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Abstract

The Team Orienteering Problem (TOP) is an attractive variant of the Vehicle
Routing Problem (VRP). The aim is to select customers and at the same time
organize the visits for a vehicle fleet so as to maximize the collected profits and
subject to a travel time restriction on each vehicle. In this paper, we investigate
the effective use of a linear formulation with polynomial number of variables to
solve TOP. Cutting planes are the core components of our solving algorithm. It
is first used to solve smaller and intermediate models of the original problem by
considering fewer vehicles. Useful information are then retrieved to solve larger
models, and eventually reaching the original problem. Relatively new and dedi-
cated methods for TOP, such as identification of irrelevant arcs and mandatory
customers, clique and independent-set cuts based on the incompatibilities, and
profit/customer restriction on subsets of vehicles, are introduced. We evaluated
our algorithm on the standard benchmark of TOP. The results show that the
algorithm is competitive and is able to prove the optimality for 12 instances
previously unsolved.

Keywords: Team Orienteering Problem, cutting planes, dominance property,
incompatibility, clique cut, independent-set cut.

1. Introduction

The Team Orienteering Problem (TOP) was first mentioned in Butt and
Cavalier (1994) as the Multiple Tour Maximum Collection Problem (MTMCP).
Later, the term TOP was formally introduced in Chao et al. (1996). TOP is a
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variant of the Vehicle Routing Problem (VRP) (Archetti et al. 2014). In this
variant, a limited number of identical vehicles is available to visit customers from
a potential set. Two particular depots, the departure and the arrival points are
considered. Each vehicle must perform its route starting from the departure
depot and returning to the arrival depot without exceeding its predefined travel
time limit. A certain amount of profit is associated for each customer and must
be collected at most once by the fleet of vehicles. The aim of solving TOP is to
organize an itinerary of visits respecting the above constraints for the fleet in
such a way that the total amount of collected profits from the visited customers
is maximized.

A special case of TOP is the one with a single vehicle. The resulted problem
is known as the Orienteering Problem (OP), or the Selective Travelling Salesman
Problem (STSP) (see the surveys by Feillet et al. 2005, Vansteenwegen et al.
2011 and Gavalas et al. 2014). OP/STSP is already NP-Hard (Laporte and
Martello 1990), and so is TOP (Chao et al. 1996). The applications of TOP
arise in various situations. For example in Bouly et al. (2008), the authors
used TOP to model the schedule of inspecting and repairing tasks in water
distribution. Each task in this case has a specific level of urgency which is similar
to a profit. Due to the limitation of available human and material resources,
the efficient selection of tasks as well as the route planning become crucial to
the quality of the schedule. A very similar application was described in Tang
and Miller-Hooks (2005) to route technicians to repair sites. In Souffriau et al.
(2008), Vansteenwegen et al. (2009) and Gavalas et al. (2014), the tourist guide
service that offers to the customers the possibility to personalize their trips is
discussed as variants of TOP/OP. In this case, the objective is to maximize
the interest of customers on attractive places subject to their duration of stay.
Those planning problems are called Tourist Trip Design Problems (TTDPs).
Many other applications include the team-orienteering sport game, bearing the
original name of TOP, the home fuel delivery problem with multiple vehicles
(e.g., Chao et al. 1996) and the athlete recruiting from high schools for a college
team (e.g., Butt and Cavalier 1994).

Many heuristics have been proposed to solve TOP, like the ones in Archetti
et al. (2007), Souffriau et al. (2010), Dang et al. (2013b) and Kim et al. (2013).
These approaches are able to construct solutions of good quality in short com-
putational times, but those solutions are not necessarily optimal. In order to
validate them and evaluate the performance of the heuristic approaches, either
optimal solutions or upper bounds are required. For this reason, some researches
have been dedicated to elaborate exact solution methods for TOP. Butt and
Ryan (1999) introduced a procedure based on the set covering formulation. A
column generation algorithm was developed to solve this problem. In Boussier
et al. (2007), the authors proposed a branch-and-price (B-P) algorithm in which
they used a dynamic programming approach to solve the pricing problem. Their
approach has the advantage of being easily adaptable to different variants of the
problem. Later, Poggi de Aragão et al. (2010) introduced a pseudo-polynomial
linear model for TOP and proposed a branch-cut-and-price (B-C-P) algorithm.
New classes of inequalities, including min-cut and triangle clique, were added to
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the model and the resulting formulation was solved using a column generation
approach. Afterwards, Dang et al. (2013a) proposed a branch-and-cut (B-C) al-
gorithm based on a linear formulation and features a new set of valid inequalities
and dominance properties in order to accelerate the solution process. Recently,
Keshtkarana et al. (2016) proposed a Branch-and-Price algorithm with two re-
laxation stages (B-P-2R) and a Branch-and-Cut-and-Price (B-C-P) approach
to solve TOP, where a bounded bidirectional dynamic programming algorithm
with decremental state space relaxation was used to solve the subproblems.
These five methods were able to prove the optimality for a large part of the
standard benchmark of TOP (Chao et al. 1996), however there is a large num-
ber of instances that are still open until now. Furthermore, according to the
recent studies of Dang et al. (2013b) and Kim et al. (2013), it appears that it is
hardly possible to improve the already-known solutions for the standard bench-
mark of TOP using heuristics. These studies suggest that the known heuristic
solutions could be optimal but there is a lack of variety of effective methods to
prove their optimality.

Motivated by the above facts, in this paper we propose a new exact algorithm
to solve TOP. It is based on a linear formulation with a polynomial number of
binary variables. Our algorithmic scheme is a cutting plane algorithm which
exploits integer solutions of successive models with the subtour elimination con-
straints being relaxed at first and then iteratively reinforced. Recently, Pferschy
and Staněk (2013) demonstrates on the Travelling Salesman Problem (TSP) that
such a technique which was almost forgotten could be made efficient nowaday
with the impressive performance of modern solvers for Mixed-Integer Program-
ming (MIP), especially with a careful control over the reinforcing of the subtour
elimination. Our approach is similar but in addition to subtour elimination,
we also make use of other valid inequalities and useful dominance properties
to enhance the intermediate models. The properties include breaking the sym-
metry and exploiting bounds or optimal solutions of smaller instances/models
with fewer number of vehicles, while the proposed valid inequalities are the
clique cuts and the independent set cuts based on the incompatibilities between
customers and between arcs. In addition, bounds on smaller restricted models
are used to locate mandatory customers and inaccessible customers/arcs. Some
of these cuts were introduced and tested in Dang et al. (2013a) yielding some
interesting results for TOP, this encourages us to implement them immediately
in our cutting plane algorithm. We evaluated our algorithm on the standard
benchmark of TOP. The obtained results clearly show the competitiveness of
our algorithm. The algorithm is able to prove the optimality for 12 instances
that none of the previous exact algorithms had been able to solve.

The remainder of the paper is organized as follows. A short description of
the problem with its mathematical formulation is first given in Section 2, where
the use of the generalized subtour elimination constraints is also discussed. In
Section 3, the set of dominance properties, which includes symmetry breaking,
removal of irrelevant components, identification of mandatory customers and
boundaries on profits/numbers of customers, is presented. The graphs of in-
compatibilities between variables are also described in this section, along with
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the clique cuts and the independent set cuts. In Section 4, all the techniques
used to generate these efficient cuts are detailed, and the pseudocode of the
main algorithmic scheme is given. Finally, the numerical results are discussed
in Section 5, and some conclusions are drawn.

2. Problem formulation

TOP is modeled with a complete directed graph G = (V,A) where V =
{1, . . . , n} ∪ {d, a} is the set of vertices representing the customers and the
depots, and A = {(i, j) | i, j ∈ V, i 6= j} the set of arcs linking the different
vertices together. The departure and the arrival depots for the vehicles are
represented by the vertices d and a. For convenience, we use the three sets
V −, V d and V a to denote respectively the sets of the customers only, of the
customers with the departure depot and of the customers with the arrival one.
A profit pi is associated for each vertex i and is considered zero for the two
depots (pd = pa = 0). Each arc (i, j) ∈ A is associated with a travel cost cij .
Theses costs are assumed to be symmetric and to satisfy the triangle inequality.
All arcs incoming to the departure depot and outgoing from the arrival one
must not be considered (cid = cai = ∞, ∀i ∈ V −). Let F represent the fleet of
the m identical vehicles available to visit customers. Each vehicle must start
its route from d, visit a certain number of customers and return to a without
exceeding its predefined travel cost limit L. Using these definitions, we can
formulate TOP with a linear Mixed Integer Program (MIP) using a polynomial
number of decision variables yir and xijr . Variable yir is set to 1 if vehicle r has
served client i and to 0 otherwise, while variable xijr takes the value 1 when
vehicle r uses arc (i, j) to serve customer j immediately after customer i and 0
otherwise.

max
∑

i∈V −

∑

r∈F

yirpi (1)

∑

r∈F

yir ≤ 1 ∀i ∈ V − (2)

∑

j∈V a

xdjr =
∑

j∈V d

xjar = 1 ∀r ∈ F (3)

∑

i∈V a\{k}

xkir =
∑

j∈V d\{k}

xjkr = ykr ∀k ∈ V −, ∀r ∈ F (4)

∑

i∈V d

∑

j∈V a\{i}

cijxijr ≤ L ∀r ∈ F (5)

∑

(i,j)∈U×U

xijr ≤ |U | − 1 ∀U ⊆ V −, |U | ≥ 2, ∀r ∈ F (6)

xijr ∈ {0, 1} ∀i ∈ V, ∀j ∈ V, ∀r ∈ F (7)

yir ∈ {0, 1} ∀i ∈ V −, ∀r ∈ F

4



The objective function (1) maximizes the sum of collected profits from the
visited customers. Constraints (2) impose that each customer must be visited
at most once by one vehicle. Constraints (3) guarantee that each vehicle starts
its path at vertex d and ends it at vertex a, while constraints (4) ensure the
connectivity of each tour. Constraints (5) are used to impose the travel length
restriction, while constraints (6) eliminate all possible subtours, i.e. cycles ex-
cluding the depots, from the solution. Finally, constraints (7) set the integral
requirement on the variables.

Enumerating all constraints (6) yields a formulation with an exponential
number of constraints. In practice, these constraints are first relaxed from
the formulation, then only added to the model whenever needed. The latter
can be detected with the presence of subtours in the solution of the relaxed
model. We also replace constraints (6) with the stronger ones, the so-called
Generalized Subtour Elimination Constraints (GSECs) which enhance both the
elimination of specific subtours and the connectivity in the solution. The first
GSEC experiment with OP were reported in Fischetti et al. (1998).

We adapted the GSEC version from Dang et al. (2013a) formulated to TOP
with a directed graph as follows. For a given subset S of customer vertices, we
define δ(S) to be the set of arcs that connect vertices in S with those outside S,
i.e. vertices in V \S. We also use γ(S) to represent the set of arcs interconnecting
vertices in S. The following GSECs are then added to the model to ensure that
each customer served by vehicle r belongs to a path that is connected to the
depots and does not form a cycle with other vertices of S.

∑

(u,v)∈δ(S)

xuvr ≥ 2yir, ∀S ⊂ V, {d, a} ⊆ S, ∀i ∈ V \ S, ∀r ∈ F (8)

We also add two categories of constraints, which are detailed below and are
equivalent to the GSECs, to strengthen the model.

∑

(u,v)∈γ(S)

xuvr ≤
∑

i∈S\{d,a}

yir − yjr + 1, ∀S ⊂ V, {d, a} ⊆ S, ∀j ∈ V \ S, ∀r ∈ F

(9)
∑

(u,v)∈γ(U)

xuvr ≤
∑

i∈U

yir − yjr , ∀U ⊆ V −, ∀j ∈ U, ∀r ∈ F (10)

On the other hand, our approach requires a check on the absence of subtours
for an optimal solution of the current incomplete model (i.e. while relaxing
constraints (6)), so that the global optimality can be claimed. In our model,
each strong connected component of the subgraph associated with a tour of the
solution represents a subtour, thus the checking can be done by examining the
corresponding subgraphs. This will be detailed in Section 4.1.

3. Efficient cuts

Reduction of the search space is often desired in solving a MIP. This can be
done by either removing irrelevant components from the linear formulation, e.g.
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those that certainly does not belong to any optimal solution, or by favoring some
special structures inside the optimal solutions, e.g. reduction of the symmetry.
The cuts that we added to our basic problem include some dominance prop-
erties as symmetry breaking inequalities, boundaries on profits and number of
served customers, cuts that enforces mandatory customers and cuts that remove
inaccessible customers and arcs. Moreover, some additional cuts are based on
the clique and the independent sets deduced from the incompatibilities between
solution components.

3.1. Symmetry breaking cuts

Tours of the optimal solutions can be sorted according to a specific criterion,
i.e. the amount of collected profits, the number of customers or the tour length.
Based on the experimental report in (Dang et al. 2013a), we focus exclusively
on solutions in which the profits of tours are in ascending order. The following
constraints are added to the model to ensure the symmetric breaking on profits.

∑

i∈V −

yi(r+1)pi −
∑

i∈V −

yirpi ≤ 0, ∀r ∈ F \ {m} (11)

Without these constraints, for each feasible solution having different prof-
its among its tours, there are at least (m! − 1) equivalently feasible solutions.
Adding these constraints will remove these equivalent solutions from the search
space and only retain the one having the profits of its tours in ascending order.
Thus the size of the search space can be largely reduced.

3.2. Irrelevant components cuts

One simple way of reducing the size of the problem is to deal only with
accessible customers and arcs. A customer is considered as inaccessible if by
serving only that customer, the travel cost of the resulting tour exceeds the
cost limit L. In a similar way, we detect an inaccessible arc when the length
of the tour directly connecting the depots to that arc exceeds L. To make a
proper linear formulation, all inaccessible customers and arcs are eliminated at
the beginning from the model by adding the following constraints. Here i is an
inaccessible customer (resp. (i, j) is an inaccessible arc).

∑

r∈F

yir = 0 (12)

∑

r∈F

xijr = 0 (13)

3.3. Boundaries on profits and numbers of customers served

Dang et al. (2013a) proposed in their paper a set of efficient dominance
properties that aims to reduce the search space by bounding the characteristics
of each tour or subset of tours. The idea is to solve within a limited time budget,
instances derived from the original problem to gain useful information for the
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construction of the added cuts. The derived instances are often smaller than
the original one and hopefully easier to solve, or at least to bound.

Before going in the details of these properties, we must clarify some notation.
For each instance X with m vehicles, define XI to be the modified instance for
which the profits of each customer is set to 1 instead. We also use Xg to
denote the modified instance X by reducing the number of available vehicles
to g (g ≤ m). For g = m, we have the original instance X . Note that the
two modifications can be applied at the same time, in this case instance Xg

I is
obtained. Finally, we denote by LB(X) (resp. UB(X)) a lower (resp. an upper)
bound of an arbitrary instance X . The following valid inequalities are added to
the model to restrict the profits that each tour or subset of tours can have.

∑

r∈H

∑

i∈V −

yirpi ≤ UB(X |H|), ∀H ⊂ F (14)

∑

r∈H

∑

i∈V −

yirpi +UB(Xm−|H|) ≥ LB(X), ∀H ⊆ F (15)

Inequalities (14) are trivial since the sum of profits of any |H | tours on the
left-hand side cannot exceed the optimal profit of the instance with exactly |H |
vehicles or at least an upper bound of this instance, i.e. the right-hand side.

Inequalities (15) work in the opposite direction by applying a lower bound to
the profit of each tour and each subset of tours. The inequalities might appear
to be redundant with the objective of optimization. However when applied to
subsets of tours, the constraints will eliminate unbalanced solutions, e.g. the
one with one tour having many customers and the other tours being almost
empty, from the search space.

In the same fashion as (14), the numbers of customers per tour or per subset
of tours are bounded from above using inequalities (16). On the other hand,
it is more difficult to bound these numbers from below since their values do
not necessarily correlate with the objective value of TOP. A modification of the
model (rather than a simple modification of the instance) is performed in order
to determine a lower bound for the number of customers of each tour. This
modification is done as follows. We consider the modified instance, denoted by
X̄1

I , where the objective function is reversed to minimization, i.e. minimizing the
number of served customers, while satisfying both constraints (14) and (15) for
|H | = 1. Solving this instance provides the value of LB(X̄1

I ), which enables us
to lower bound the number of customers of each tour of X . The following valid
inequalities are then added to the model to restrict the number of customers
served in each tour or subset of tours.

∑

r∈H

∑

i∈V −

yir ≤ UB(X
|H|
I ), ∀H ⊂ F (16)

∑

i∈V −

yir ≥ LB(X̄1
I ), ∀r ∈ F (17)
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In implementation, inequalities (14) - (17) are applied similarly to dynamic
programming, as follows. The required values of LB and UB are first computed
for the instance with |H | = 1 , then the obtained values are used in the cuts
to solve the other instances (|H | ≤ m). We recall that inequalities (17) are
limited to a single tour and not subsets of tours. Since the value of UB(Xm−1)
is needed for the model of X̄1

I , LB(X̄
1
I ) can only be computed after solving all

the other subproblems (or derived instances).

3.4. Mandatory customers cuts

Given an instance X of TOP, a high quality LB(X) can often be computed
efficiently with heuristics. Therefore, it could be possible to locate a set of
customers of X , the so-called mandatory ones, for which without one of those
customers a solution with the objective value at least as large as LB(X) cannot
be achieved.

The formal definition is the following. Here we use X \ {i} to designate the
modified instance X with customer i removed.

Definition 1. A customer i of X is mandatory if UB(X \ {i}) < LB(X).

Once identified, mandatory customers have to be all served in an optimal
solution. The following cuts can then be added to enforce the presence of a
mandatory customer i in X .

∑

r∈F

yir = 1 (18)

3.5. Valid inequalities based on incompatibilities

If two given customers are too far away from each other because of the travel
length/cost limitation, then it is unlikely that they can be served by the same
vehicle. This observation leads us to the concept of incompatibility between
customers, from which additional inequalities can be deduced (Manerba and
Mansini 2015, Gendreau et al. 2016). Moreover, the idea can also be generalized
to other pairs of components of the problem, i.e. customer-tour, customer-arc or
arc-arc. In this work, we focus on the two incompatibilities: between customers
and between arcs.

3.5.1. Incompatibility graphs

Given two customers i and j of instanceX , we useX∪{[i ∼ j]} to denote the
modified instance/model where enforcing the two customers i and j to be served
by the same vehicle is imposed as a constraint. Similarly, X ∪{[(u, v) ∼ (w, s)]}
denotes the modified instance/model in which arcs (u, v) and (w, s) are imposed
to be used by the same vehicle. The two graphs of incompatibilities are formally
defined as follows.
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Definition 2. Given an instance X of the TOP modelled by the directed com-
pleted graph G = (V,A), the graph of incompatibilities between customers is
GInc

V −
= (V −, EInc

V−) and between arcs is GInc
A = (A,EInc

A ) where

EInc
V −

= {[i, j] | i, j ∈ V −,UB(X ∪ {[i ∼ j]}) < LB(X)},

EInc
A = {[i, j] | i = (u, v), j = (w, s) ∈ A,UB(X ∪ {[(u, v) ∼ (w, s)]}) < LB(X)}.

In other words, two components are incompatible if they do not appear in
the same tour of any optimal solution of instance X . In general, it is difficult
to fully construct the two graphs of incompatibilities. However, they can be
initialized as follows. Here, MinLength(S) denotes the length of the shortest
path from d to a and containing all vertices (or all arcs) of S ⊆ V − (or ⊆ A).

Proposition 3. Let G = (V,A) be the model graph of instance X, it holds that

{[i, j] | i ∈ V −, j ∈ V −,MinLength({i, j}) > L} ⊆ EInc
V −

, and

{[i, j] | i = (u, v) ∈ A, j = (w, s) ∈ A,MinLength({(u, v), (w, s)}) > L} ⊆ EInc
A .

Of course, once initialized the graphs can be filled with more edges using
Definition 2. The density of the becoming graphs will depend on the computa-
tion of UB and LB. We can use the following linear program, combining with
other cuts we have developed, to compute the required UB.

Proposition 4. Let X be an instance X of TOP and i, j be its two customers,

the linear model of X∪{[i ∼ j]} is obtained by adding to that of X the following

constraints:

∑

r∈F

yir =
∑

r∈F

yjr = 1 (19)

yir = yjr , ∀r ∈ F (20)

Similarly, adding the following constraints to the linear program of X will model

X ∪ {[(u, v) ∼ (w, s)]}.

∑

r∈F

xuvr =
∑

r∈F

xwsr = 1 (21)

xuvr = xwsr, ∀r ∈ F (22)

3.5.2. Clique cuts

A clique in an undirected graph is a subset of vertices that are pairwise
adjacent. Thus, serving a customer (or using an arc) belonging to a clique of
GInc

V −
(or GInc

A ) by a vehicle will exclude all other customers (or arcs) of the
clique from being served by the same vehicle. Therefore, each vehicle can only
serve (or use) at most one element of the clique. Based on this observation, the

9



following cuts hold for GInc
V −

and GInc
A , with K (resp. Q) represents a clique of

GInc
V −

(resp. GInc
A ).

∑

i∈K

yir ≤ 1, ∀r ∈ F (23)

∑

[u,v]∈Q

xuvr ≤ 1, ∀r ∈ F (24)

A clique is maximal if it cannot be extended to a bigger one by adding
more vertices, and a maximal clique is maximum if it has the largest cardinality
over the whole graph. Large and maximal cliques are preferred in inequalities
(23) and (24) since they provide tighter formulations. The difficulty is that the
number of maximal cliques in a general graph is exponential in terms of the
number of vertices and finding the maximum clique is an NP-Hard problem
(Garey and Johnson 1979). However, efficient methods to find those cliques or
subset of them exist in the literature and work very well in our graphs. The
details are discussed in Section 4.

3.5.3. Independent set cuts

As opposed to a clique, an independent set is a set of vertices in a graph
such that no two of which are adjacent. In that case, the vertices are also called
pairwise independent. Maximal and maximum independent sets are defined in
the same way as for cliques, e.g. adding any vertex to a maximal independent set
will invalid the independences between the vertices of the set, and a maximum
independent set is one of the largest sets among the maximal ones.

The independent-set cuts are based on the following idea. Let us consider
GInc

V −
as an example of graph and let S be a subset of V −, we define αS to be

the size of a maximum independent set of GInc
V −

(S), the subgraph vertex-induced
by S. It is clear that no more than αS components of S can be served in the
same tour, e.g.

∑
i∈S yir ≤ αS is a valid cut for any tour r. Furthermore, if we

consider S to be the set of neighbor vertices of a vertex i in G denoted by Ni,
then we can add the cut αiyir +

∑
j∈Nj

yjr ≤ αi (here αi is a short notation

for αNi
). This particular cut embeds the relationship between i and Ni, plus

the information on the maximum independent set of Ni. The same idea can be
generalized to GInc

A , where we denote by Nij the set of neighbor arcs of an arc
(i, j) in GInc

A , and the following inequalities summarize the valid cuts.

αiyir +
∑

j∈Ni

yjr ≤ αi, ∀i ∈ V −, ∀r ∈ F (25)

αijxijr +
∑

(u,v)∈Nij

xuvr ≤ αij , ∀(i, j) ∈ A, ∀r ∈ F (26)

Finding a maximum clique is NP-Hard and so is to find a maximum inde-
pendent set (Garey and Johnson 1979). However, the above inequalities also
hold for α being an upper bound of the size of a maximum independent set.
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The following principle allows us to approximate such an upper bound. Recall
that a partition of vertices of a graph into disjoint independent sets is a coloring
of the graph, e.g. each independent set is assigned to a color. It is well-known
that the number of colors used in any such coloring is an upper bound of the
size of a maximum clique of the graph. From the perspective of the complemen-
tary graph, any partition of the vertices into disjoint cliques provides an upper
bound on the size of a maximum independent set. Again, efficient algorithm to
find large cliques can be used to make such a partition and then to compute the
upper bound of αi. This procedure is detailed in the next section.

4. Cutting-plane and global scheme

In this section, our global Cutting-Plane Algorithm (CPA) is first described
to show the different operations performed to reach the best solution. Some
supplementary information is required for its execution, particularly for the con-
struction of the efficient cuts. These computations are detailed in the Constraint-
Enhancement algorithm (CEA).

4.1. Cutting-Plane algorithm

Our global algorithm is a cutting-plane one. However, we also use it to
solve intermediate models with fewer numbers of vehicles (and sometimes with
modified constraints/objectives). In our implementation, we only focus on the
elimination of subtours and on the refinement of the search space using the
developed cuts, while the other aspects of the resolution, e.g. the branch-and-
cut in solving the integer program, are left for the MIP solver. This is similar to
the approach of (Pferschy and Staněk 2013) which was developed in the context
of TSP. The steps of our CPA are as follows.

At first, the basic model is built using constraints (2)-(5) and (7) with the
objective function (1) and some initial cuts. Indeed, some pre-computations are
performed beforehand to gain useful information for the initial cuts. Only a
small time budget is allowed for these pre-computations, however this can lead
to a significant strengthening of the model later on.

During the pre-computation phase, the irrelevant components of X , i.e. in-
accessible customers and arcs, are first detected and removed from the model.
Then the graphs of incompatibilities between customers and arcs are initialized,
and some early cliques and independent sets are extracted from them using the
metaheuristic described in Dang and Moukrim (2012). Based on these sets,
the associated clique and independent set cuts are formulated and added to the
model. Finally the symmetry breaking cuts are added and the solving procedure
begins. A feasible solution is generated using a heuristic of Dang et al. (2013b)
and provided to the MIP solver as a starting solution.

Before going in the main loop of the solving process, the MIP solver is setup
with some branching rules. In TOP, the objective function aims to maximize
the collected profits from the visited customers, therefore, selecting the correct
customers from the beginning appears to be crucial. Thus, our branching rules
prioritize yir first then xijr (Boussier et al. 2007, Poggi de Aragão et al. 2010).
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Algorithm 1: Cutting-Plane algorithm (CPA).

Input: Instance X , cuts D(X), timer TM, indicator ORG
Output: Bound UB(X), solution SOL(X), indicator Opt(X)
begin

Step← 1;
Opt(X)← false;
MIPS← create new MIP Solver;
UB(X)← sum of profits of all customers of X ;
SOL(X)← a feasible solution of X (see Dang et al. 2013b);
LB(X)← P(SOL(X));
MIPS.model(X , D(X)) (see Sections 2 and 4.2);
MIPS.initialize(SOL(X));
repeat
{UB, SOL,Opt} ← MIPS.solve(TM);
if (UB < UB(X)) then UB(X)← UB;
if (Opt =true) then

if (P(SOL) < UB(X)) then UB(X)← P(SOL);
{Tr}r∈F ← extract subtours from SOL;
{Sr}r∈F ← extract tours from SOL;
if (P(

⋃
r∈F Sr) > LB(X)) then

SOL(X)← {Sr}r∈F ;
LB(X)← P(SOL(X));

if (|
⋃

r∈F Tr| = 0) or (LB(X) = UB(X)) then
Opt(X) ← true;

else
MIPS.add(GSEC({Tr}r∈F )) (see Section 2);
(add clique cuts, see Section 3.5.2)
MIPS.add(FindCliques(GInc

V −
[
⋃

r∈F (Tr ∪ Sr)])) ;

MIPS.add(FindCliques(GInc
A [

⋃
r∈F (Tr ∪ Sr)]));

if (ORG =true) then
D(X)← CEA(X , LB(X), Step);
MIPS.add(D(X));
Step← Step + 1;

until (Opt(X) =true) or (TM.expired());

Algorithm 1 summarizes the remaining steps of our CPA. In each iteration
of the main loop, the MIP solver is called to solve the linear model and an
integer solution is obtained. Tarjan’s algorithm (Tarjan 1972) is then applied
on this solution to check if it contains any subtour. Recall that a directed graph
is strongly connected if for any given pair of vertices there exist paths linking
them in both directions. A strong connected component of a directed graph is a
subset of its vertices such that the induced subgraph is strongly connected and
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that the subset cannot be extended by adding more vertices. Since in our formu-
lation, the graph is directed and the depots are separated vertices, the vertices
of a subtour can only belong to a strong connected component of the subgraph.
That is to say the total absence of those components for each subgraph, which
can be polynomially detected (Tarjan 1972), implies the global optimality and
the CPA is terminated by returning the solution. Otherwise, the solution is
suboptimal. The associated constraints (8), (9) and (10), deduced from the sub-
optimal solution, are then added to the linear model to eliminate the subtours.
Furthermore, the subgraphs of GInc

V −
and GInc

A , which are associated to the ver-
tices and arcs of the suboptimal solution, are extracted. Some maximal cliques
are then generated from those subgraphs, and the corresponding constraints
(23) and (24) are added to the linear model. Next, if we are solving the original
problem (indicated by the boolean ORG), the CEA is called to generate a set
of efficient constraints for the model. This algorithm is described in Section 4.2.
Once all the cuts are added to the model, the CPA goes to the next iteration
where the same solving process is repeated (with the modified model). On the
event that the predefined time limit (indicated by the timer TM) is run out, the
algorithm is terminated and the best bound computed so far is returned for the
instance/model.

Algorithm 1 takes as inputs an instanceX , a set of cuts D(X), and a boolean
indicator ORG. It also requires a mixed integer programming solver and a timer
to operate. The algorithm returns an upper bound UB(X), a feasible solution
SOL(X) and a boolean indicator Opt(X) telling the optimality of SOL(X)
before the expiration of the timer. For the purpose of simplification, tours of
the initially generated solutions are supposed to be sorted to match inequalities
(11). We also assume that the mixed integer programming solver can be adapted
to support the following operations: model to construct the linear integer model
based on X and D(X) and according to our specification, including branching
rules; initialize to provide a feasible starting solution to the solver; add to
complete the model with efficient cuts; and finally solve to try to solve the model
until the expiration of a timer. The output of solve is similar to Algorithm 1: a
scalar reporting an upper bound, a feasible solution (which can be empty) and
a boolean reporting the optimality.

4.2. Generation of efficient cuts

To solve an original instance of TOP, our CPA needs strong constrained
models in its earlier iterations. For this purpose, CEA is called and the counter
Step of the main algorithm is passed to it as a parameter. For each value of
Step less than m+ 1, only one type of cuts is computed and the produced cuts
are added to the model. The details of the procedure are given in Algorithm 2.
Note that with the efficient constraints along the way, some easy instances can
be solved in less than m+ 1 iterations.

The first type of cuts to be generated is the one corresponding to the bound-
aries on profits and numbers of customers for each subset of tours. For each
subproblem with the number of vehicles being reduced to Step (Step ≤ m− 1),
upper bounds for the feasible profit and the feasible number of customers are
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Algorithm 2: Constraint-Enhancement algorithm (CEA).

Input: Instance X , bound LB(X), integer Step
Output: Cuts D(X)
begin

if Step ≤ m− 1 then
(solve intermediate models, see Section 3.3)
{UB, SOL,Opt} ← CPA(XStep, D(X), TM1, false);
D(X) ← update from {UB, SOL,Opt};

{UB, SOL,Opt} ← CPA(XStep
I , D(X)), TM1, false);

D(X) ← update from {UB, SOL,Opt};
if (Step = m− 1) then

MIPS← create new MIP Solver;
MIPS.model(X̄1

I , D(X));
{UB, SOL,Opt} ← MIPS.solve(TM1);
D(X) ← update from {UB, SOL,Opt};

if Step = m then
(identify mandatory customers, see Section 3.4)
M ← ∅;
foreach i ∈ V − do
{UB, SOL,Opt} ← CPA(X \ {i}, D(X), TM1, false);
if UB < LB(X) then

M ←M ∪ {i};

D(X) ← update with M as mandatory customers;

if Step = m+ 1 then
(enhance incompatibilities, see Section 3.5.1)
foreach (i, j) ∈ A do
{UB, SOL,Opt} ← CPA(X ∪ {i ∼ j}, D(X)), TM1, false);
if UB < LB(X) then

update GInc
V −

;

for (u, v) ∈ A do
{UB, SOL,Opt} ← CPA(X ∪ {[(i, j) ∼ (u, v)]}, D(X)),
TM1, false);
if UB < LB(X) then

update GInc
A ;

(identify clique/independant-set cuts, see Section 3.5.2, 3.5.3)
D(X) ← update from FindCliques(GInc

V −
), FindCliques(GInc

A );

computed using the same CPA as described in the previous section (except that
ORG is set to false). The corresponding constraints are then generated and
added to D(X), the storage of all additional information and cuts. In the case
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of Step equal to m−1, before returning to the main algorithm, a lower bound on
the feasible number of customers for a single vehicle is calculated. This calcula-
tion makes use of the information accumulated in D(X) and expands it further
with the obtained lower bound.

When the main algorithm reaches iteration m, efficient constraints of the
second type is constructed, and mandatory customers are located to strengthen
the model. These customers are identified based on Definition 1: the required
LB is computed using a constructive heuristic from (Dang et al. 2013b) while the
required UB is computed with our CPA, but now formulated for the instances
X \ {i}. Once a mandatory customer is located, it is immediately added to
D(X) so that the information can be used in the subsequent iterations.

Being constructed at iteration m + 1 of the main algorithm, clique and
independent-set cuts are the third type of cuts. First, graphs GInc

V −
and GInc

A

are initialized with Property 3. Since the verification of MinLength(·) in this
case maximally involves 4 customers, a complete enumeration is inexpensive
and manageable. In addition, these initial graphs can be computed beforehand
and stored for each instance. The graphs are then made more dense using their
definition: lower bounds LB(X) are due to the results of (Dang et al. 2013b),
and UB(X ∪ {[i ∼ j]}) and UB(X ∪ {[(i, j) ∼ (u, v)]}) are computed with the
CPA, while adding constraints (19)-(22) to construct the desired models. Next,
the clique cuts and independent set cuts are generated from GInc

V −
and GInc

A and
used as general constraints. For each vertex in the associate incompatibility
graph, we determine a large maximal clique containing the vertex using the
metaheuristic from (Dang and Moukrim 2012). On the other hand, using the
very same heuristic algorithm, a partition of each Ni (resp. Nij) into disjoint
cliques can be constructed. For example, first find a large clique, then remove
its vertices from the graph and continue finding cliques on the remaining graph.
Thus, upper bounds for αi (resp. αij) are computed.

We note that to generate the three types of efficient cuts, the CPA is called
with a time limit configured by timer TM1.

5. Numerical results

Our algorithm is coded in C++. Experiments were conducted on an AMD
Opteron 2.60 GHz and CPLEX 12.5 was used as MIP solver. We used the same
two-hours limit of solving time as in Boussier et al. (2007), Poggi de Aragão et al.
(2010), of which at most a one-hour limit is given to generate all the efficient
cuts. This one hour limit is divided between solving the smaller problems,
locating the mandatory customers and extending the incompatibility graphs.
We first evaluated the usefulness of the proposed components by activating
each type of the efficient cuts without the other types, then by activating all of
them together.

5.1. Benchmark instances

We evaluated our approach on a set of TOP instances proposed by Chao
et al. (1996). This benchmark comprises 387 instances and is divided into 7
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data sets. In each data set, the positions and the profits of the customers are
identical for all instances. However, the number of vehicles varies from 2 to
4 and the travel length limit L is also different between instances. The latter
causes a variation of the number of accessible customers (denoted by n′) even
when the number of vehicles is fixed. Each instance is named according to the
data set to which it belongs, the number of available vehicles and a letter that
designates the travel length L. However, note that an identical letter inside a
data set does not necessarily imply the same value of L when the number of
vehicles changes. The characteristics of each data set are reported in Table 1.

Table 1: Instances of Chao et al. (1996).

Set 1 2 3 4 5 6 7

#Inst. 54 33 60 60 78 42 60
n 30 19 31 98 64 62 100
n′ 0-30 1-18 2-31 0-98 0-64 0-62 0-100
m 2-4 2-4 2-4 2-4 2-4 2-4 2-4
L 3.8-22.5 1.2-42.5 3.8-55 3.8-40 1.2-65 5-200 12.5-120

5.2. Component evaluation

We present in Table 2 the results obtained with the basic model, then those
obtained while separately applying the GSECs, the dominance properties (see
Section 3) and the valid inequalities (see Section 3.5). The last main column
shows the results of the global algorithm by activating all of the components to-
gether. In this table, columns #Opt, CPUavg and Gap respectively represent,
for each set, the number of instances being solved to optimality, the average
computational time in seconds on the subset of common instances being solved
by all the configurations and the average percentage gap. Note that the per-
centage gap of an instance is calculated as follows: Gap = 100× UB−LB

UB , where
UB and LB are the upper and lower bounds computed for the instance.

Compared to the results obtained in the basic model, all the proposed com-
ponents independently and positively affect the outcomes of the algorithm. As
shown in Table 2, GSECs largely help increase the numbers of instances being
solved except for some instances from the large sets, where a significant number
of GSECs should be added to start having some progress in the resolution. The
valid inequalities, which include the clique and the independent-set cuts, mainly
contribute to the reduction of the computational times and the average gaps.
The dominance properties, which comprise the symmetry breaking, mandatory
customers, irrelevant component and boundaries on profits and number of cus-
tomers, have an effect similar to that of the valid inequalities, specially on the
numbers of instances being solved to the optimality and the average gaps. The
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Table 2: Impact of the proposed cuts.

Set
Basic model GSECs Dominance properties Valid inequalities All cuts

#Opt CPUavg Gap #Opt CPUavg Gap #Opt CPUavg Gap #Opt CPUavg Gap #Opt CPUavg Gap

1 35/54 496.5 5.04 53/54 13.2 0.54 54/54 5.3 0 54/54 2.9 0 54/54 1.7 0
2 33/33 5.5 0 33/33 1.8 0 33/33 0.6 0 33/33 0.1 0 33/33 0.03 0
3 42/60 599.9 3.41 55/60 150.9 0.25 58/60 26.9 0.5 60/60 10.3 0 60/60 6.24 0
4 23/60 323.5 3.19 17/60 390.5 4.28 22/60 200.4 2.05 23/60 81 2.31 30/60 66.6 0.01
5 23/78 318 12.9 24/78 40.2 21.11 37/78 5.4 6.35 36/78 2.6 6.65 54/78 0.95 0.01
6 33/42 48.7 0.4 33/42 63.8 3.53 41/42 4.5 0.11 39/42 3.8 0.76 42/42 1.9 0
7 14/60 46.3 12.88 18/60 3.5 13.08 22/60 2.1 7.24 24/60 1.3 5.75 27/60 0.28 0.03

Total 204/387 294.2 7.0 233/387 80.4 7.4 267/387 26.7 2.8 269/387 11.24 2.6 300/387 8.21 0.01
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relatively large computational times obtained while applying the dominance
properties are due to the amounts of time spent on solving subproblems.

On the other hand, we notice from the last column of Table 2 that apply-
ing all the proposed components together remarkably improves the number of
instances being solved, reaching 300 of the 387 instances. This also implies a
reduction of the average gaps between the upper and the lower bounds. In ad-
dition, the average computational time of the global algorithm decreased from
294.2s with the basic model to 8.21s with all the enhanced components applied.

5.3. Comparison with other exact methods in the literature

We first compare our proposed method with the other exact methods in the
literature on a per-instance basis. Since Poggi de Aragão et al. (2010) did not
report the detailed results of their algorithm, we restricted our comparison to
the results of the B-P algorithm of Boussier et al. (2007), the B-C algorithm of
Dang et al. (2013a) and the B-P-2R and the B-C-P algorithms of Keshtkarana
et al. (2016). The computational experiments of B-P were carried out on a
Pentium IV, 3.2 GHz while those of B-C on an AMD Opteron, 2.60 GHz and
those of B-P-2R and B-C-P on a single core of an Intel Core i7 3.6 GHz.

Table 3 reports the results of the instances which are solved by at least by one
of the five methods (but not by all of them). In this table, columns Instance, n,
m, and L respectively show the name of the instance, the number of accessible
customers, the number of vehicles and the travel cost limit. Columns UB, LB,
and CPU report respectively the upper bound, lower bound and computational
time in seconds for each method and for each instance when available. For
B-P (see Boussier et al. 2007), the reported CPU is the time spent on solving
both the master problem and the subproblems until the optimality is proven.
For B-C (see Dang et al. 2013a), the CPU time includes the computational
times for both, the presolving and solving phases. For B-P-2R and B-C-P
(see Keshtkarana et al. 2016), the CPU time is reported for the whole solving
process. In our method, we consider the CPU time as the time spent in the
global algorithm with the required computational time to generate the efficient
cuts. For some instances, dashes “−” are used in UB and LB columns when the
corresponding values were not found and tildes “∼” are used in CPU column
to show that the optimalities were not proven within 7200s of the time limit.
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Table 3: Comparison between our results and the literature on the standard benchmark.

Instance n m L
B-P B-C B-P-2R B-C-P Our algorithm

UB LB CPU UB LB CPU UB LB CPU UB LB CPU UB LB CPU

p1.2.p 30 2 37.5 250 2926 ∼ 250 250 27 250 250 15 250 250 16 250 250 7
p1.2.q 30 2 40 − − ∼ 265 265 139 265 265 78 265 265 80 265 265 5
p1.2.r 30 2 42.5 − − ∼ 280 280 33 280 280 555 280 280 566 280 280 4
p3.2.l 31 2 35 605 − 4737 590 590 53 605 590 59 591 − 2783 590 590 28
p3.2.m 31 2 37.5 − − ∼ 620 620 58 630.769 620 192 623.953 − 7121 620 620 33
p3.2.n 31 2 40 − − ∼ 660 660 48 662.453 660 1751 660 660 4345 660 660 28
p3.2.o 31 2 42.5 − − ∼ 690 690 46 699.444 690 811 699.444 − 73 690 690 19
p3.2.p 31 2 45 − − ∼ 720 720 74 730 720 3881 730 − 282 720 720 24
p3.2.q 31 2 47.5 − − ∼ 760 760 20 763.2 760 1497 763.2 − 1779 760 760 12
p3.2.r 31 2 50 − − ∼ 790 790 15 790 790 1253 790 790 1660 790 790 8
p3.2.s 31 2 52.5 − − ∼ 800 800 7 800 800 60 800 800 234 800 800 0
p3.3.s 31 3 35 738.913 416 ∼ 720 720 384 738.913 720 5136 729.36 − 5004 720 720 90
p3.3.t 31 3 36.7 763.688 4181 ∼ 760 760 257 763.688 760 157 760.693 − 2933 760 760 42
p4.2.f 98 2 50 − − ∼ − − ∼ − − ∼ − − ∼ 687 687 6550
p4.2.h 98 2 60 − − ∼ 835 835 2784 − − ∼ − − ∼ 835 835 3125
p4.2.i 98 2 65 − − ∼ 918 918 5551 − − ∼ − − ∼ 918 918 1064
p4.2.j 98 2 70 − − ∼ 969 965 ∼ − − ∼ − − ∼ 965 965 2777
p4.2.k 98 2 75 − − ∼ 1027 1022 ∼ − − ∼ − − ∼ 1022 1022 2751
p4.2.l 98 2 80 − − ∼ 1080 1074 ∼ − − ∼ − − ∼ 1074 1074 7172
p4.2.m 98 2 85 − − ∼ 1137 1132 ∼ − − ∼ − − ∼ 1132 1132 4610
p4.2.r 98 2 110 − − ∼ 1293 1292 ∼ − − ∼ − − ∼ 1292 1292 5016
p4.2.t 98 2 120 − − ∼ 1306 1306 5978 − − ∼ − − ∼ 1306 1306 0
p4.3.g 81 3 36.7 653 653 52 665 653 ∼ 656.375 653 110 653 653 306 653 653 6587
p4.3.h 90 3 40 729 729 801 761 729 ∼ 735.375 599 ∼ 730.704 − 3858 736 729 ∼

p4.3.i 94 3 43.3 809 809 4920 830 809 ∼ 813.625 766 ∼ 809 809 2989 815 809 ∼

continued on next page
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Table 3 – continued from previous page

Instance n m L
B-P B-C B-P-2R B-C-P Our algorithm

UB LB CPU UB LB CPU UB LB CPU UB LB CPU UB LB CPU

p4.4.i 68 4 32.5 657 657 23 660 657 ∼ 665.4 657 74 657 657 83 657 657 935
p4.4.j 76 4 35 732 732 141 784 732 ∼ 741.472 732 5138 732 732 589 755 732 ∼

p4.4.k 83 4 37.5 821 821 558 860 821 ∼ 831.945 816 ∼ 821.803 − 4007 858 821 ∼

p5.2.l 64 2 30 − − ∼ 800 800 399 800 800 3 800 800 4 800 800 71
p5.2.m 64 2 32.5 − − ∼ 860 860 3865 860 860 32 860 860 38 860 860 90
p5.2.n 64 2 35 − − ∼ 930 925 ∼ 930 925 89 925 925 1393 925 925 2373
p5.2.o 64 2 37.5 − − ∼ 1030 1020 ∼ 1030 1020 271 1020 1020 2233 1025 1020 ∼

p5.2.p 64 2 40 − − ∼ 1150 1150 3955 1150 1150 657 1150 1150 727 1150 1150 77
p5.2.q 64 2 42.5 − − ∼ 1680 1195 ∼ − − ∼ − − ∼ 1195 1195 6597
p5.2.r 64 2 45 − − ∼ 1680 1260 ∼ 1260 1260 123 1260 1260 133 1300 1269 ∼

p5.2.s 64 2 47.5 − − ∼ 1365 1340 ∼ 1340 1340 1072 1340 1340 845 1340 1340 3048
p5.2.t 64 2 50 − − ∼ 1400 1400 5136 1400 − 1297 1400 1400 4559 1400 1400 418
p5.2.u 64 2 52.5 − − ∼ 1510 1460 ∼ 1460 1460 3488 1460 1460 4561 1460 1460 3263
p5.2.v 64 2 55 − − ∼ 1530 1520 ∼ 1510 − 4462 1510 − 4948.16 1505 1505 3497
p5.2.w 64 2 57.5 − − ∼ 1680 1565 ∼ − − ∼ − − ∼ 1565 1565 5875
p5.2.x 64 2 60 − − ∼ 1610 1610 1048 − − ∼ − − ∼ 1610 1610 128
p5.2.y 64 2 62.5 − − ∼ 1655 1645 ∼ − − ∼ − − ∼ 1645 1645 457
p5.2.z 64 2 65 − − ∼ 1680 1680 1604 − − ∼ − − ∼ 1680 1680 0
p5.3.l 64 3 20 595 595 33 615 595 ∼ 605 595 31 600 595 35 615 595 ∼

p5.3.m 64 3 21.7 650 650 2 660 650 ∼ 650 650 1 650 650 1 660 650 ∼

p5.3.n 64 3 23.3 755 755 42 765 755 ∼ 755 755 3 755 755 3 765 755 ∼

p5.3.q 64 3 28.3 − − ∼ 1260 1070 ∼ 1090 1070 521 1076.25 − 4694 1110 1070 ∼

p5.3.t 64 3 33.3 − − ∼ 1320 1260 ∼ 1270 1260 5152 1270 − 16 1320 1260 ∼

p5.3.u 64 3 35 − − ∼ 1395 1345 ∼ 1350 − 123 1350 − 149 1395 1345 ∼

p5.4.l 44 4 15 430 430 1 445 430 ∼ 430 430 0 430 430 0 430 430 2077
p5.4.m 52 4 16.2 555 555 0 560 555 ∼ 555 555 0 555 555 0 555 555 1357

continued on next page
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Table 3 – continued from previous page

Instance n m L
B-P B-C B-P-2R B-C-P Our algorithm

UB LB CPU UB LB CPU UB LB CPU UB LB CPU UB LB CPU

p5.4.n 60 4 17.5 620 620 0 640 620 ∼ 620 620 0 620 620 0 620 620 7048
p5.4.o 60 4 18.8 690 690 1 720 690 ∼ 690 690 0 690 690 0 720 690 ∼

p5.4.p 64 4 20 765 765 729 820 765 ∼ 790 765 1238 775.714 765 1372 820 765 ∼

p5.4.q 64 4 21.2 860 860 1 880 860 ∼ 860 860 2 860 860 2 880 860 ∼

p5.4.v 64 4 27.5 1320 1320 446 1340 1320 ∼ 1320 1320 12 1320 1320 12 1340 1320 ∼

p5.4.y 64 4 31.2 − − ∼ 1620 1520 ∼ 1520 1455 ∼ 1520 1520 46 1620 1520 ∼

p5.4.z 64 4 32.5 − − ∼ 1680 1620 ∼ 1620 1620 550 1620 1620 562 1680 1620 ∼

p6.2.j 62 2 30 − − ∼ 948 948 2393 948 948 139 948 948 149 948 948 1338
p6.2.k 62 2 32.5 − − ∼ 1032 1032 4016 1032 1032 223 1032 1032 244 1032 1032 699
p6.2.l 62 2 35 − − ∼ 1116 1116 3828 1116 1116 5699 1116 1116 6471 1116 1116 39
p6.2.m 62 2 37.5 − − ∼ 1188 1188 1442 − − ∼ − − ∼ 1188 1188 680
p6.2.n 62 2 40 − − ∼ 1260 1260 1473 − − ∼ − − ∼ 1260 1260 1
p6.3.m 62 3 25 1104 − 33 1080 1080 1175 1104 − 20 1094.1 − 6407 1080 1080 432
p7.2.g 87 2 70 − − ∼ 459 459 1226 459 459 44 459 459 58 459 459 589
p7.2.h 92 2 80 − − ∼ 523 521 ∼ 521 521 5101 521 521 6327 521 521 1977
p7.2.i 98 2 90 − − ∼ 585 580 ∼ − − ∼ − − ∼ 580 580 6271
p7.2.t 100 2 200 − − ∼ 1181 1179 ∼ − − ∼ − − ∼ 1179 1179 6934
p7.3.h 59 3 53.3 425 425 8 436 425 ∼ 429 425 3 425 425 13 425 425 4461
p7.3.i 70 3 60 487 487 3407 535 487 ∼ 496.976 487 436 488.5 487 3357 509 487 ∼

p7.3.j 80 3 66.7 570.5 2654 ∼ 611 564 ∼ 570.5 564 4207 564 564 4289 573 564 ∼

p7.3.k 91 3 73.3 − − ∼ 688 633 ∼ 633.182 633 1173 633 633 2751 655 633 ∼

p7.3.m 96 3 86.7 − − ∼ 1374 762 ∼ 762 762 928 762 762 1202 817 762 ∼

p7.3.n 99 3 93.3 − − ∼ 900 820 ∼ 820 820 2300 820 820 3034 889 820 ∼

p7.4.j 51 4 50 462 462 1 481 462 ∼ 462 462 2 462 462 2 465 462 ∼

p7.4.k 61 4 55 520 520 73 586 520 ∼ 524.607 520 96 520 520 91 541 520 ∼

p7.4.l 70 4 60 590 590 778 667 590 ∼ 593.625 590 576 590 590 173 632 590 ∼

continued on next page
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Table 3 – continued from previous page

Instance n m L
B-P B-C B-P-2R B-C-P Our algorithm

UB LB CPU UB LB CPU UB LB CPU UB LB CPU UB LB CPU

p7.4.n 87 4 70 − − ∼ 809 730 ∼ 730 730 85 730 730 95 803 730 ∼

p7.4.o 91 4 75 − − ∼ 909 781 ∼ 786.762 781 4434 784.676 − 6492 903 781 ∼
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Next, we compare the performance of all the exact methods on a per-data-
set basis. Table 4 summarizes the numbers of instances being solved by each
method. We did not report the CPU time in this table because of some missing
informations from the other methods.

Table 4: Comparison between the numbers of instances being solved by the exact
methods in the literature.

Set B-P B-C B-P-2R B-C-P Our algorithm

1 51/54 54/54 54/54 54/54 54/54
2 33/33 33/33 33/33 33/33 33/33
3 50/60 60/60 60/60 51/60 60/60
4 25/60 22/60 20/60 22/60 30/60
5 48/78 44/78 60/78 59/78 54/78
6 36/42 42/42 36/42 38/42 42/42
7 27/60 23/60 38/60 34/60 27/60

Total 270/387 278/387 301/387 291/387 300/387

A first remark from these results is that instances with large values of L
and m are generally more difficult to solve than those with smaller values. This
can be clearly observed with our method on the data sets 4, 5 and 7. On the
other hand, none of the exact methods had a difficulty to solve the instances of
the sets 1, 2, and 3, because these instances have a small numbers of accessible
customers. The random distribution of customers around the depots could also
make the optimal solutions easier to locate. Only a minor exception was noticed
for B-P and B-C-P on some instances of the set 3.

The random distribution of customers is also the case for the sets 4 and 7,
however their numbers of accessible customers are larger than those of the first
three sets, e.g. they can reach 100. These large numbers cause a difficulty for
all the exact methods to solve the corresponding instances. Particularly, the
number of solved instances did not exceed 58 out of the 120 instances by any of
the five methods.

Finally, the instances of the sets 5 and 6 contain a special geometric struc-
ture. These instances have no more than 64 accessible customers, which are
arranged on a grid in a way that those with large profits are far away from the
depots. It appears that these instances are difficult to solve. This is especially
the case with B-P and B-C algorithms. The B-P-2R and the B-C-P algorithms of
Keshtkarana et al. (2016) only had problems with the set 6, while they obtained
the best results for the set 5. However, our cutting-plane algorithm obtained
quite good results for these two sets. It was able to solve all the instances of the
set 6 and most of the instances in the set 5. We had only few difficulties with
the set 5, and more precisely on some instances with 4 available vehicles. A
closer look into the execution of the algorithm on those few instances revealed
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to us that the CPA only made progress in improving the incumbent solution or
finding equivalent ones, while it was not much reducing the upper bound.

To summarize, our algorithm was able to prove the optimality of all the
instances of the sets 1, 2, 3, and 6 and a large number of instances from the
other three sets. Although the instances of the set 4 are the hardest ones to
solve, our CPA was able to prove the optimality of 30 out of the 60 instances,
while none of the existing algorithms was able to reach that number for this
set. In total, the proposed approach is capable of solving 300 out of the 387
instances.

Table 5: Comparison between each two exact methods apart.

B-P B-C B-P-2R B-C-P CPA

B-P − 21 8 6 15
B-C 29 − 13 19 0
B-P-2R 39 36 − 16 26
B-C-P 27 32 6 − 22
CPA 45 22 25 31 −

For further comparison between the exact methods in the literature, we
present in table 5 a comparison between each two methods apart, by giving the
number of instances being solved by one of the two methods and not by the
other one. Each cell of this table reports the number of instances being solved
by the method present in its row but not by the method in the column. From
the results shown in this table, we can see that the number of instances being
distinctively solved by our method is 45 compared to the B-P algorithm, 22
compared to the B-C algorithm, and respectively 25 and 31 compared to the
B-P-2R and the B-C-P algorithms.

Moreover, we can notice from Table 3 that our CPA was able to improve the
upper bounds of respectively 32 and 27 instances more than the two algorithms
of Keshtkarana et al. (2016). Overall, our approach is clearly efficient and
competitive with the existing methods in the literature. We were able to prove
the optimality of 12 instances that have been unsolved in the literature. These
instances are marked in bold in Table 3.

Conclusion and future work

The Team Orienteering Problem is one of the well known variants of the
Vehicle Routing Problem with Profits. In this article, we presented a new ex-
act algorithm to solve this problem based on a cutting-plane approach. Several
types of cuts are proposed in order to strengthen the classical linear formulation.
The corresponding cuts are generated and added to the model during the solv-
ing process. They include symmetry breaking, generalized subtour eliminations,
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boundaries on profits/numbers of customers, forcing mandatory customers, re-
moving irrelevant components and clique and independent-set cuts based on
graph of incompatibilities between variables. The experiments conducted on
the standard benchmark of TOP confirm the effectiveness of our approach. Our
algorithm is able to solve a large number and a large variety of instances, some
of those instances have been unsolved in the literature.

Interestingly, the branch-and-price algorithm of Boussier et al. (2007) and
our Cutting Plane algorithm has complementary performance to each other.
This gives us a hint that further development of a Branch-and-Cut-and-Price
type of algorithm which incorporates our presented ideas is a promising direction
towards improving the solving method for TOP. We also plan to adapt the
presented approach to meet new challenges. Those could include variants of
TOP on arcs, such as the Team Orienteering Arc Routing Problem (TOARP)
which was addressed in (Archetti et al. 2013). On the other hand, by taking
into consideration the time scheduling of the visits, the CPA can be extended to
solve other variants of TOP and VRP, such as the Team Orienteering Problem
with Time Windows and/or Synchronization Constraints (e.g., Labadie et al.
2012, Souffriau et al. 2013, Guibadj and Moukrim 2013, Afifi et al. 2016).
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