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In this note we investigate the estimation of a multivariate continuous-discrete conditional density. We develop an adaptive estimator based on wavelet methods. We prove its good theoretical performance by determining sharp rates of convergence under the Lp risk with p ≥ 1 for a wide class of unknown conditional density. A simulation study illustrates the good practical performances of our estimator.

Introduction

The estimation of conditional densities is an important statistical challenge with applications in many practical problems, especially those connected with forecasting (economics . . . ). There is a vast literature in this area. We refer to the papers of [START_REF] Li | Nonparametric Econometrics: Theory and Practice[END_REF], [START_REF] Akakpo | Inhomogeneous and anisotropic conditional density estimation from dependent data[END_REF], [START_REF] Chagny | Warped bases for conditional density estimation[END_REF] and the references therein. In this note we focus our attention on a specific problem: the estimation of a multivariate continuous-discrete conditional density. The considered model is described as follows. Let d, d * , ν and n be positive integers and (X 1 , Y 1 ), . . . , (X n , Y n ) be n iid random vectors defined on the probability space (Ω, A, P ). We suppose that X 1 is continuous with support [0, 1] d and Y 1 is discrete with support {0, 1, . . . , ν} d * . Let f be the density of (X 1 , Y 1 ). We define the density function of X 1 conditionally to the event {Y = m} by

g(x, m) = f (x| Y 1 = m) = f (x, m) P (Y 1 = m) , (1.1) 
(x, m) ∈ [0, 1] d ×{0, 1, . . . , ν} d * . We aim to estimate g(x, m) from (X 1 , Y 1 ), . . . , (X n , Y n ). The most common approach is based on the kernel methods developed by [START_REF] Li | Nonparametric estimation of distributions with categorical and continuous data[END_REF]. Applications and recent developments for these methods are described in details in [START_REF] Li | Nonparametric Econometrics: Theory and Practice[END_REF].

In this note we develop a new estimator g(x, m) based on wavelet methods. It is now an established fact: in comparison to kernel methods, wavelet methods have the advantage to achieve a high degree of adaptivity for a large class of unknown functions, with possible complex discontinuities (jumps, spikes. . . ). See, for instance, [START_REF] Antoniadis | Wavelets in statistics: a review (with discussion)[END_REF], [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and [START_REF] Vidakovic | Statistical Modeling by Wavelets[END_REF]. This fact motivates our interest to develop wavelet methods for the considered conditional density estimation problem. The main ingredients in the construction of g(x, m) are: an estimation of f (x, m) with a new wavelet estimator f (x, m), an estimation of P (Y 1 = m) by an empirical estimator and a global thresholding technique developed by [START_REF] Vasiliev | A truncated estimation method with guaranteed accuracy[END_REF]. In particular, the considered estimator f (x, m) can be viewed as a multivariate (but "non smooth") version of the one introduced in the univariate case, i.e., d = d * = 1, in [START_REF] Chesneau | Nonparametric estimation of a two dimensional continuous-discrete density function by wavelets[END_REF]. We prove that g(x, m) is both adaptive and efficient; it don't dependent on the smoothness of g(x, m) in its construction and, under mild assumptions on the smoothness of g(x, m) (we assume that it belongs to a wide class of functions, the so-called Besov balls), it attains fast rates of convergence under the L p risk (with p ≥ 1). These theoretical guarantees are illustrated by a numerical study showing the good practical performances of our estimator.

The remainder of the note is set out as follows. Next, in Section 2, we briefly describe the considered multidimensional wavelet bases and Besov balls. Our wavelet estimator and some of its theoretical properties are presented in Section 3. A short numerical study can be found in Section 4. Finally, the proofs are postponed to Section 5.

Multidimensional wavelet bases and Besov balls

Let d be positive integers and p ≥ 1. First of all, we define the

L p ([0, 1] d ) spaces as L p ([0, 1] d ) = f : [0, 1] d → R; [0,1] d |f (x)| p dx < ∞ .
In this study, we consider a wavelet bases on [0, 1] d based on the scaling and wavelet functions φ and ψ respectively from Daubechies family (see [START_REF] Daubechies | Ten lectures on wavelets[END_REF]). For any

x = (x 1 , . . . , x d ) ∈ [0, 1] d , we set Φ(x) = d v=1 φ(x v ), and Ψ u (x) =              ψ(x u ) d v=1 v =u φ(x v ) for u ∈ {1, . . . , d}, v∈Au ψ(x v ) v ∈Au φ(x v ) for u ∈ {d + 1, . . . , 2 d -1},
where (A u ) u∈{d+1,...,2 d -1} forms the set of all non void subsets of {1, . . . , d} of cardinality greater or equal to 2. For any integer j and any k = (k 1 , . . . , k d ), we consider

Φ j,k (x) = 2 jd/2 Φ(2 j x 1 -k 1 , . . . , 2 j x d -k d ), Ψ j,k,u (x) = 2 jd/2 Ψ u (2 j x 1 -k 1 , . . . , 2 j x d -k d ), for any u ∈ {1, . . . , 2 d -1}.
Let D j = {0, . . . , 2 j -1} d . Then, with an appropriate treatment at the boundaries, there exists an integer τ such that the collection

{Φ τ,k , k ∈ D τ ; (Ψ j,k,u ) u∈{1,...,2 d -1} , j ∈ N -{0, . . . , τ -1}, k ∈ D j } forms an orthonormal basis of L 2 ([0, 1] d ). A function f ∈ L 2 ([0, 1] d ) can be expanded into a wavelet series as f (x) = k∈Dτ c τ,k Φ τ,k (x) + 2 d -1 u=1 ∞ j=τ k∈Dj d j,k,u Ψ j,k,u (x), x ∈ [0, 1] d , (2.1)
where

c τ,k = [0,1] d f (x)Φ τ,k (x)dx, d j,k,u = [0,1] d f (x)Ψ j,k,u (x)dx. (2.2)
All the details about these wavelet bases, including the expansion into wavelet series as described above, can be found in, e.g., [START_REF] Meyer | Wavelets and Operators[END_REF], [START_REF] Daubechies | Ten lectures on wavelets[END_REF], [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

Let M > 0, s ∈ (0, N ), p ≥ 1 and r ≥ 1. We say that a function f ∈ L 2 ([0, 1] d ) belongs to the Besov balls B s r,q (M ) if and only if there exists a constant M * > 0 such that the associated wavelet coefficients (2.2) satisfy

k∈Dτ |c τ,k | r 1/r +    ∞ j=τ   2 j(s+d(1/2-1/r))   2 d -1 u=1 k∈Dj |d j,k,u | r   1/r    q    1/q ≤ M *
and with the usual modifications for r = ∞ or q = ∞.

These sets contain function classes of significant spatial inhomogeneity, including Sobolev balls, Hölder balls. . . . Details about Besov balls can be found in, e.g., [START_REF] Meyer | Wavelets and Operators[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF].

Conditional density estimation

We formulate the following assumptions.

(B1) There exists a known constant C > 0 such that sup

x∈[0,1] d sup m∈{0,1,...,ν} d * f (x, m) ≤ C. (B2) There exists a known constant c ∈ (0, 1) such that c ≤ inf m∈{0,1,...,ν} d * P (Y 1 = m).
We propose the following "ratio-thresholding estimator" g(x, m) for g(x, m): 

g(x, m) = f (x, m) ρ m 1 { ρm≥c/2} , ( 
(x, m) ∈ [0, 1] d × {0, 1, . . . , ν} d *
, where 1 denotes the indicator function, c refers to the constant in (B2), f (x, m) is defined by

f (x, m) = k∈Dτ c τ,k (m)Φ τ,k (x) + 2 d -1 u=1 j1 j=τ k∈Dj d j,k,u (m)1 | d j,k,u (m)|≥κ ln(n) n Ψ j,k,u (x), (3.2)
where

c τ,k (m) = 1 n n i=1 Φ τ,k (X i )1 {Yi=m} , (3.3) d j,k,u (m) = 1 n n i=1 Ψ j,k,u (X i )1 {Yi=m} , (3.4)
κ is a large enough constant and j 1 is an integer such that n/ ln(n) ≤ 2 j1d ≤ 2n/ ln(n), and ρ m is defined by

ρ m = 1 n n i=1 1 {Yi=m} .
The estimator (3.2) uses a hard thresholding technique of the wavelet coefficients estimators 3.4. Such a selection rule is at the heart of the adaptive nature of wavelet methods which have the ability to capture the most important wavelet coefficients of a function, i.e., those with the high magnitudes. We refer to Antoniadis (1997), [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and [START_REF] Vidakovic | Statistical Modeling by Wavelets[END_REF] for further details. The definition of the threshold, i.e. λ n = κ ln(n)/n, corresponds to the universal one proposed by [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF] and [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF]. It is based on technical considerations ensuring good convergence properties of the hard thresholding wavelet estimator (see also Theorem 5.1 in Appendix). Note that (3.2) can be viewed as a non smooth multivariate version of the estimator proposed by [START_REF] Chesneau | Nonparametric estimation of a two dimensional continuous-discrete density function by wavelets[END_REF]. The main advantage of this estimator is to be more easy to implement for a practical point of view (see Section 4 below for a numerical comparison in the univariate case). Concerning ρ n , let us mention that it is a natural unbiased estimator for P (Y 1 = m) with nice convergence properties. They will be used in the proof of our main result.

The global construction of (3.1) follows the idea proposed by Vasiliev (2014) for other statistical contexts. Note that a control on the lower bound of ρ m is necessary; it must be large enough to ensure good statistical properties for (3.1).

The following result investigates the rates of convergence attained by (3.1) under the L p risk with p ≥ 1.

imsart-generic ver. 2014/10/16 file: cond-mult-08Avril.tex date: April 8, 2016 Theorem 3.1. Let m ∈ {0, 1, . . . , ν} d * , p ≥ 1, g(x, m) be (1.1) and g(x, m) be defined by (3.1) with a large enough κ (the exact condition is described in (5.3)). Suppose that (B1) and (B2) hold and f (x, m) ∈ B s r,q (M ) with M > 0, s > d/r, r ≥ 1 and q ≥ 1. Then there exists a constant C > 0 such that, for n large enough,

E [0,1] d | g(x, m) -g(x, m)| p dx ≤ CΘ n ,
where

Θ n =                    ln(n) n sp 2s+d , for 2rs > d(p -r), ln(n) n (s-d(1/r-1/p))p 2s-2d/r+d , for 2rs < d(p -r), ln(n) n (s-d(1/r-1/p))p 2s-2d/r+d (ln(n)) (p-2r q ) + , for 2rs = d(p -r).
The proof of Theorem 3.1 is based on several technical inequalities and the application of a general result derived from (Kerkyacharian and Picard, 2000, Theorem 5.1) and [START_REF] Delyon | On minimax wavelet estimators[END_REF], Theorem 1) (see Theorem 5.1 in Appendix).

Theorem 3.1 provides theoretical guaranties on the convergence of (3.1) under mild assumptions on the smoothness of f (x, m), and a fortiori g(x, m), under the L p risk. The obtained rates of convergence are sharp. However, since the lower minimax bounds are not established in our setting, we do not claim that they are the optimal ones in the minimax sense. An important benchmark is that they correspond to the optimal ones in the minimax sense for the standard multivariate density estimation problem, corresponding to d * = 1 and Y 1 is constant almost surely, up to a logarithmic term (see [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF]).

A short numerical study

In this section we investigate some practical aspects of our wavelet methods. For ths sake of simplicity, we focus our attention on the univariate case, i.e.,

d = d * = 1 (so x = x, m = m, Y 1 = Y . . . ).
The codes are written in Matlab and are adopted from [START_REF] Ramirez | Wavelet density estimation for stratified size-biased sample[END_REF]. First we compare the performance of new estimators of density functions f (x, m) with those proposed in our former publication, [START_REF] Chesneau | Nonparametric estimation of a two dimensional continuous-discrete density function by wavelets[END_REF] in two styles, accuracy and speed of computation. In order to illustrate the rate of decrease of errors, as [START_REF] Chesneau | Nonparametric estimation of a two dimensional continuous-discrete density function by wavelets[END_REF], we employ the indicator defined by

L 2 N orm = 1 100nN N i=1 n j=1 f i j n -f j n
where n and N are sample size and the number of replications respectively, f represents the true density and f an estimator. We consider three estimators based on our statistical methodology: the linear wavelet estimator, i.e.,

f L (x, m) = 2 j 0 -1 k=0 c j0,k (m)φ j0,k (x), (4.1)
x ∈ [0, 1], the hard thresholding wavelet estimator defined by (3.2) and the smooth version of the linear wavelet estimator after local linear regression (see, e.g., [START_REF] Fan | Local linear regression smoothers and their minimax efficiencies[END_REF]). The practical construction of this smooth version of linear wavelet estimators was proposed by [START_REF] Ramirez | Wavelet density estimation for stratified size-biased sample[END_REF] On the other hands, Table 2 depicts the speed of computation for two groups of estimators in seconds. The codes are run with an ordinary laptop with 4.3 RAM. As we see the speed of new version of estimators is much less than the formers. For example when the sample size is 1000, the speed of computation is about 200 times less than the former version of wavelets estimators of densities. This differences will be much bigger when the sample size increases. In the second part of this section we show the performance of proposed estimators of conditional density functions. Note that the conditional density function in above examples satisfies

f (x, m) = 12x 1+m (1 -x) 3-m , (x, m) ∈ [0, 1] × {0, 1}.
g(x, m) = f (x|Y = m) = 20x(1 -x) 3 , for m = 0, 30x 2 (1 -x) 2 , for m = 1,
x ∈ [0, 1]. Figures 1, 2 depict the g(x, 0) and g(x, 1), respectively. In each cases the true conditional density function is shown in black line, the linear wavelet estimator is blue (dashed curve), the hard thresholding wavelet estimator is red (dotted curve) and the smooth version of linear one is green. All the figures illustrate the good performances of our proposed linear and nonlinear estimators of conditional density functions. It should be remind that the hard thresholding one has no tuning parameter, it is entirely adaptive. The smooth version of our wavelet linear estimator has the best performance. Furthermore, Table 3 represents the impact of sample size on performance of our estimators. This table also compares the performance of three estimators. The number of replication is 500. As the sample size increases the value of indicator decrease and the performance of smooth version of linear wavelet estimators are the best.
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Its value may change from one term to another. For the sake of simplicity, we set ρ m = P (Y 1 = m). Observe that

g(x, m) -g(x, m) = f (x, m) ρ m 1 { ρm≥c/2} - f (x, m) ρ m = 1 ρ m ρ m ρ m ( f (x, m) -f (x, m)) + f (x, m)(ρ m -ρ m ) 1 { ρm≥c/2} - f (x, m) ρ m 1 { ρm<c/2} .
Owing to (B2), we have

{ ρ m < c/2} ⊆ {| ρ m -ρ m | > c/2} implying 1 { ρm<c/2} ≤ (2/c)| ρ m -ρ m | and (1/( ρ m ρ m ))1 { ρm≥c/2} ≤ 2/c 2 .
Moreover, note that ρ m ≤ 1 and, thanks to (B1), f (x, m) ≤ C. It follows from the triangular inequality and the above inequalities that

| g(x, m) -g(x, m)| ≤ C(| f (x, m) -f (x, m)| + | ρ m -ρ m |).
By the inequality: |x + y| p ≤ 2 p-1 (|x| p + |y| p ), (x, y) ∈ R 2 , we obtain

E [0,1] d | g(x, m) -g(x, m)| p dx ≤ C(S + T ), (5.1) 
where

S = E [0,1] d | f (x, m) -f (x, m)| p dx , T = E (| ρ m -ρ m | p ) .
Let us now bound S and T in tun.

Upper bound for S. We investigate an upper bound for S by using Theorem 5.1 in the Appendix. First of all, thanks to (B1) implying f (x, m) ∈ L 2 ([0, 1] d ), let us expand the density f (x, m) on the considered wavelet basis :

f (x, m) = k∈Dτ c τ,k (m)Φ τ,k (x) + 2 d -1 u=1 j1 j=τ k∈Dj d j,k,u (m)Ψ j,k,u (x), where c τ,k (m) = [0,1] d f (x, m)Φ τ,k (x)dx and d j,k,u (m) = [0,1] d f (x, m)Ψ j,k,u (x)dx.
Let us now prove that the wavelet coefficients estimators c j,k (m) and d j,k,u (m) satisfy Assumptions (C1) and (C2) of Theorem 5.1.

First of all, observe that c τ,k (m) and d j,k,u (m) are unbiased estimators for imsart-generic ver. 2014/10/16 file: cond-mult-08Avril.tex date: April 8, 2016 c τ,k (m) and d j,k,u (m) respectively:

E( d j,k,u (m)) = E Ψ j,k,u (X 1 )1 {Y1=m} = v∈{0,1,...,q} d * [0,1] d Ψ j,k,u (x)1 {v=m} f (x, v)dx = [0,1] d Ψ j,k,u (x)f (x, m)dx = d j,k,u (m).
We prove similarly that E( c τ,k (m)) = c τ,k (m) Investigation of (C1). Let us focus on the second inequality in (C1); the first one can be prove with similar arguments. For any i ∈ {1, . . . , n}, set V i = Ψ j,k,u (X i )1 {Yi=m} -d j,k,u (m). Then V 1 , . . . , V n be n zero mean iid random variables with, by (B1) and 2 dj ≤ 2n,

E(|V 1 | 2p ) ≤ CE(|Ψ j,k,u (X 1 )1 {Y1=m} | 2p ) = C v∈{0,1,...,q} d * [0,1] d |Ψ j,k,u (x)1 {v=m} | 2p f (x, v)dx = C [0,1] d |Ψ j,k,u (x)| 2p f (x, m)dx ≤ C [0,1] d |Ψ j,k,u (x)| 2p dx ≤ C2 jd(p-1) [0,1] d |Ψ j,k,u (x)| 2 dx ≤ Cn p-1 .
(5.2)

It follows from the Rosenthal inequality (see Appendix) that

E | d j,k,u -d j,k,u | 2p = E   1 n n i=1 V i 2p   = 1 n 2p E   n i=1 V i 2p   ≤ C 1 n 2p max nE(|V 1 | 2p ), n p E(V 2 1 ) p ≤ C 1 n 2p × n p ≤ C 1 n p ≤ C ln(n) n p .
Investigation of (C2). With the same random variables V 1 , . . . , V n defined as above, using 2 jd ≤ 2n/ ln(n), note that Lemma 5.1 [START_REF] Rosenthal | On the subspaces of L p (p ≥ 2) spanned by sequences of independent random variables[END_REF]). Let n be a positive integer, p ≥ 2 and V 1 , . . . , V n be n zero mean iid random variables such that E(|V 1 | p ) < ∞. Then there exists a constant C > 0 such that

|V 1 | ≤ 2 sup x∈[0,1] d |Ψ j,k,u (x)| ≤ C2 jd/2 ≤ C n/ ln(n).
E n i=1 V i p ≤ C max nE(|V 1 | p ), n p/2 E(V 2 1 ) p/2 .
Lemma 5.2 [START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF]). Let n be a positive integer and V 1 , . . . , V n be n iid zero mean independent random variables such that there exists a constant M > 0 satisfying |V 1 | ≤ M . Then, for any υ > 0,

P n i=1 V i ≥ υ ≤ 2 exp - υ 2 2 (nE(V 2
1 ) + υM /3) .

Theorem 5.1. We consider a general statistical nonparametric framework. Let p ≥ 1 and f (.) ∈ L max(p,2) ([0, 1] d ) be an unknown function to be estimated from n observations and (2.1) its wavelet decomposition. Let c j,k and d j,k be estimators of c j,k and d j,k respectively such that there exist two constants C > 0 and κ > 0 satisfying Assumptions (C1) and (C2) below. x ∈ [0, 1] d , where j 1 is the integer satisfying n/ ln(n) < 2 j1d ≤ 2n/ ln(n). Suppose that f ∈ B s r,q (M ) with M > 0, s > d/r, r ≥ 1 and q ≥ 1. Then there exists a constant C > 0 such that

E [0,1] d | f (x) -f (x)| p dx ≤ CΘ n ,
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Fig 1 .

 1 Fig 1.The true conditional density function g(x, 0) is shown in black line, the wavelet linear estimator is blue, the wavelet hard thresholding estimator is red and its smooth version is green with n = 500.

Fig 2 .

 2 Fig 2.The true conditional density function g(x, 1) is shown in black line, the wavelet linear estimator is blue, the wavelet hard thresholding estimator is red and its smooth version is green with n = 500.

  It follows from the Bernstein inequality (see Appendix) with υ = (κ/2) n ln(n), M = C n/ ln(n) and, by (5.2) with p = 1, E(V 2 1 ) ≤ imsart-generic ver. 2014/10/16 file: cond-mult-08Avril.tex date: April 8, 2016

( C1 )

 C1 For any k ∈ D τ , E | c τ,k -c τ,k | 2p ≤ C ln(n) np and for any j ≥ τ such that 2 jd ≤ n, u ∈ {1, . . . , 2 d -1} and k ∈ D j , E | d j,k,u -d j,k,u | 2p ≤ C ln(n) n p . (C2) For any j ≥ τ such that 2 jd ≤ n/ ln(n), u ∈ {1, . . . , 2 d -1} and k ∈ D j , P | d j,k,u -d j,k,u |

  . Several studies confirm that this version of estimators have nice performance in different fields (see, for instance, Abbaszadehet al. (2013) and Chesneau et al. (2016)).We adopt similar set up from[START_REF] Chesneau | Nonparametric estimation of a two dimensional continuous-discrete density function by wavelets[END_REF] for our example, i.e., we use Daubechies's compactly supported "Daubechies 3" and we take j 0 = 6. Also, we generate different sample sizes n = 20, 50, 100, 200, 500 and 1000 data points X 1 , . . . , X

n , from Beta(2,3) distribution. The discrete random sample is generated from Binomial(1, x i ); the bivariate density function is

Table 1

 1 Computed values for L 2 N orm for various sample sizes.

	Estimator				Sample Size		
		Density	n=20	n=50	n=100	n=200	n=500	n=1000
	Linear	f(x,0)	0.0188	0.0080	0.0038	0.0019	0.00080 0.00041
	Linear	f(x,1)	0.0132	0.0050	0.0027	0.0013	0.00051 0.00026
	Hard Thresh.	f(x,0)	0.0178	0.0073	0.0033	0.0016	0.0006	0.00034
	Hard Thresh.	f(x,1)	0.0123	0.0044	0.0021	0.00096 0.00036 0.00017
	Smooth	f(x,0)	0.0011	0.00047 0.00026 0.00017 .00012	0.00009
	Smooth	f(x,1)	0.00063 0.00028 0.00014 0.00007 0.00004 0.00002
				Table 2			
			Elapsed time (Seconds)			
	Estimator				Sample Size		
			n=20	n=50	n=100	n=200	n=500	n=1000
	Chesneau et al. (2014)	64.3205	157.546 176.094	369.802 771.294 2277.76
	New estimators		0.641954 0.89170 1.481340 2.62647 5.78828 11.267064

Table 3

 3 Computed values for 100L 2 N orm for various sample sizes.

	Estimator				Sample Size	
		Conditional density	n=20	n=50	n=100 n=200 n=500 n=1000
	Linear	g(x, 0)	5.3407 1.1357	1.0883	0.5421	0.2150	0.1131
	Linear	g(x, 1)	8.8589 3.2498	1.6118	0.7908	0.3255	0.1614
	Hard Thresh.	g(x, 0)	5.0716 1.9346	0.9430	0.4576	0.1745	0.0900
	Hard Thresh.	g(x, 1)	8.1867 2.7903	1.2612	0.5851	0.2287	0.1064
	Smooth	g(x, 0)	0.2303 0.1064	0.0682	0.0433	0.0286	0.0261
	Smooth	g(x, 1)	0.3351 0.1297	0.0684	0.0377	0.0196	0.0145
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C, that

where θ(κ) = κ 2 / (8C (1 + κ/6)). Taking κ such that θ(κ) = p, we obtain

(5.

3) It follows from Theorem 5.1 that

(5.4)

Upper bound for T . For any i ∈ {1, . . . , n}, set

(5.5)

Combining (5.1), (5.4) and (5.5), we obtain

This complete the proof of Theorem 3.1.

Appendix

Here we state the two results that have been used for proving our theorem.
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where

Theorem 5.1 can be proved using similar arguments to (Kerkyacharian and Picard, 2000, Theorem 5.1) for a bound of the L p -risk and the multidimensional framework of [START_REF] Delyon | On minimax wavelet estimators[END_REF], Theorem 1) for the determination of the rates of convergence.