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Abstract

We propose and study a new approach for the analysis of families of protein sequences. This
method is related to the LogDet distances used in phylogenetic reconstructions; it can be viewed as
an attempt to embed these distances into a multi-dimensional framework.

The proposed method starts by associating a Markov matrix to each pairwise alignments deduced
from a given multiple alignment. The central objects under consideration here are matrix-valued
logarithms L of these Markov matrices, which exist under conditions that are compatible with fairly
large divergence between the sequences. These logarithms allow us to compare data from a family of
aligned proteins with simple models (in particular, continuous reversible Markov models) and to test
the adequacy of such models. If one neglects fluctuations arising from the finite length of sequences,
any continuous reversible Markov model with a single rate matrix Q over an arbitrary tree predicts
that all the observed matrices L are multiples of Q. Our method exploits this remark, without relying
on any tree estimation.

We test this prediction on a family of proteins encoded by the mitochondrial genome of 26 mul-
ticellular animals, which include vertebrates, arthropods, echinoderms, molluscs and nematodes. A
principal component analysis of the observed matrices L shows that a single rate model can be
used as a rough approximation to the data, but that systematic deviations from any such model are
unmistakable, and related to the evolutionary history of the species under consideration.



1 Introduction

We develop in this paper a new approach for analyzing large families of protein sequences. The proposed
method is based upon the comparison of the Markov matrices associated with the pairwise alignments
of the sequences under consideration, and allows us to analyze their compatibility with standard Markov
models.

The use of Markov chain models (which was at least implicit in the early work of Dayhoff and collabora-
tors (Dayhoff et al., 1972; Dayhoff et al., 1983)), was advocated by many authors in the context of the
construction of phylogenetic trees from DNA sequences. Among them, let us quote (Felsenstein, 1981)
and (Tavaré, 1986), and refer to the chapter 11 of (Hillis et al., 1996) for a systematic account of most
significant contributions. Let us also mention (Miiller and Vingron, 2000) for a different approach, which
bears similarities with the techniques presented in this paper.

The aim of this approach is to provide a probabilistic evolution model describing a family of aligned
sequences (a multiple alignment). All sites of the sequences are treated as independent identically dis-
tributed random variables (see for example (Steel, 1995) and (Tavaré, 1986) for a discussion of the
consequences of such assumptions). In its most general form, Felsenstein’s model is based on two ingredi-
ents: a (rooted) tree, whose leaves are the considered sequences, and a family of stochastic matrices (see
below for a definition) associated with the branches of the tree. Along each branch of the tree, a sequence
is supposed to undergo an evolution governed by a Markov chain. At each node, a sequence gives rise to
two different sequences, each one continuing with its own Markov chain evolution.

These ingredients (the parameters of the model) are sufficient to compute the probabilities of all possible
multiple alignments. The practical problem is the estimation: infer the values of the parameters from
data at hand. Felsenstein’s method is a standard maximum likelihood approach: the likelihood function
(i.e. the probability of the multiple alignment under consideration), which depends upon the parameters
of the model, is maximized. The parameters which realize the maximum of the likelihood function are
the maximum likelihood estimators, and may be used for further studies. In the case of a Markov chain
on a tree, the parameters are the stochastic matrices and the topology of the tree.

The maximization, which is to be performed numerically, turns out to become a difficult problem for
large families of sequences, and some simplifications are often made (see however (Barry and Hartigan,
1987) for a general discussion of “parameter rich” models). In addition, the comparison of likelihoods for
different tree topologies may be difficult (see the discussion in (Adachi and Hasegawa, 1992)).

The most common simplification amounts to assume that all the stochastic matrices associated to the
branches of the tree are powers P7 of a single stochastic matrix P, associated to some “universal” Markov
chain. With such a simplification, the complexity of the model and of the estimation problem is reduced
considerably: for a given tree topology, the remaining parameters are now the matrix P (a 20 x 20 matrix
in the case of proteins) and the exponents 7 of all the branches, interpreted as time parameters (the
“ages” of the branches). However, even with such simplifications, the estimation problem is still difficult
to solve for large families (say, for families of more than 20 sequences).

A further simplification consists in assuming that the Markov chain is “reversible”, which again reduces
by a factor 2 the number of parameters to be estimated, and allows a direct connection between data and
model parameters. For this and other reasons, all models of sequence evolution used in the analysis of
data -including the formalizations of the Dayhoff’s pioneering work on protein sequences (Dayhoff et al.,
1983)- are, as far as we know, continuous reversible single-generator Markov models.



As a preliminary to parameter estimation, one may ask to what extent the alignment data can be
represented by any continuous reversible single-generator Markov models, i.e. whether there exists such a
model that describes the data to some given degree of approximation. This is the main topic of this paper.
We develop a method which yields estimators for the parameters of continuous reversible single generator
Markov models when such models provide a reasonable description of alignment data, and gives indications
on the departure from such models in the opposite case. Our method involves a transformation of the data
into a form in which an underlying continuous reversible single-generator Markov model is immediately
apparent. While some of the machinery may be a bit involved, the basic idea is not more complicated
than the use of a logarithmic scale to help determining half-lives in radioactive decay measurements.
Starting with a multiple alignment, we consider all the pairwise alignments deduced from it. For each
alignment of two sequences x and y, (denoted generically by “(z,y)”), we estimate a stochastic matrix
P(®¥) using maximum likelihood methods (which reduce in that case to simple countings). In the case
of a reversible model, all such matrices P{**%) provide estimates for powers P7=» of some “universal
matrix” P. And their matrix logarithms (when they exist) log P(*¥) provide estimates for multiples
T(z,y) Q of a unique matrix Q = log P, called the rate matriz of the model. A linear regression (which in
this case is performed via a principal components analysis) yields estimates for the parameters 7(, ,) and
the rate matrix Q.

Because of our desire to study the adequacy of single-generator models, we do not systematically use
symmetric counting procedures: the alignments (z,y) and (y,z) may thus yield significantly different
matrices P(*¥%) and P®?) which is a sign of departure from the single generator situation.

Not every matrix has a logarithm, and the “logarithmability” condition will play an important role in
this paper as a restriction on the alignments that can be handled by our method. This restriction will
mean, in practice, that the observed Markov matrices associated to pairwise alignments should be not
too far from the identity. Such a restriction is apparently similar to the “one mutation” requirement
made for the construction of PAM matrices (Dayhoff et al., 1983). At this point we should stress that
the exact “logarithmability” condition, to be introduced below, is much less restrictive than the “one-
mutation” requirement. In fact the transition to logarithms incorporates the possibility of arbitrarily
many mutations at a given site, as long as they do not overwhelm the overall picture. In our experience,
the breakdown of “logarithmability” is not far from the point where the alignments themselves become
questionable.

Thanks to the fact that we only consider pairwise alignments, we do not have to dig into the problem of
tree estimation. This is a drastic simplification. The parameters 7, ;) may be interpreted as “distances”
between the sequences, very much in the spirit of the LogDet distances (Lockhart et al., 1994; Steel, 1995;
Lake, 1994). Such distances may in turn be used for estimating a tree. However, such a tree need not be
completely consistent with the underlying model.

As a byproduct, our method also yields graphical representations for the alignments (namely, the projec-
tion of the matrices from the 400 dimensional space onto the planes corresponding to the top eigenvectors
in the principal components analysis), which helps in testing the homogeneity of the family of sequences

under consideration.



2 Methods

2.1 From count matrices to logarithms of stochastic matrices: the non sy-
metric case

Our starting point is a multiple alignment of “sufficiently related” sequences (the criterion for “sufficient
relatedness” is introduced below). However, we limit our investigations to the analysis of all pairs of
sequences in the multiple alignment, i.e. pairwise alignments, which will be the main object under
consideration in this paper. In contrast to maximum likelihood methods (Adachi and Hasegawa, 1992;
Felsenstein, 1981), we do not take into account multiple alignment information contained in columns of
the multiple alignment.

As usual, we model a protein sequence as a sequence of letters in a finite alphabet of size m (m = 20
in our case). All the sites in the sequence are considered independent and identically distributed, and
are therefore treated in the same way. Notice that we do not impose restrictions on the sites of the
sequences to be considered. Given an ordered pair of sequences (z,y) in the multiple alignment under
consideration, the sites containing an indel are removed from the pairwise alignment (but not from the
multiple alignment).

Given an ordered pair (x,y) of aligned sequences, we first consider the count matrix, denoted by Cl@y) =
{C(w’y), i,j=1,...m}. Its elements are the numbers of pairs of amino acids in the alignment:

Cff’y) = number of sites k¥ where amino-acid (k) =4 and y(k) = j , (1)
From C(®¥) we obtain the vectors of occurences C(*):
Cfg”) = number of sites k where z(k) =i . (2)

The entries of C(*¥) and C(*) are non-negative integers. From these quantities, we obtain the vector
of frequencies 7@ = (x{® ... 7{®)), defined by 7\*) = C'®)/c(@¥), where c(=¥) = T izl C(w’y) is the
length of the pairwise alignment (z,y). Notice that because of possible insertions-deletions, the vector of
frequencies 7(*) of the sequence z also depends on the sequence y (for the sake of simplicity we do not
introduce a specific notation for that).

Finally, we also consider the matrices F(*¥) = { F(“’y),z, j=1,...m}, defined by

(z.y) — (@9)
A 3)
and the diagonal matrices of frequencies
@) = diag(nx®) (4)
By construction, F(®¥) satisfies >} =1 F(w’y)

We shall limit ourselves here to sequences in Wthh all amino acids are significantly represented. Therefore,
all the frequencies 7r( @) may be assumed to be nonzero, i.e. the matrices II*) are non singular. We may
then consider the matrix P(@¥ = [1® 'F@) defined by its matrix elements

F(wvy)

(zy) _
P = (w) . (5)

(z.y)

REMARK 1 P(®¥) ig clearly a stochastic matrix, i.e. its elements satisfy 0 < F;;7" < 1for all ¢,j, and

its rows sum to unity: >0, Pz.(f’y) =1foralli=1,...



It is well known that if the multiple alignments were generated using a continuous reversible Markov
model on a binary tree, and if the lengths of the sequences are large enough, as described in (Felsenstein,
1981), all the matrices P (%) should be close to the powers P(T)(”) of a unique stochastic matrix Py = eQo,
where Qg is a rate matrix (see Appendix A for a definition). Then the question arises whether the family
of matrices P(*%) under consideration are compatible with such a model, up to fluctuations.

A stochastic matrix M which may be written in the form M = eQ where Q is a rate matrix is said to
be embeddable (see Appendix A for more details). The problem we address here is in some sense more
complex, as we want to study whether a family of stochastic matrices is jointly embeddable, in the sense
that it belongs to a one-parameter continuous family e”@ of stochastic matrices. However, since the
matrices under consideration are estimated from data, embeddabillity is not required in a strict sense, as
statistical fluctuations have to be taken into account.

We propose to consider the matrix logarithms of the matrices P(*%), The logarithm of a matrix is

formally defined via an infinite power series expansion

kgpziitj;in—nk. (6)
k=1

For the sake of the present discussion, it is enough to know that the expansion converges' and may be
computed numerically as soon as the matrix P is “close enough” to the identity matrix, in the following
sense: there exists a positive integer n such that

[(P—-1)"2 <1, (7)

where 1 is the identity matrix, and the norm ||M||2 of a matrix M is the square root of the sum of squares

of matrix elements of M: ||[M||, = 22321 M.

Notice that the matrix logarithm does not satisfy all the usual properties of the numerical logarithm: in
general, logP1 Py # log Py + log P,. However, the relation

logP™ =7 logP

is preserved.
This suggests the following definition.

DEFINITION 1 If two sequences x,y in a pairwise alignment are such that the corresponding matrices
P@Y) and PW2) admit a logarithm

LEY) = logP®) | L®*) = Jog P(®:*) (8)
we will say that © and y are sufficiently related. Then L(*¥) and L(¥:%) satisfy

Pew) = MOV plue) — O (9)

According to condition (7), a sufficient condition for z and y to be sufficiently related is that both P(*+¥)
and P(¥?) are “close enough to the identity matrix”: there exists n € Z* such that

I — 1), < 1. (10)

1The series (6) corresponds to well-known expansion for the logarithm of a number. It should be noticed, however, that

the numerical series for log(z) cannot be absolutely convergent if |z — 1| > 1, while the matrix series (6) can very well
converge if |P — 1||2 > 1. This is because |zy| = |z||y| for numbers, while in the case of matrices, [|AB||2 < |[A[[2|/B]|2, the
equality being an exception.



In terms of the sequences x and y under consideration, this simply means that the two sequences have
not diverged too much.

An important property is that whenever the matrix logarithms L(*¥) are well defined, they are by
construction pseudo rate matrices, in the sense of Appendix A. However, they need not be rate matrices,
as their off-diagonal elements are not necessarily non-negative.

REMARK 2 Notice that the estimation procedure we use here is non-symetric: the matrices C(*¥) and
C®:%) constructed as in (1) need not be equal. This choice is justified by the fact that these two
matrices are in some cases significantly different, which gives useful informations about the data under
consideration. This is specially true in situations where the amino acid compositions of the sequences x
and y are significantly different: in such cases, one could hardly justify symmetrization.

Let us stress that this does by no means suppose that one of the sequences is an ancestor of the other one.
As we shall see later, a symmetrized counting procedure is fully justified in a framework of parameter
estimation for single generator reversible Markov chain models, but this is no longer true as soon as
one expects departures from such models (departure from reversibility, or from the “single generator”
assumption, or both...).

The comparison of the matrices L(*%) and L{¥?) for a given pair (z,y) is an interesting issue, as it may
emphagize significant departure from simple models. However, when different pairs are to be compared,
one ends up with four a priori different matrices. It is generally simpler in such situations to consider
the average matrices f(z’y), defined by

=@y _ 1 CGy | 1)
L _2<L +L ) (11)

This has the advantage of associating a single matrix to each alignment, and simplifying the analysis.
This is the choice we have made in the numerical results presented in this paper.A more systematic
analysis of quartets of matrices associated to pairs of alignments will be described elsewhere.

2.2 Symmetrized counts

It is a common practice (see for example (Dayhoff et al., 1972) or (Miiller and Vingron, 2000)) to use
symmetrical count matrices: the matrices F(*%) are then constrained to be symmetric. Such a property,
which may be justified theoretically in the framework of reversible Markov chains models, and practically
for some specific families of sequences, has also the advantage of simplifying considerably the numerical
work. We briefly sketch here the main modifications needed for “symmetrization”, and generically use
matrices with “tilda” (i.e. M instead of M) to distinguish the symmetrized versions.

The F(®¥) matrices are replaced with f‘(w*y), defined by

#{k: z(k) =i and y(k) = j, or z(k) = j and y(k) =i}

(zy) _
F’“ o QC(w’y) ’

(12)

where ¢(®¥) is again the length of the alignment (z,y), and the symbol #S stands for the cardinality of
the set S. Symmetrized amino acid frequencies may also be introduced, by defining

@) _ #{k:xz(k)=1iory(k) =1}
i - QC(w,y) ’

(13)



and introducing the matrix II(®¥) = diag(fr(z’y)), i.e. the matrix whose non-diagonal elements vanish,

K3
(z,9) ~(z
1 T

and whose diagonal coincide with the frequencies 7 ) The corresponding P and L matrices

read
Py = (M) ~1F@EY) LEY) =1ogP@¥) (14)

As stressed before, such a symmetrized version is more natural if one thinks in terms of reversible Markov
evolution. It is also fairly interesting from a more mathematical point of view, since it may be shown
that the P matrices are symmetrizable, which makes most practical issues much simpler. Those aspects
are described in some details in Appendix B.1.

We shall limit our analysis here to pairs of sequences which satisfy the following “closeness” condition:

DEFINITION 2 Two sequences (z,y) are sufficiently close when the corresponding matriz F@Y) is positive
definite, i.e. has positive eigenvalues (we recall that F@Y) is symmetric by construction).

REMARK 3 Roughly speaking a positive definite matrix is a symmetric matrix whose diagonal elements
are positive and “dominant”. In particular, if F(#%) is positive definite, the matrix II(*-¥) is non-singular
and P(¥) is well-defined.

It follows from the discussion in Appendix B.1 that given two sufficiently close sequences, the logarithms
L% and L2 of P(®%) and P®®) are well defined thanks to equation (24), and then  and y are suf-
ficiently related. Also, the corresponding L matrices are pseudo rate matrices, as defined in Appendix A.

Given two sufficiently close sequences, the corresponding matrix P(@¥) is generally not embeddable.
However, the following remarkable “weak embeddability” result states that given a matrix P = P(@¥),
its powers P7 for 7 large enough are stochastic matrices:

COROLLARY 1 Let z,y be two sufficiently close sequences. There exists a real number 1o such that for all
T > 79, the matriz (P&Y)T is a stochastic matriz.

This result is an immediate consequence of PROPOSITION 1, which is proved in Appendix B.2. It has
important practical implications when it comes to comparing different matrices P(®%) as we shall see in
Section 2.4.

REMARK 4 This result is valid for the matrices P(*:%) obtained by the symmetrized counting procedure.
Our numerical results suggest a similar behavior in the case of the matrices P(*%). We do not have a
proof in the latter situation.

2.3 Quantities proportional to “divergence”

We now address the problem of comparing sufficiently related sequences, and therefore the corresponding
matrices P(*%) and L% . We consider a set of p pairwise alignments (x,y) of sufficiently related
sequences (in the sense of DEFINITION 1). To each pair (x,y) of sequences is associated a family of
matrices F@¥), P@¥) LY which we would like to compare. We shall focus in particular on the
L(*¥) matrices. The simplest models suggest that the matrices L(*% should be multiple of a unique
matrix Q (up to fluctuations). Q is a pseudo-rate matrix, and need not be a rate matrix (the definitions
of rate and pseudo rate matrices are given in Appendix A; sufficient conditions for the L(*¥) matrices to
be rate matrices are discussed in Appendix B.2).

The analysis of the family of matrices L(*%) provides a simple way to test such simple models. The
matrices L{*%) may in fact be viewed as vectors in an m? = 400-dimensional space (actually a subspace



of smaller dimension if the properties of L(*:%) are taken into account). The parameters, i.e. the family
of “ages” 7(, ) of the alignments and the rate matrix Q may be estimated using linear regression (see
also (Miiller and Vingron, 2000), where a macimum likelihood estimation procedure is discussed). Let us
denote globally by © the parameter set (the ages and the rate matrice). The problem

w,y

yields the equation
1

QI3 X R

where the norm ||.||s and the scalar product {.,.) in the space of matrices are defined by

(M,M') =" MyMj;, M= [> M3
i,j ]

The solution is not unique (we recall that the ages 7(,,,) and the rate matrix Q are defined up to a

Q 2 (QLELEY, (15)

(z,y)

multiplicative constant). Equation (15) states that Q is an eigenvector of the linear mapping

M — Z(M,L(w’y))L(”’) ,
(z,y)

with eigenvalue (the top eigenvalue in fact) ||Q||? 2o T(zm’ y)- We shall come back to that linear mapping
later on.

In the data that we have analyzed, the L(*:%) matrices turn out to lie essentially within a subspace of
much smaller dimension. The latter property is clearly seen from a principal component analysis of the
set of matrices. We shall also see that the traces of the L(*:%) matrices yield information close to the
LogDet distance, i.e. information relative to divergence times of sequences.

2.3.1 Principal component analysis of a family of alignments.

We are interested in analyzing the position of the matrices L(*:%) in the space they span. This may be
achieved by means of a principal component analysis.
We consider a family of p alignments of related sequences, and we assume for the sake of simplicity
that there are more pairwise alignments than matrix elements, i.e. p > m? (the case p < m? is handled
analogously). Let K denote the “matrix of all matrices” (with p rows and m? columns), whose rows are the
m? matrix coefficients of the matrices L(*%) of the alignments. The principal component decomposition
of K reads

K=UXVr, (16)

where ¥ = diag(o1, . . . 0,,2) is the diagonal m? xm? matrix of the singular values of K, sorted in decreasing
order. We assume that the singular values o3 are multiplicity free. V is an orthogonal m? x m? matrix,
whose columns

Vg = (Vlﬁ, VQB .. -szﬂ)T

form an orthonormal basis of the spaces of the L(®%) matrices. The vectors

1
uﬁzaKVQ B=1,...m>



form an orthonormal basis of an m2-dimensional subspace of the p-dimensional space of alignments. We
notice that the p rows (UX),s of the matrix UY represent the m? coordinates of the alignmentsa =1,...p
in the coordinate system provided by the vectors vg.

REMARK 5 The singular value decomposition is performed by diagonalizing the covariance matrix C =
K1 K. However, the latter is nothing but the matrix appearing in Equation (15), which may be written

as
1

QI X0y 20

When p < m? (which is the case in the example analyzed in section 3 below), the singular values

Q=

cqQ.

decomposition of ¥ may be performed as well, with slight modifications in the interpretation is the
resulting matrices and vectors. In that case, the p matrices L{*¥) span a p-dimensional subspace of the
m?-dimensional space of pseudo rate matrices. Only p singular values o5 out of the m? are nonzero, and
only the corresponding first p vectors ug and vg are of interest.

In most situations we have encountered the singular values o3 have fast decay, so that only a few principal
directions (i.e. a few vectors vg) are necessary to account for the family of matrices.

Owing to Remark 5, the first principal direction, i.e. the vector vy associated with the top principal value
o1 has a special status: in a reversible Markov model, the projection of an alignment (z,y) (a point in
the p-dimensional space) onto this axis provides a measure of the divergence between the sequences in
the alignment; in other words, it measures the “age” of the considered alignment. As such, it bears some
similarities with the so-called LogDet distance, which we describe below. The projections onto the other

principal directions measure the “dispersion”.

2.3.2 LogDet distance.

The LogDet distance has been thoroughly studied and used in the literature as a measure of “evolutionary
distance” between sequences. Such distances are often used as inputs for phylogenetic trees estimations.
The LogDet distance is based upon the following simple remark: if A and B are matrices of the form
B = e*, then one has log(det(B)) = tr(A), where tr(A) stands for the trace of the matrix A. In particular,
with the same notations as before,

if P=¢Q, then log(det(P))=7tr(Q)= Ti Qii - (17)

The precise definition of the LogDet distance between two sequences x,y is slightly different, as follows
(see (Lockhart et al., 1994), (Steel, 1995) and (Hillis et al., 1996) for details):

d(z,y) = — log det (F@)) = Zlogw — log(det(P@¥))) . (18)

Measuring the LogDet distance, or equivalently log det P{*%) for several pairwise alignments allows one
to compare the respective “ages” of the alignments, provided they can all be described by same matrices
L(*%) which are all multiples T(z,y)Q of a single “generator” Q, or at least by “close” rate matrices Q:
when P(#%) m 70 Q. In such a situation, the matrices L(*¥) should be close to proportional to Q, and
the LogDet distance would provide an estimate for 7, ).

Therefore, LogDet distances provide an information similar to the one carried by the projection of the
matrices L{*%) onto the first principal axis in a principal component analysis.



2.4 DMatrices associated with a continuous Markov chain model for sequence
evolution

The methods described above are strongly inspired by Markov chain models. We briefly describe here
the main ingredients of such models and some widely used procedures, namely maximum likelihood
estimation, and LogDet correction. We then discuss the behavior of the matrices P(®%) and L{*%) in the
framework of such models.

2.4.1 Maximum likelihood estimation; LogDet correction

In the simplest model, that protein sequences are assumed to consist of independent random variables,
taking values in a finite state space (the m = 20 amino-acids), whose (identically distributed) evolutions
are governed by a reversible, continuous time Markov chain. The latter is completely specified by a rate
matrix Q (see Appendix A for definitions) and initial frequencies m;, generally taken to be the equilibrium
frequencies of the Markov chain: one writes P = eQ, P™ = €79, and the family P” (7 > 0) has a limit M
as T — oo, such that M;; = 7; for all 4, j. When the Markov chain is reversible, the matrix F(r) = IIP"
is symmetric for all 7.

Given a multiple alignment, it is customary to model its evolution using a binary tree, whose leaves are
the present-day sequences, whose vertices (nodes) represent ancestors, and whose edges represent Markov
evolution. The parameters of the model (namely, the transition matrices and the topology of the tree)
are then estimated numerically using maximum likelihood (Felsenstein, 1981) or Bayesian methods (see
e.g. (Durbin et al., 1998)). In the simplest situation, all transition matrices are supposed to be of the form
e"Q, where 7 is the edge length (divergence time) and where Q is a “universal” rate matrix (the generator
of the model). The distribution of the estimators (the generator Q and the edge lengths 7) is estimated
by bootstrap simulations, and yields indications on the significance of the results. It is important to
realize that the computational burden grows exponentially with the number of sequences, and alternative
strategies have to be used for very large families of sequences.

In a very similar context, the LogDet distance methode (Lake, 1994; Lockhart et al., 1994) provide
estimates for the edge lengths. It may be shown (see (Tavaré, 1986)) that under the reversible Markov
model assumptions, the LogDet distances provide unbiased estimators for the edge lengths, and are
asymptotically normally distributed. We shall see below how distances similar to LogDet distances appear

naturally in our context.

2.4.2 Behavior of the P and L matrices

If a reversible Markov chain is used to model a pairwise alignment (z,y) of protein sequences, one can
easily show that the matrix P(®¥) defined in (5) is a maximum likelihood estimator for the transition
matrix P7 of the alignment (see for example (Lee et al., 1970) in the non reversible case; the modification
for the reversible case is straightforward). If a Markov chain on a binary tree is used to describe a multiple
alignment, one obtains similarly estimators for the corresponding transition matrices.

As an illustration, let us consider a simple tree associated with 3 sequences, say z, y and z and cor-
responding transition matrices P;, P2, P3 and P4 as indicated in FIGURE 1, assumed to correspond to
Markov chains. For the sake of simplicity, we also assume that the chains are reversible. It is easily seen
that the transition matrix P(®¥) corresponding to the alignment (z,y) yields an estimate for the matrix
P,P,P,. Similarly, the transition matrix P(*:*) corresponding to the alignment (z, 2) yields an estimate



for the matrix P;P4P3, and the transition matrix P(#:#*) corresponding to the alignment (y, z) yields an
estimate for the matrix PoP3.

If we assume in addition that the matrices P; are of the form P; = ™ Q, then P(®¥ yields an estimate
for e{m1tm+74)Q P(=:2) yields an estimate for e("+73+7)Q and P2 yields an estimate for e(™+7)Q,
In other words, L(®%) yields an estimate for (1 + 72 + 74)Q and so forth.

Therefore, using Log-Det distances on those matrices provides estimates for the times 71,...74. In addi-
tion, a more systematic (principal components) analysis of the matrices L(*:%) provides an estimate for
the generator Q (see below). The numerical simulations presented in the next section provide an example

of parameter estimation using our approach.

In more general situations, a principal components analysis of the set of matrices L{*%) will also provide
information on the different transition matrices P1,... P4, but the interpretation becomes cumbersome.
Sticking to our example of FIGURE 1, suppose that Py = e? and P3 = €9, with Qs # Q3. Then
P®2) yields an estimate for eQ2¢Q, and P(*¥) yields an estimate for eQeQ2. In general, there is no
reason to expect that the matrices Qo and Qs commute (i.e. that Q2Qs = Q3Qa), so that P(#:*) and
P(¥) are different. The Baker-Campbell-Hausdorff formula yields an infinite series expression for the
corresponding L{*%) matrices:

log (€Qe?) = Q1 + Q2 + % (Q1Q2 — Q2Qu) + ...,

but such an expression is difficult to exploit practically.? Nevertheless, we shall see that such an approach
is sufficient to test the adequacy of the reversible Markov model, and provides useful information on the
origins of the departure from the model.

2.4.3 Further Comments

It is clear that the kind of models described above can hardly be considered realistic, and most of their
characteristics may be criticized. For example, site independence (i.e. the fact that all amino acids of a
protein evolve independently of each other) is clearly false, as is site homogeneity (the fact that all sites
have identically distributed evolution).

The simplest Markov chain models (Felsenstein, 1981) assume that the Markov evolution is governed by a
unique generator (rate matrix). The SVD analysis we use can show departures from such single-generator
models; in such a case, it provides qualitative indications on the number of different generators needed to
describe the data (Section 3 provides a clear illustration of this fact). In any case, it provides an economic
description of the alignment data

In fact, one often observes significant inhomogeneities in the amino acid compositions of sequences within
a given family. Such inhomogeneities are clearly not compatible with reversible Markov chain models.
The fact that our approach considers only pairwise alignments reduces the effect of composition inhomo-
geneity. However, when a symmetric replacement matrix is associated with any pair of sequences, the
interpretation of such a matrix becomes questionable when the two sequences under consideration have
significantly different amino acid compositions.

2Nevertheless, notice that the average rate matrices L allow one to get rid of the second order terms of the Baker-
Campbell-Hausdorff formula, so that one may expect it to be less sensitive to the lack of commutation of Q; and Q2.
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3 Results

3.1 Simulations

Before discussing results obtained on real data, let us describe numerical simulations we have performed to
validate the proposed approach. As was said before, it may be seen as a method for parameter estimation
in the framework of Markov chain on a binary tree models. To validate this particular aspect, we have
simulated 100 realizations of a family of sequences of length 5000 corresponding to the mitochondrial
genome of vertebrates, using parameters (a phylogenetic tree, and a rate matrix Q) estimated from
real data (see below for details on the data). This choice was motivated by the fact that the “single
rate matrix reversible” model seems fairly adequate for the sequences under consideration (see (Adachi
and Hasegawa, 1992), (Adachi and Hasegawa, 1996) and the results below). For each realization, a
reconstructed rate matrix was estimated with the help of the methods described above. In FIGURE 2
we display the deviations || Qo — @Q; ||2 where the norm || ... || is defined in Section 2, Qo is the input
rate matrix, and @; is the rate matrix coming from the i-th simulation. Notice that || Qo ||2= 1 by
construction. Notice that only six of the deviations are larger than 0.1.

3.2 Results on real data
3.2.1 Sequences

We have applied the method just described to the study of molecular evolution of mitochondrial DNA. We
analyzed a set of proteins encoded by the mtDNA of 26 species of Metazoa (see TABLE 1 for details). This
sample is representative of completely sequenced mitochondrial genomes as of December 1998. It contains
the set of vertebrates studied in (Russo et al., 1996), and a few representatives of more distant phyla.
The sample thus contains 11 vertebrates, 6 arthropods, (5 insects and 1 crustacean), 3 echinoderms, one
annelid, 3 molluscs and 2 nematodes.

3.2.2 Alignments

Using ClustalW (Thompson et al., 1994) we have aligned the 12 mtDNA-encoded proteins that are present
in all the species considered here. They are: The subunits 1, 2, 3 of cytochrome ¢ oxidase, the subunits
1,2, 3,4, 4L, 5 and 6 of the NADH-ubiquinone oxidoreductase, the cytochrome b, and the subunit 6 of
ATP synthase. There exists a 13th mtDNA-encoded protein in animals (the subunit 8 of ATP synthase),
but it is not present in nematodes and so does not appear in the alignments considered here.
The alignments are accessible at the address:

http://chlora.lgi.infobiogen.fr:1234/landes

3.2.3 Replacements

As we mentioned earlier, we will be only concerned with pairwise alignments, and from now on “alignment”
will mean “alignment between two sequences”. After summation over the 12 proteins of two species x
and y, we obtain two matrices of counts, C(*¥) and C(#%) _ All the sites are taken into account, except
the ones facing an indel. If this occurs, the corresponding site is ignored, but only for the pairwise
alignment under consideration. The column of the multiple alignment is kept. The effective number of
sites goes from 3275 for the pair CE_CN to 3758 for the pair PL_SP (see TABLE 1). The total length of
the alignments, including indels, is 3957.

11



3.2.4 The matrices P, L and L

For the set of alignments under consideration, the matrices P(*:¥) can be calculated for all the 650 = 26%25
pairs of sequences. This means that the alignment data satisfy the conditions (5) and (7). The percentage
of identity of the pairwise alignments varies between 32.2 and 97.1. The majority of alignments are outside
the “one mutation” limit of Dayhoff (Dayhoff et al., 1983; Jones et al., 1992) which requires at least 85%
identity. However all the matrices P{*¥) are sufficiently close to the identity in the sense of (7), so that
their logarithms can be calculated. As we saw before, the matrices L (or L) can be viewed as points
in a space of 400 dimensions. However, this cloud of points is contained to a very good approximation
in a space of much lower dimension. This can be seen by a principal component analysis, described in
Sec. 2.3.1. In this paper, we choosed to focus on the average rate matrices. The first 40 singular values
(in decreasing order) are plotted in FIGURE 3. The first one is significantly larger than the following ones.
This shows that a Markov model for protein sequences is adequate, but not very good. The matrices L
are close to a half-line through the origin corresponding to a single generator. We shall now see, however,
that there are systematic deviations from this global conclusion.

3.3 SVD analysis of the matrices L

FIGURE 4 gives the projections of the 325 = 26%25/2 matrices L into the 1—2-plane (FIGURE 4a), and the
2 — 3-plane (FIGURE 4b) of the PCA. Points corresponding to alignments within a taxon are identified by
specific symbols, and alignments involving two different taxons are represented by dots. So in FIGURE 4a
the symbol furthest to the left corresponds to an alignment between two chordata, and more specifically
between two whales E(BP_BM). The solid circle furthest to the right describes the alignment between

= -C . . .
L(KT N). The dots with z-coordinate larger than 5 correspond to alignments in which

two molluscs
one of the participants is a nematode or a mollusc. The coordinates and labels are also available at
http://chlora.lgi.infobiogen.fr:1234/landes
The first axis (the abscissa on FIGURE 4a) points in the direction of maximal dispersion of the cloud of
points. If the evolution of the sequences were given by a continuous reversible Markov process, all the
matrices L would be of the form f(z’y) = T4y Q where 7, is proportional to the divergence between the
two sequences.
Because of the predominance of the first singular value, the component along the axis 1 is almost exactly
proportional to the LogDet distance, as can be seen on FIGURE 5.
FI1GURE 4a shows the dominance of axis 1 over axis 2, which means, as already mentioned, that a Markov
model with one generator is approximately valid for the proteins in our set. The deduced transition matrix
P = ¢Q is accessible by anonymous ftp. It corresponds to a PAM21 matrix (i.e.y -, ;i = 0.21)(for the
definition of PAM normalisation see (Dayhoff et al., 1972) ). When compared with other more recently
published matrices (Jones et al., 1992; Jones et al., 1994; Adachi and Hasegawa, 1996), we find that our
matrix P is closer to that of Adachi and Hasegawa calculated by maximum likelihood methods on a set
of mtDNA encoded proteins from vertebrates.
However, a closer examination of the projection on the second axis shows biologically significant deviations
(F1GURE 4a). The direction of points C_C (chordates with chordates) is different from the direction of
other intra-taxa points. FIGURE 4b shows the projection of the matrices into the 2 — 3-plane, which
is orthogonal to the first axis. Consequently, the divergence (correponding to the first axis), has been
eliminated in this projection, and we only see the directions corresponding to individual rate matrices.
In this projection, points near the origin on the first axis are necessarily also near the origin on the plane

12



2 — 3, and so are not very informative. We limit our attention to intra-taxa points, i.e. to alignments
within a taxon. Neglecting the points corresponding to closely related sequences (in gray on FIGURE 4b),
we observe two groups and three isolated points. The first group contains only chordate-chordate points,
and the second consists of all arthropod-arthropod, echinoderm-echinoderm and nematode-nematode
alignments. The 3 isolated points correspond to pairwise alignments between the three molluscs.

To conclude, the FIGURE 4b shows that the evolution of mtDNA-encoded proteins of chordates seems to
correspond to a rate matrix somewhat different from that of the other taxa of our set. FIGURE 4 also
clearly shows that any simple Markov model does not apply to molluscs.

These conclusions are drawn here from a small number of species, and need a re-examination based on

the set of all completely sequenced metazoan mitochondrial genomes.
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4 Discussion

In this paper, we have introduced a method for estimating the agreement of alignment data with the
predictions of an arbitrary reversible Markov model, which need not be known in advance. The two main
ingredients of the method are:

e The computation of the matrix-valued logarithms of the stochastic matrices associated to pairwise

alignments.

e An appropriate principal component analysis of these logarithms, each matrix being considered as
a point in a space of 400 dimensions.

The existence of the logarithm of a matrix is not guaranteed in general. We have chosen this existence as
an objective criterion for accepting or rejecting an alignment. In our experience, whenever this criterion
is not satisfied, there are other reasons for questioning the quality of the pairwise alignment under
consideration.

To the best of our knowledge, the above points have not been made in the existing literature.

We have chosen to work with the 20-letter alphabet of amino acids. This allows us to consider deeper
branchings, and to analyse simultaneously the effects of evolution and of physico-chemical properties
of amino acids on replacement rate matrices. In addition, the implementation of the method with an
alphabet of this size is not very difficult on present-day computers.

The example described in this paper was chosen mainly as an illustration. The set of animal mtDNA-
encoded proteins analyzed here is far from complete, but it includes sequences that are sufficiently diver-
gent to test the limits of reversible Markov models.

The fitting of the data with such a model is a reasonable first approximation. However the deviations from
this model can clearly be seen on the data, and they correlate well with known phylogenetic information.
Many questions remain open. At this stage, we do not have a model with not too many parameters that
would fit the data. Furthermore, the use of the methods of this paper on large sets of sequences about
which not much is known will require statistical tools which we do not have at present.
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A Stochastic and rate matrices, the embedding problem

A rate matriz is a square m X m matrix Q such that E;"Zl Qi =0forall i, Q;; <Oforalli,and Q;; >0
for all 4 # j. A square matrix which satisfies the first two properties above and fails to satisfy the third
one is called a pseudo-rate matriz. A stochastic matriz (or transition matriz, or Markov matriz) is an
m x m matrix P such that 0 < P;; <1 for all 4,5 and E;”Zl P;; =1 for all i. In general, the eigenvalues
of a transition matrix are complex numbers, of modulus smaller than or equal to 1.

A Markov semigroup is a family of stochastic matrices ¢ € Rt — P(t) satisfying the Chapman-
Kolmogorov equation P(t)P(t') = P(t+1'), and such that for all ¢, j, P(0);; = d;; and lim; o P(0);; = 1.
Given a Markov semigroup, there exists a matrix Q = P’(0) such that P(t) = €!?, and Q is a rate matrix.
It is well known (see e.g. (Freeman, 1967)) that if Q is a rate matrix, then the exponentials exp{tQ},
where t € RT, form a Markov semigroup. The opposite question is interesting too: given a stochastic
matrix P, does there exist a corresponding Markov semigroup ¢ — P(t¢) such that P = P(1) ? or
equivalently, does there exist a rate matrix Q such that P = eQ ? when this is so, the matrix P is said
to be embeddable into a Markov semigroup, or simply embeddable. Characterizations of embeddability
have been given in the case of 2 x 2 and 3 x 3 stochastic matrices (see (Carette, 1995) and references
therein). For example, a 2 x 2 stochastic matrix P is embeddable if and only if its determinant is positive.
To our knowledge, the problem in arbitrary dimension is open.

Let P be a general m x m stochastic matrix, and assume that the matrix logarithm L = log P of P defined
in (6) exists. Then one may write P = e, but L need not be a rate matrix. Lettingv = (1,1,...1)7 € R™,
we have Pv = v, so that Lv = 0. In other words, E;"Zl L;; =0, and L is a pseudo rate matrix. However,
we do not necessarily have L;; > 0 for all ¢ # j.

The analysis of the latter condition is simpler in cases where the matrix P corresponds to a reversible
Markov chain. This is discussed below.

B Symmetrization and consequences

B.1 Some consequences of symmetrization

A simple symmetrization procedure may yield significant simplifications. We describe here the mathemat-
ical aspects of symmetrization, limiting our analysis to sequences which are sufficiently close as defined
in DEFINITION 2.

Let us then consider a pair of close sequences (z,y); for the sake of simplicity, we drop the superscript
“.9)” in what follows. Since II is non-singular, the matrix S defined by

S = /2FI—1/2 (19)
is a symmetric matrix. In addition, we have that
P =T"'F =T1"Y/2800/2 .

Therefore, P is similar to the symmetric matrix S, and has the same (real) eigenvalues. Let us denote by
A, A2, ... A those eigenvalues, sorted by decreasing order. Since P is the transition matrix of a reversible
Markov chain, it follows that A; € (0,1] for all 4, and A\; = 1.
Assume that all the eigenvalues A; are distinct from each other. Then there exists a unique (up to a sign)
orthogonal matrix R such that

S =RsrAR = R !AR, (20)
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where A = diag (A1, ... Ay) is the diagonal form of S, and the subscript 7' denotes matrix transposition.
We then obtain immediately
P =0 Y2RyARITY/? . (21)

The rows of the matrix RII*/2 are the left eigenvectors of the matrix P, and in particular, the first row
of RIT'/? is the vector of frequencies (1, . ..7Tm).

Once the matrices R and A are known, matrix-valued functions of P may be computed easily. For
example, the square P2 of P reads

P? = T 2R, A2RITY? |
and more generally, for any positive real number 7, one may compute the 7-th power P7 of P:
P =~ Y2RyATRITY? | (22)

where A7 = diag (A\],...\7)) is the diagonal matrix of the 7-th powers of the eigenvalues of P. In
components notation, we obtain

(PT)ij = /=2 > RiiRij N - (23)

Another important example in what follows is the matrix-valued logarithm L = log(f’). L may be
computed easily using the decomposition (21):

L = log(P) = I /2 1og(S)I1*/2 = TT~/?Ry log(A)RIT'/? | (24)

where log(A) = diag(log(\1),...log(\n) is the diagonal matrix of logarithms of eigenvalues of P. The
matrix L so obtained is a pseudo rate matriz, as defined in Appendix A

REMARK 6 Let us stress that the above diagonalizations make all the matrix calculations (logarithms,
powers,...) extremely efficient, as may be seen from (24) in the case of the logarithm for example.

B.2 Remarks on rate and pseudo rate matrices in the symmetrized case

As we have seen above, the logarithm L = logP of the transition matrix associated to a pair of close
sequences is a pseudo rate matrix; however, L is not a rate matrix in general, so that it does not
necessarily make sense to consider matrices P, as transition matrices for arbitrary positive values of 7.
We now discuss that point in some details.

PROPOSITION 1 Let P be the transition matriz associated with o pair of close sequences, with the same
notations as above. Let T > 0, and let M = P,

1. The matriz element M;; is positive if and only if

- Z RkiRkj AR < VTG - (25)
k=2
2. If
2/\7,;<,/7r,-7rj s (26)
k=2
then M;; > 0.
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The proof is a consequence of the expression of the matrix element M;; (see Eq. (23). We know that the
rows of RIT'/2 are the left eigenvectors of P, and in particular the first row (RHI/ 2);1 is proportional to
the vector of frequencies (71, ...my,)7. Therefore, the first column of R equals (\/71, ..., /Tm)r, and we
obtain the following expression (recall that A\; = 1)

j = r
My = /W—Z <m+é3ki}zm /\k> :

The first part of the proposition follows directly from that expression. For the second part, we simply
observe that since the columns of the R matrix are orthonormal, —1 < R;, < 1 for all i, k. Therefore,
— >y RiiRyj A\, < >4t 5 AL, which proves the result.

The important consequence is that, since Ay < 1 for all k¥ > 2 (with strict inequality if the top eigenvalue

A1 is non degenerate), the function 7 — »~}*, A} is monotonically decreasing. Hence, for 7 large enough,
the sufficient condition above is automatically fulfilled.
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Figure 2: Distances between input rate matrix and reconstituted rate matrices

Figure 1: Example of Markov chain on a tree.
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Figure 3: Singular values for the cloud of matrices L.
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Figure 4: Projections of the cloud of matrices L on the planes 1 — 2 and 2 — 3. Each point represents
an alignment between two species. The alignments involving pairs from the same taxon (¢f. Table 1)
are represented as follows: diamond (<) for pairs chordata-chordata, triangle (V) for pairs arthropod-
arthropod, square (0O) for the pair nematode-nematode and circle (o) for the mollusc-mollusc pairs. The
other points, involving alignments between two distinct taxa of Table 1 are denoted by dots. Fig. a:
Projections of the matrices L on the 1 — 2 plane. Abbreviations: mamm. for mammalia, dipt. for
diptera, teleost. for teleostei. Fig. b: projections to the 2 — 3 plane. The symbols are the same as in
Fig.a; the gray ones correspond to “young” alignments (abscissa < 1.0) in Fig. a.
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Abbr.¢

Scientific name

Short name

EMBL

accession number

Taxa

BT
BM
BP
MM
RM
DV
GG
XL
CL
cC
oM
DL
DY
AG
AQ
LM
AF
FS
SP
PL
LT
KT
CN
AC
CE
AS

Bos taurus
Balaenoptera musculus
Balaenoptera physalus
Mus musculus

Rattus norvegicus
Didelphis virginiana
Gallus gallus

Xenopus laevis
Crossostoma lacustre
Cyprinus carpio
Onchorhynchus mykiss
Drosophila melanogaster
Drosophila yakuba
Anopheles gambiae
Anopheles quadrimaculatus
Locusta migratoria
Artemia franciscana
Florometra sarratissima
Strongylocentrotus purpuratus
Paracentrotus lividus
Lumbricus terrestris
Katharina tunicata
Cepaea nemoralis
Albinaria caerulea
Caenorhabditis elegans
Ascaris suum

cow
blue whale

fin whale

house mouse

Norway rat

North American opossum
chicken

African clawed frog
oriental steam loach
common carp

rainbow trout

fruit fly

African malaria mosquito

migratory locust
brine shrimps
crinoid florometra
purple sea urchin
common urchin
common earthworm
black chiton
banded wood snail
land snail
nematode

pig roundworm

V00654
X72204
X61145
J01420
X14848
229573
X52392
M10217
M91245
X61010
L29771
U37541
X03240
L20934
L04272
X80245
X69067
AF049132
X12631
J04815
U24570
U09810
U23045
X83390
X54252
X54253

Chordata (M)®
Chordata (M)
Chordata (M)
Chordata (M)
Chordata (M)
Chordata (M)
Chordata
Chordata
Chordata (T)¢
Chordata (T)
Chordata (T)
Arthropoda (D)?
Arthropoda (D)
Arthropoda (D)
Arthropoda (D)
Arthropoda
Arthropoda
Echinodermata
Echinodermata
Echinodermata
Annelida
Mollusca
Mollusca
Mollusca
Nematoda
Nematoda

Table 1: Set of complete mitochondrial genomes analysed.

% Abbr: abbreviation
b M: mammalia

¢ T: teleostei

4 D: diptera
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