑
i=1

Vi

∣∣∣∣∣
p)
≤ C max

(
nE(|V1|p), np/2

(
E(V 2

1 )
)p/2)

.

Lemma 5.2 (Petrov (1995)). Let n be a positive integer and V1, . . . , Vn be n
iid zero mean independent random variables such that there exists a constant
M > 0 satisfying |V1| ≤M . Then, for any υ > 0,

P

(∣∣∣∣∣
n∑
i=1

Vi

∣∣∣∣∣ ≥ υ
)
≤ 2 exp

(
− υ2

2 (nE(V 2
1 ) + υM/3)

)
.

Theorem 5.1. We consider a general statistical nonparametric framework. Let
p ≥ 1 and f(.) ∈ Lmax(p,2)([0, 1]d) be an unknown function to be estimated

from n observations and (2.1) its wavelet decomposition. Let ĉj,k and d̂j,k be
estimators of cj,k and dj,k respectively such that there exist two constants C > 0
and κ > 0 satisfying Assumptions (C1) and (C2) below.

(C1) For any k ∈ Dτ ,

E
(
|ĉτ,k − cτ,k|2p

)
≤ C

(
ln(n)

n

)p
and for any j ≥ τ such that 2jd ≤ n, u ∈ {1, . . . , 2d − 1} and k ∈ Dj,

E
(
|d̂j,k,u − dj,k,u|2p

)
≤ C

(
ln(n)

n

)p
.

(C2) For any j ≥ τ such that 2jd ≤ n/ ln(n), u ∈ {1, . . . , 2d − 1} and k ∈ Dj,

P

(
|d̂j,k,u − dj,k,u| ≥

κ

2

√
ln(n)

n

)
≤ C

(
ln(n)

n

)p
.

Let us define the estimator f̂ by

f̂(x) =
∑

k∈Dτ

ĉτ,kΦτ,k(x) +

2d−1∑
u=1

∞∑
j=τ

∑
k∈Dj

d̂j,k,u1{
|d̂j,k,u|≥κ

√
ln(n)
n

}Ψj,k,u(x),

x ∈ [0, 1]d, where j1 is the integer satisfying n/ ln(n) < 2j1d ≤ 2n/ ln(n).
Suppose that f ∈ Bs

r,q(M) with M > 0, s > d/r, r ≥ 1 and q ≥ 1. Then there
exists a constant C > 0 such that

E

(∫
[0,1]d

|f̂(x)− f(x)|pdx

)
≤ CΘn,
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where

Θn =



(
ln(n)

n

) sp
2s+d

, for 2rs > d(p− r),(
ln(n)

n

) (s−d(1/r−1/p))p
2s−2d/r+d

, for 2rs < d(p− r),(
ln(n)

n

) (s−d(1/r−1/p))p
2s−2d/r+d

(ln(n))
(p− 2r

q )
+ , for 2rs = d(p− r).

Theorem 5.1 can be proved using similar arguments to (Kerkyacharian and
Picard, 2000, Theorem 5.1) for a bound of the Lp-risk and the multidimensional
framework of (Delyon and Juditsky, 1996, Theorem 1) for the determination of
the rates of convergence.
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