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Figure 1: Four alternative definitions of medial skeletons: (a) centers of maximally-inscribed balls; (b) shock graph of the grassfire surface
flow; (c) as points with more than one corresponding images on the surface; (d) local axis of reflectional symmetry.

Abstract
Given a shape, a skeleton is a thin centered structure which jointly describes the topology and the geometry of the shape. Skele-
tons provide an alternative to classical boundary or volumetric representations, which is especially effective for applications
where one needs to reason about, and manipulate, the structure of a shape. These skeleton properties make them powerful tools
for many types of shape analysis and processing tasks. For a given shape, several skeleton types can be defined, each having its
own properties, advantages, and drawbacks. Similarly, a large number of methods exist to compute a given skeleton type, each
having its own requirements, advantages, and limitations. While using skeletons for two-dimensional (2D) shapes is a relatively
well covered area, developments in the skeletonization of three-dimensional (3D) shapes make these tasks challenging for both
researchers and practitioners. This survey presents an overview of 3D shape skeletonization. We start by presenting the defini-
tion and properties of various types of 3D skeletons. We propose a taxonomy of 3D skeletons which allows us to further analyze
and compare them with respect to their properties. We next overview methods and techniques used to compute all described
3D skeleton types, and discuss their assumptions, advantages, and limitations. Finally, we describe several applications of 3D
skeletons, which illustrate their added value for different shape analysis and processing tasks.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid and object representations

1. Introduction

Three-dimensional models of solid shapes are used in many dis-
ciplines, including computer graphics, medical imaging, com-
puter aided design, visualization, digital inspection, metrology, and
robotics. Such models are usually described using implicit or ex-
plicit representations of their surface. Implicit (volumetric) repre-
sentations use a labeling of the (densely) sampled 3D space in which
the model is embedded to mark sample points as being inside or out-
side the shape [BBB∗97]. Explicit, (surface) representations capture
the interface between shape interior and exterior, based on various

sampling and reconstruction schemes, e.g., point clouds or polygon
meshes [BKP∗10, Ago05]. Both above representations efficiently
and effectively support many tasks, such as modeling, processing,
and rendering shapes, and are as such ubiquitous in many applica-
tions. However, they also have several challenges, as follows.

1.1. Compactness

High-resolution 3D shape representations shapes can be highly ex-
pensive in storage and processing terms. While these are needed for
tasks like high-fidelity rendering and 3D printing, other tasks, such
as shape retrieval, only require access to a specific subset of the
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shape properties. Such tasks are favored by a compact shape repre-
sentation that encodes the key properties for the tasks at hand in a
computationally efficient way.

1.2. Expressiveness

Different shape analysis and processing applications focus on dif-
ferent properties of a shape. Examples are shape topology and sym-
metry (for shape retrieval) or shape thickness (for metrology appli-
cations). Modeling and animation applications need to intuitively
support complex forms of interactive shape manipulation. All such
applications benefit from using shape representations beyond the
classical volumetric and surface ones.

Skeletons are one such alternative representation. Informally, skele-
tons are descriptors which jointly describe the geometry, topology,
and symmetry properties of a shape in compact and intuitive ways,
providing a mean to capture the ‘essence’ of a shape. The concept
originated with medial skeletons in 2D shape understanding, as a
way to reduce the large amount of data carried by a shape down
to the key information that can be more readily assimilated [Blu67].
An example of a medial skeleton for a 2D shape is shown in Fig. 2a.
The concept was next extended to 3D shapes, yielding a wide family
of variations, including surface skeletons [SBTZ02], curve skele-
tons [CSM07], and centerlines [WLK∗02, AB02].

Given the long history of skeletonization, understanding the prop-
erties of 2D shape skeletons, and computing them efficiently, is a
well covered field [SP09, ABE09]. This is quite different for 3D
skeletons, for several reasons. First, 3D shapes admit a much richer,
and more complex, set of skeleton types, each having specific prop-
erties. Secondly, computing 3D skeletons accurately and scalably
for large and complex 3D models is much more challenging than
computing 2D skeletons. Finally, 3D skeletonization is a newer re-
search area as compared to 2D skeletonization, with many methods
and applications having emerged recently. While a few surveys on
3D skeletons exist, they focus on specific problems and/or meth-
ods: Cornea et al. firstly discuss, to our knowledge, eight desirable
properties of curve skeletons, and qualitatively compare four skele-
tonization methods against these properties [CSM07]. Sobiecki et
al. [SYJT13] qualitatively compare six contraction-based curve
skeletonization methods against six of the properties [CSM07].
Their work is extended in [SJT14] to qualitatively and quantita-
tively compare four surface and six curve skeletonization meth-
ods against six properties. Finally, Saha et al. present a survey of
voxel-based skeletonization methods and discuss three quality crite-
ria [SBdB15]. The current skeletonization arena is, yet, far broader
than the above works cover. Hence, a broad survey of state-of-the-
art 3D skeletonization theory, skeleton types, computation methods,
and applications is highly due.

1.3. Survey outline

In this paper, we present such a survey of 3D skeletonization.
Main differences with respect to existing skeletonization surveys
are as follows: We focus solely on 3D skeletons (in contrast to
[SBdB15, SP09]); and we cover both surface and curve skeletons
using both mesh-based and voxel-based representations (in contrast
to [CSM07,SP09,SYJT13,SJT14]). We start by discussing the var-
ious definitions for 3D skeletons known in the literature, and the
related key properties implied by these definitions. These proper-
ties offer key insights to explore the differences between formal

a) b)

c) d)

Figure 2: Skeletons (a,c) and their complements (b,d) for 2D shapes
(a,b) and 3D shapes (c,d).

skeletons and practical skeletons computed by various skeletoniza-
tion techniques (Sec. 2). Skeletonization techniques, together with
their assumptions, advantages, and limitations, are discussed next
in Sec. 3. Skeleton analysis and postprocessing operations, which
are essential to further construction of skeleton-based shape analy-
sis and processing applications, are coverred in Sec. 4. Open chal-
lenges to 3D skeletonization are discussed in Sec. 6.

1.4. Notation

An object, or shape is a compact spatial subset O ⊂ Rn with a
2−manifold boundary S = ∂O, with a focus on three-dimensional
shapes (n = 3). In R2, we refer to S as the shape’s contour; the
medial skeleton of O is called the medial axis or 2D skeleton. In
R3, S will be referred to as the surface of O; the corresponding
medial skeleton of O is called the medial surface or surface skele-
ton. Medial skeletons can be analogously defined for both O and
its complement space Rn \O, as shown in Figure 2. For discussion
clarity, we focus next on discussing the skeleton of O also known
as the internal, or foreground, skeleton. Finally, for the sake of clar-
ity, we will at times depict various skeleton-related properties using
2D examples rather than 3D ones. In all such cases, the discussed
properties are identical in 2D and 3D.

2. Theoretical foundations

From their first appearance in shape understanding, skeletons have
known many definitions (see Sec. 2.1). These definitions are, usu-
ally, equivalent, i.e., they imply a unique ‘formal’ skeleton for a
given shapeO. This means that skeletons have several well-defined
properties that can be inferred by studying their definitions, which
are essential for the design of shape processing and analysis ap-
plications. Yet, the practical application of the above-mentioned
definitions leads to fundamentally different methods for comput-
ing skeletons. In turn, these methods will compute skeletons whose
properties approximate the formal-skeleton properties up to various
degrees. Additionally, the practical computation of skeletons incurs
a number of desirable properties. Existing skeletonization methods
satisfy these properties to different degrees. Properties of both for-
mal skeletons and skeletonization methods are discussed in Sec. 2.2.
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2.1. Medial Skeletons

The medial skeleton of a shape knows several equivalent definitions,
as follows.

2.1.1. Maximally inscribed balls

The original idea of medial skeletons was introduced in 2D by
Blum [Blu67]. Here, the skeleton of an object O was defined as
the locus of centers of maximally inscribed balls in O (see Fig. 3).
By adding the radii R of the corresponding balls to the set of
ball centers M, we obtain the so-called Medial Axis Transform
MAT(O) = (M,R). A pair (x,r) ∈MAT(O) consisting of a ball
center and corresponding radius is also called a medial atom. The
corresponding ball B(x,r) of center x and radius r is also called a
medial ball. Atoms are the constitutive elements of a skeleton. Their
positions and radii capture a shape’s geometry, while their spatial
neighborhood relations capture a shape’s topology. Atoms, or their
positions x, are also called skeleton points or medial points.

Definition 2.1 The Medial Axis Transform MAT (O)
of O is the set of centersM and corresponding radii R
of all maximal inscribed balls in O.

Since Def. 2.1 only considers maximal balls, many balls which are
inscribed in O, but are not maximal, are discarded. Hence, the

O

M

S

x r

Figure 3: (a) The MAT skeleton M of the shape O with contour
S. (b) Examples of maximally inscribed balls (red), a medial atom
(x,r), and balls which are neither maximal nor inscribed, thus not
contributing toM (green). (c) Approximate reconstruction ofO by
the union of balls B(x,r) given by a sparse sampling ofM.

setM⊂ Rn is sparse – it has constructs with at most n−1 dimen-
sions. These constructs are called medial axis branches (for n = 2)
or medial axis sheets (for n = 3). In 2D, the MAT is a 1D structure
consisting of a set of curves (branches) locally centered within the
contour S ofO. In 3D, the MAT yields a medial surface, consisting
of a set of intersecting manifolds (sheets) with boundary.

As it jointly captures shape geometry and topology, the MAT fully
encodes O. Indeed, O can be fully reconstructed by computing the
union of MAT medial balls, i.e., O=

⋃
(x,r)∈MAT(O) B(x,r). Hence,

the MAT is an invertible transform, i.e.,O=MAT−1(M,R). Com-
puting the MAT of a shape O is called skeletonization. The inverse
process of computing O from its MAT is known as reconstruction
or garbing (see next Sec. 4.3).

2.1.2. Grassfire analogy

While Blum’s original definition [Blu67] provides a simple and
solid basis to reason about skeletal properties, thinking intuitively
in terms of maximally inscribed balls is difficult. Also, directly ap-
plying the MAT definition 2.1 to compute skeletons is not practical.
An alternative, and more commonly known, skeleton definition uses

the so-called grassfire analogy (Fig. 1b). ImagineO ∈R2 as a com-
pact patch of grass whose boundary S is set on fire at t = 0. The fire
propagates isotropically from S towards the interior of O with uni-
form speed along the inward normals n of S. At certain locations,
fire fronts coming from different parts of S will meet and quench,
thus defining a shock graph [KTZ95].

Definition 2.2 The Medial Axis Transform of O with
boundary S is given by the shock graph of the motion
Ṡ(t) =−n(t) and the time t when a shock is formed.

This definition not only stands at the core of many skeletonization
algorithms (see Sec. 3), but also allows us to intuitively see why
such skeletons are called medial: As different parts of S move at the
same speed, their meeting (quenching) points are at equal distances
from S, thus in the local shape center.

A skeleton definition strongly related to the grassfire model can be
given in terms of arrival time (Fig. 4a). Consider the motion of S in
the direction of its inward normals with unit speed. The position
of S(t) at time t > 0 can be implicitly described as the level set
{x ∈O |T (x) = t} of the arrival-time function T : Rn→R+ which
is the solution of the Eikonal equation

‖∇T‖= 1 (1)

with initial conditions T (x∈S) = 0. The inward normal n of S(t) at
any x ∈ S(t) is equal to the gradient∇T (x). Hence, the skeleton of
S can be defined by the local maxima (ridges) of T or, equivalently,
the singularities of ∇T (Fig. 4b). Moreover, the weak solution of
Eqn. 1 is the well-known distance transform DTS :O→ R+ of S

DTS(x ∈ O) = min
y∈S
‖x−y‖, (2)

where ‖ · ‖ denotes the Euclidean metric on Rn, which can be effi-
ciently computed in linear time [FH12]. Since ∇·∇T = 0, skele-
tons can be defined as the points of non-zero divergence of the dis-
tance transform [SBTZ02]. Together, the above definitions of skele-
tons in terms of local maxima, gradient singularities, or non-null
divergence of the distance transform or Eikonal equation solution
spawn a multitude of skeletonization methods (Section 3).

2.1.3. Maxwell set

As the grassfire propagates isotropically, quench points are always
equidistant from S. Hence, medial points are associated with a least
two (Euclidean) closest points on S. This property lies at the core
of the Maxwell set definition of the MAT [Mat83] (see Fig. 1c).

Definition 2.3 The Medial Axis Transform associates to
a shapeO the set of locationsM∈O with more than one

(a) (b)

x

y

DTS (x,y)

(c)

ridges

x

y

S

Figure 4: (a) 2D shape boundary S with its distance transform
shown by color-coding and level sets. (b) Ridges of the distance
transform plot. (c) Corresponding shape skeleton.
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corresponding closest point on the boundary S of O and
their respective distancesR to S.

Figure 5: (left) Voronoi diagram (red) encodes locations equidis-
tant from (at least) two input points (black). The medial skeleton
(right) extends the Voronoi diagram to freeform curves by encoding
the loci being equidistant from at least two points on the curves.

Note that we can rewrite this definition formally using the definition
of the shape’s distance transform (Eqn. 2) as

MAT(O) ={(x ∈ O,DTS(x))|∃y1 ∈ S,y2 ∈ S,y1 6= y2,

‖y1−x‖= ‖y2−x‖= DTS(x)}. (3)

Definition 2.3 and its distance-transform based formulation (Eqn. 3)
link the definition, and computation, of skeletons with those of
Voronoi diagrams (see Fig. 5), as we discuss next in Sec. 3.1.1.1.

2.1.4. Symmetry Set

In an object, symmetry is present at different levels, leading to dif-
ferent ways to abstract shape. For simple shapes (Oa, Fig. 6a), a
single symmetry axis captures the shape’s global symmetry. By
performing a simple quasi-rigid articulation of Oa, we obtain Ob,
where a global symmetry axis is insufficient (Fig. 6b).

(a) (b) (c)

Figure 6: Three planar shapesOa,Ob andOc and their (a) global,
(b) piecewise, and (c) local symmetry axes. Planar symmetry rela-
tions (green lines) between a few point-pairs (green dots) are high-
lighted. The medial axis encodes local reflectional symmetry (c).
Image from [Tag12].

To address this, we could use multiple, more localized, symmetry
axes. Yet, when a shape undergoes even complex articulation types,
the use of a limited symmetry-axes set becomes too restrictive (Oc,
Fig. 6c). A solution to this is to consider symmetry at its finest level:
Each point-pair on the shape boundary is linked by an infinites-
imal symmetry relationship; their symmetry centers can be linked
together to form a curvilinear symmetry-axis, commonly referred to
as the shape skeleton. Let us momentarily consider only shapes with
C1 continuous boundaries – that is, without infinitely sharp corners
or edges. For any point x∈O, the closest boundary point s∗(x)∈ S
to x defines a ball Bx,r centered at x and of radius r = ‖x− s∗(x)‖.
This ball can be proved to be tangent to S at s∗ [ABK98]. If x is a
medial point, then its associated medial ball will be bi-tangent to S
(see Fig. 1d). As such, we can formulate the following

Definition 2.4 The Medial Axis Transform associates
to O the set of centers M and radii R of all inscribed
balls in O which are bi-tangent to its boundary S.

The concept of locus of bi-tangent balls was introduced by [GB85]
under the name of symmetry set. Hence, medial points can be seen
as a subset of the symmetry set, where only inscribed balls are
considered (see Fig. 6). This observation underlines how skeletons
can be thought of as a representation of symmetry, i.e., infinitesi-
mal symmetry axes in R2 and infinitesimal symmetry sheets in R3,
respectively. Furthermore, we note that while the above definition
requires smooth boundaries, it extends to C0 boundaries by consid-
ering bi-tangency in the general sense (i.e. using subderivatives).

2.2. Skeleton Properties

The definitions from Sec. 2.1 introduce the Medial Axis Transform,
and its corresponding skeletons, in terms of several equivalent def-
initions. Following, the MAT can be seen as a dual representa-
tion which captures all shape aspects that a volumetric or bound-
ary representation captures. The key advantage of skeletons, thus,
appears when they allow a simpler, more intuitive, and/or computa-
tionally effective way to analyze and/or change certain shape prop-
erties, than classical volumetric or boundary representations do. To
know which such shape aspects skeletons can efficiently and effec-
tively capture, we must first discuss their general properties. We first
overview the properties that the formal skeleton definitions (Sec. 2)
imply. These are fundamental to any skeletal representation, and
thus apply to skeletons produced by any skeletonization method
(Sec. 3). However, skeletonization methods have various assump-
tions, and perform various approximations (Sec. 2.3). Hence, the re-
sulting skeletons will fulfill the theoretical properties up to varying
degrees. Separately, to be practical, skeletonization methods them-
selves should comply with several desirable properties. Properties
of practical skeletonization methods are discussed in Sec. 2.4.

2.2.1. Topology encoding

Skeletons have the same homotopy as the shapes they are ex-
tracted from i.e., they have the same number of connected com-
ponents and holes (in 2D), and the same number of connected
components, voids (cavities), and tunnels (in 3D) [Lie03]. Also,
as we have seen in Sec. 2, skeletons are one dimension smaller
than their corresponding shape, in the generic case. For 2D shapes,
this yields one-dimensional skeletons, which can be effectively en-
coded as planar graphs, whose edges represent skeletal branches,
and nodes represent junctions of at least three such branches. In
turn, such graphs are highly convenient tools to support operations
such as shape segmentation, comparison, matching, and retrieval.
Indeed, skeletal graphs capture the coarse-scale structure, or topol-
ogy, of shapes, which is key to the above applications, and factor
out geometry information, which is less important in those con-
texts. For 3D tubular shapes having local axial symmetry, medial
skeletons exhibit the same one-dimensional structure as 2D skele-
tons, and thus can be readily used to create skeletal graphs for
3D shape matching applications [SSGD03]. In contrast, the me-
dial skeletons of generic 3D shapes are two-dimensional structures.
Such structures can be further simplified to extract a topology-
encoding graph [LK07, RvWT08a, JKT13, JST15]. Alternatively,
one-dimensional skeletons can be directly extracted from 3D shapes
by specialized methods. These so-called curve skeletons, and their
properties, are separately discussed in Section 3.2.

c© 2016 The Author(s)
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2.2.2. Smoothness

For a shapeO ∈Rn,M forms a (n−1) dimensional Whitney strat-
ified set [Mat83]. That is,M is a finite filtration of closed smooth
manifoldsM= Mn−1 ⊃Mn−2 . . .⊃M0, so that Mi \Mi−1 is either
a smooth i-dimensional sub-manifold ofM or is empty. Each con-
nected component of Mi \Mi−1 is called an i-dimensional stratum.
Strata satisfy the Whitney conditions: Intuitively put, all points on
a stratum have neighborhoods that are homeomorphic.

2.2.3. Skeletal structure

As outlined in Section 2, the MAT (M,R) can be used, with no
further changes or analysis, to fully reconstruct O. While this is
useful, more complex applications such as shape segmentation, de-
noising, deformation, or matching require a more detailed analysis
of the structure of the MAT. As stated earlier, 2D skeletons have
a relatively simple structure. They consist of a set of 1D curve
segments, bounded by junction points (where at least three such
curves meet) or by endpoints (which correspond to positive local
maxima of the curvature of S). The structure of 2D skeletons is
well-understood [PSS∗03], and less relevant to our 3D skeleton fo-
cus. In three dimensions, medial surfaces consist, in the generic
case, of a set of intersecting manifolds with boundaries. Curves
where (at least) three such manifolds intersect are also called Y-
intersection curves [Dam06,GK04,LK07,CLK09]. Similarly to the
2D case, the boundaries of skeletal manifolds which are not part of
Y-intersection curves correspond to curvature maxima, or convex
edges, on S. The generic local structure ofM for medial surfaces
received explicit geometric description [Gib00]:

• 2−dimensional strata;
• 1−dimensional strata consisting of i) Y−junction curves along

which three strata meet in a Y−branching pattern and ii) edge
curves composed of edge points ofM;
• 0−dimensional strata consisting of i) fin points and ii)

6−junction points, where six medial sheets meet along with 4
Y−junction curves.

The above classification was further refined to describe surface
skeletons in terms of the number of contact (tangency) points, and
tangency order, of maximally inscribed balls with S [GK04]. Four
types of points are described (Fig. 7): Points inside skeletal man-
ifolds (A1

2 points) have precisely two contact points; points on Y-
intersection curves of k ≥ 3 manifolds (A1

k points) have k contact
points; points where at least three Y-intersection curves meet (A1

4
points) have 4 contact points; and points on manifold boundaries
(A3 points) have a finite-size circular-sector or circular-arc of con-
tact. The structure formed by A1

4 and A1
3 medial points, i.e. the one-

dimensional Y-intersection curves and their junctions, forms the so-
called medial scaffold [LK07].

The structure ofM can also be described differently: The closure
of a 2−dimensional stratum is called a surface component, which is
a possibly non-orientable 2−manifold with boundary. The closure
of edge curves that are not boundaries of a surface component are
curve components. The closure of Y−junction curves are the skele-
ton junctions, i.e., the locations where two skeletal curve or surface
components meet. Medial points whose neighborhood is homeo-
morphic to a closed half-disk or closed interval are the skeletal bor-
ders.

Classifying medial points has many applications, such as robust

detection of edges on 3D shapes [RJT08, KJT15], part-based and
patch-based shape segmentation [LK07, RT08a, RT08b], and sur-
face reconstruction from point clouds [CLK09]. Other uses of the
medial point classification are discussed in Section 3.2.1.1.

2.2.4. Surface-skeleton correspondence:

As outlined above, skeletons capture the topology of shape, allow-
ing one to reason about the number of connected components, holes,
tunnels, and cavities (voids) thereof. At a finer level skeletons also
capture the part-whole structure of shape. Simply put, each skeleton
branch (in 2D) or manifold sheet (in 3D) corresponds to a different
part of a shape; and each junction point (in 2D) or Y-intersection
curve (in 3D) corresponds to different parts meeting on the shape.
Hence, the skeleton structure naturally induces a shape segmenta-
tion.

For the above to work, we need a mapping between medial points
and points on the surface S. As outlined by Def. 2.3 and Eqn. 3,
medial surface points have at least two different closest-points on S.
Such contact points are described by the so-called feature transform
FT :O→P(S) [MQR03, HR08], defined as

FT (x ∈O) = {y ∈ S| ‖x−y‖= DTS(x)}= argmin
y∈S

‖x−y‖, (4)

which delivers the set of closest points y on a shape’s surface S to
a given interior point x. These are also called feature points [ST04,
HR08] or image points [SP09]. The so-called spoke vectors y−
x [PFJ∗03] are parallel with the shape’s distance-transform gradi-
ent ∇DTS , which gives, by definition, the shortest paths from S
to the skeleton. As DTS is divergence-free away from the skele-
ton (Sec. 2.1.2), spokes do not intersect outside the skeleton.

Using the feature transform (Eqn. 3), Giblin and Kimia’s skeletal
point classification [GK04] can be elegantly written in terms of the
cardinality of the feature transform [RvWT08b, KJT15]. Addition-
ally, by applying Eqn. 4 to skeletal components separated following
point classification, we can readily produce various types of shape
segmentation, e.g. patch-based segmentation from surface-skeleton
manifolds [LK07, RT08b] (Fig. 8a,b) or part-based segmentation
from curve-skeleton branches [ATC∗08, RT08a] (Fig. 8c).

The opposite mapping (from the skeleton to the surface) is also pos-

unclassified medial cloudA3 points

A2 points A3 points

A4 points
1

1 1

Figure 7: Medial surface point classification based on contact or-
der and count, illustrated for a box shape. Image generated with the
method in [KJT15].
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(a) (b) (c)

Figure 8: Part-based shape decompositions induced by (a) a 2D
skeleton and (b) a 3D curve skeleton. Patch-based decomposition
induced by a 3D surface skeleton (c). Colors in (b) and (c) indicate
different parts of the skeleton (top row) and shape (bottom row).

sible, and useful, too. In the continuous case, for C1 smooth sur-
faces, each point y ∈ S will have precisely one medial point via
FT−1. This allows a simple way to project the scalar function R
defined on the medial points onto S. This offers a formal way to
define and compute local shape thickness, which is crucial in many
metrology [Geo10, BCAC04], medical imaging [YP03, SNT∗10],
and shape retrieval [TV08] applications.

2.2.5. Semi-continuity and instability

To enable its practical use in shape processing, it is desirable for
the MAT to be Cauchy or Lipschitz continuous. Intuitively, similar
shapes (e.g. in terms of Hausdorff distance [dvOS00]) should yield
similar MAT’s. A second benefit of such continuity is that we can
approximate a shape O by some similar shape O′ whose MAT is
much easier to compute practically, and use this MAT as a ‘proxy’
for O’s MAT. This property is well known, and widely used, for
many shape processing tasks, such as smoothing, filtering, and edge
detection [Tau95, CC00].

(a) (b)

Figure 9: Illustration of semi-continuity. Applying small-scale
changes to the shape (a) results in large changes in its skeleton (b).

Unfortunately, MAT’s are in general not continuous in the above
sense [ABE09]. This means that even very small changes of O can
yield large changes of MAT(O) (Fig. 9). However, the MAT is
semi-continuous with respect to the one-sided Hausdorff distance.
In detail: Let OA be a shape and let δ > 0 be a distance. Semi-
continuity means there exists an ε > 0 such that for every shapeOB
with dH(Oc

A,O
c
B) < ε, we have dH(MAT(OA) | MAT(OB)) < δ,

whereOc
A =Rn \OA, dH(x | y) is the one-sided Hausdorff distance

of shape x from shape y and dH(·, ·) is the symmetric Hausdorff
distance. This means that even if two shapes OA and OB are very
similar, such as the ones in Fig. 9, a subset of the MAT points of one
shape can still be far away from any MAT point of the other. Such
medial points are typically called skeletal noise [FSL04,RvWT08b,

GMPW09] or spurious points [SBTZ02, SFM05, PK99b]. As such
points are caused by small-scale noise on S, removing them can
make MAT computation Cauchy-continuous, or stable with respect
to small-scale perturbations of S. This process is known as pruning,
or more formally, MAT regularization. A complementary approach
to bring continuity to the MAT is to regularize the shape itself, fol-
lowing the semi-continuity property, thus reducing the minimum
feature distance, and hence the required ε. Both approaches are dis-
cussed in Sec. 3.

2.3. Challenges of practical skeletonization

In theory, given an exact shape model, and a discrete implementa-
tion of any of the skeleton definitions in Sec. 2, we can compute
the associated exact skeleton. In simple cases, this can be achieved:
[FLM03] computed implicit function representations for the sheets
of the 3D medial surfaces of polyhedra, [SAR95] combined Voronoi
and exact methods. Yet, this is not possible and/or practical to do,
for any (complex) 3D shape, for several reasons. To show this, con-
sider the Maxwell-set definition of skeletons (Eqn. 3), one of the
most straightforward ways to implement a skeletonization method
(similar reasonings hold for the other definitions in Sec. 2). To use
this definition in practice, several choices need to be made:

• Object representation: Volumetric or boundary representations
are clearly the most suited tools for generically representing the
shapes O to skeletonize. However, the specific sampling and
interpolation decisions with respect to the surface S used by
such representations affect the definition of DTS . For instance,
polygonal models can be skeletonized using bisector methods
in 2D [Lee82, Hel01] and in 3D [CKM04]. Many methods al-
low computing skeletons of voxel shapes [AL01, HR08, ASS11,
SBdB15]. Skeletonization can also treat shapes represented us-
ing rational curves in 2D [Tzo11] and 3D [MCD11]. Yet, chang-
ing the shape representation often requires one to adapt the MAT
definition, including the ways to evaluate the distance transform
DTS .

• Boundary points: We need a way to practically determine when
two points on S are different (term x1 6= x2 in Eqn. 3). It
is well known that spurious skeleton branches are created by
closely-spaced point configurations that sample small surface de-
tails [OK95, TvW02, CC00, RvWT08b] (Fig. 9). One method to
eliminate such undesired skeletal noise is to use a tolerance when
comparing surface points [RT07]. A separate reason to use toler-
ances to compare surface points in Eqn. 3 is that sampled shape
surfaces can have widely varying resolutions, so comparison for
strict equality is not doable. Yet, using such tolerances can yield
too thick and/or noisy skeletons [RT07].

• Distance estimation: At the core of the skeleton definition
(Eqn. 3) is the distance of an interior point to the surface S,
which can be computed exactly or approximately (terms ‖yi−x‖
in Eqn. 3). Exact computation is best, but can be expensive for
densely-sampled shapes. Distance estimation is also affected by
the skeleton representation model: In a volumetric (pixel or voxel
grid) model, skeletal-atom positions are constrained by this grid.
Hence, exact distance estimation, even if possible, yields only
a subset of the true skeleton when the fixed grid cannot cap-
ture points found at precisely equal distances from two differ-
ent boundary points. Tolerance-based distance estimations and/or
comparisons can be used; however, this introduces various devi-
ations from the true skeleton [RT07].
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Property [CSM07] [SYJT13] [SJT14] [SBdB15]
Homotopy X X X X
Invariance X X
Thinness X X X
Centeredness X X X
Smoothness X X X
Details X X
Regularization X X X X
Reconstructibility X
Scalability X X

Table 1: Skeleton(ization) properties covered in survey papers.

Apart from the above concerns, modern 3D skeletonization methods
need to be highly scalable, e.g., compute 3D skeletons of complex
shapes having millions of voxels or polygons efficiently (e.g., at
near-interactive rates) [MBC12, JKT13, JST15]. Such throughputs
are highly challenging for most methods.

All above issues converge towards the need to compute approxi-
mate skeletons, or skeletons of approximate shapes. The first option
uses the actual input shape but approximates the formal skeleton
definitions (Sec. 2) to increase speed, robustness, and ease of skele-
tonization. The second option modifies the input shape, by using
the MAT’s semi-continuity, to better fulfill the speed, robustness,
and ease of computation requirements. The key common aspect of
all practical skeletonization methods is, thus, the use of approxima-
tions and/or heuristics when applying the skeletal definitions listed
in Sec. 2. These issues are discussed next.

2.4. Properties of Skeletonization Methods

As outlined above, actual skeletons computed by skeletonization
methods may differ in various aspects from the formal skeletons
implied by the definitions in Sec. 2. For such skeletons to be usable
in practice, we need to know how they precisely deviate from their
formal counterparts. For skeletonization methods to be useful and
usable, they have to comply with several additional non-functional
requirements. Both aspects are jointly discussed next.
Defining and assessing desirable properties of skeletons and skele-
tonization methods has been an important goal in shape processing,
see the four key surveys cited in Sec. 1 [CSM07, SYJT13, SJT14,
SBdB15]. Table 1 summarizes the key desirable properties covered
by these surveys. These are also the properties discussed in most
skeletonization papers. Assessing these properties is, obviously, of
crucial importance for the selection of a suitable skeletonization
method for a specific application context. Since this assessment is
quite involved, we discuss it separately next in Sec. 4.1. We next
discuss the properties in Tab. 1. For each property, we present its
definition and alternative names known in the literature, its rela-
tionship with potential approximations introduced by the practical
interpretation of skeleton definitions, and its practical implications.
For convenience, we employ here he Maxwell-set skeleton defini-
tion (Eqn. 3). Yet, all considerations below hold for all other formal
medial-skeleton definitions.

2.4.1. Homotopy

Practical skeletons should maintain the homotopy property of their
formal counterparts (see Section 2.2.1). While most curve and sur-
face skeletonization methods do that, small-scale tunnels occurring
in thin shape parts can be formed and/or discarded by both mesh and
voxel-based methods for low-resolution models [SYJT13, SJT14].

In turn, such defects can adversely affect topology-based shape
analyses such as shape matching [SSGD03]

2.4.2. Invariance

Since the skeleton definition depends only on the shape O, and
not on its position and/or size in the embedding space, skele-
tons should be invariant under isometric transforms T of the O,
i.e., MAT(T (O)) = T (MAT(O)). Analytic methods (e.g. methods
which represent both O and its skeleton as meshes) typically sat-
isfy this property, since all computations are done in high-precision
3D vector space. In contrast, voxel-based methods cannot be fully
invariant, since samples of both O and MAT(O) are constrained to
the fixed voxel grid. The adverse effects of variance can be limited
by using exact Euclidean distance transforms [MQR03, HR08] in-
stead of, for instance, approximate chamfer distances.

2.4.3. Thinness

By definition, skeletons are infinitesimally thin (Sec. 2.2.3). So,
practical skeletons should be as thin as allowed by the space sam-
pling used to model them. Mesh-based skeletons achieve the desired
zero thickness by construction. The thickness of voxel-based skele-
tons is lower bounded by the grid resolution. More importantly, one-
voxel thickness conflicts with centeredness (discussed next). Con-
sider the simple example of the 2D axis-aligned rectangleO whose
formal skeleton Fig. 10a shows. In a pixel-based sampling where
the rectangle width is even, the skeleton either completely misses
the central branch (marked gray in Fig. 10b), or, if constraints are
used to ensure homotopy, it will have a two-pixel thick branch cov-
ering all gray pixels, or a one-pixel-thick branch which is not per-
fectly centered within S. This shows the impossibility to use exact
distance comparisons for the skeleton definition (Eqn. 3) in a fixed-
grid setting.

computed skeleton pixels missed skeleton pixels

10
 pi

xe
ls

Figure 10: Thickness and centeredness issues. (left) Formal skele-
ton and (right) its counterpart computed on a fixed pixel grid.

2.4.4. Centeredness

By definition, each skeleton point should be at equal distance from
at least two different points of the shape surface S (Eqn. 3). Sev-
eral issues exist for practical skeletons with respect to centered-
ness. First and foremost, centeredness is constrained by the spa-
tial sampling used to represent the skeleton – as discussed above
in the context of thickness, voxel-based skeletons cannot always
be perfectly centered, even for simple shapes. In contrast, mesh-
based surface skeletons can be computed with arbitrarily accurate
centeredness [MBC12, JKT13]. A further issue arises for curve
skeletons (discussed in more detail in Sec. 3.2): Since there is no
universally-accepted definition thereof, it very hard to talk about
their formal centeredness. For example, [DS06] and [TAOZ12] (see
Eqn. 5) both formally define well-centered curve-skeletons, yet
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with very different approaches. In practice, centeredness is crucial
when using skeletons for shape reconstruction [ASS11] and metrol-
ogy [JKT13]. Centeredness can be quantitatively assessed in ab-
solute terms, by measuring distances from skeleton points to their
closest surface points; or in relative terms, by comparing two or
more skeletons produced by different methods against each other
using Hausdorff distance metrics [SJT14, JST15].

2.4.5. Smoothness

Surface skeleton manifolds are known to be at least piecewise C2

continuous, regardless of the noisiness of the input shape surface
S [PSS∗03, SP09]. As such, skeletonization methods should pro-
duce piecewise-smooth skeletons. Several problems exist related
to smoothness for practical skeletons. First, it is hard to quanti-
tatively assess when a skeleton is sufficiently smooth, since com-
puting a ground-truth skeleton on which smoothness can be as-
sessed is hard or even impossible. Secondly, smoothness can be
limited by the sampling resolution and/or sampling model used
for the skeleton (i.e., mesh- or voxel-based). The smoothness of
mesh-based skeletons strongly depends on the local point den-
sity used for sampling. Many such methods have difficulties in
densely sampling the so-called ligature branches [MSD08], i.e.,
branches which emerge from the main skeleton towards small-scale
convex bumps on the input surface S [SYJT13, JKT13]. Smooth-
ness can be increased by low-pass filtering the computed skeletal-
points [ATC∗08,HF09, JT12,HWCO∗13]. However, unconstrained
smoothing can adversely affect centeredness.

2.4.6. Detail resolution

Skeletons should effectively and accurately capture all shape topol-
ogy and geometry. This property is also known as the ability of
skeletons to detect junctions or perform component-wise differen-
tiation of the input shape parts [CSM07, SBdB15], as well as detail
preservation [SYJT13]. Detail preservation is important for applica-
tions such as exact/global shape matching, retrieval, and reconstruc-
tion [CSM07, RvWT08a]. Detail preservation conflicts with semi-
continuity and the instability of the MAT (Sec. 2). The key issue
here is what is to be considered as a small scale detail of a shape vs
what is to be seen as noise – we ideally would like to preserve the
former but remove latter. However, as typical to most shape process-
ing applications, the distinction between details and noise is not an
easy one to do generically. Most skeletonization methods favor the
removal of noise, which is seen as a major problem for using skele-
tons in practice, even if details are removed, as discussed also next
in the context of regularization. For instance, saliency-based meth-
ods [TK01,Tel12] propose heuristics to differentiate noise from im-
portant details using a local skeleton-vs-boundary analysis. How-
ever, such methods only work for 2D shapes.

2.4.7. Regularization and LoD

The MAT’s sensitivity to small shape changes (Sec. 2.2.5) has ma-
jor practical implications. Nearly all skeletonization papers mention
sensitivity as the key challenge in computing usable skeletons. Re-
moving such instabilities is known under various names, e.g. prun-
ing [OK95, SP09, ASS11] and regularization [RvWT08a, JKT13].
Regularization can be seen as a filter F(·,τ) which, when applied
to MAT(O), yields a skeleton F(MAT(O)) that is Cauchy or Lip-
schitz continuous with respect to variations of O smaller than τ.
Regularization methods which are also continuous in τ yield pro-
gressively simplified skeletons at any user-desired LoD, or a multi-

scale skeleton [CC00,FSL04,TvW02,DS06,RvWT08a]. Two types
of regularization exist [BGP10, RvWT08a]: local and global.

Local methods include the angle between feature points
(Fig. 11d) [ACK01, HR08] and distance-to-boundary [FLM03].
While this approach is able to retain features at different scales,
it might result in an skeleton whose topology is drastically dif-
ferent as we change the threshold. The λ-medial axis discards
medial samples whose corresponding surface samples have a
circumradius larger than λ [CL05a]. For particular choices of λ,
the skeleton is homotopic to the shape, and its approximation
quality is provably convergent [CL05b]. Unfortunately, this metric
does not allow capturing details at different scales, as salient
shape features are removed before noise (Fig. 11-c). Other local
metrics include divergence measures [BST05, SBTZ02, SFM05]
and first-order moments [RT02] of the distance transform. While
simple to compute, no local measure can separate locally-identical,
yet globally-different, contexts (see e.g. Fig. 1, [RvWT08a]).
Moreover, many such detectors asymptotically decrease to zero
along deep ligature branches, see e.g. Fig. 12b which shows the
divergence measure in [SBTZ02]). Hence, thresholding such local
measures can disconnect skeletons. Reconnection needs extra work
and makes pruning less intuitive [SB98].
Global measures monotonically increase from the skeleton bound-
ary ∂MAT(O) inwards. Thresholding them preserves homotopy.
Such measures include the Scale Axis Transform (Fig. 11-e)
[BGP10] which exploits union-of-balls (UoB) medial properties
[GMPW09]; the medial geodesic function (MGF) measuring the
shortest-geodesic path between feature points for curve skeletons
[DS06, PH02]; and its extension to surface skeletons [RvWT08a].
These belong to the larger family of so-called ‘collapse metrics’
used to simplify 2D skeletons [CC00, OK95, TvW02]. Collapse
metrics are monotonic and have an intuitive geometric meaning:
They assign to a skeleton point the amount of shape boundary that
corresponds, or ‘collapses to’, that point. Hence, regularization is
easy: Thresholding by a value τ removes all skeleton points which
encode less than τ boundary-size units. Figure 13 illustrates this by
showing progressively simplified 2D and 3D skeletons by three such
methods. Yet, for large 3D shapes, computing collapse metrics is not
cheap [JST15], even when using GPU parallelization [JKT13].

a) b) c) d) e)

Figure 11: (a) 2D object and its medial axis. (b) Noise added to
the boundary yields spurious medial branches. (c) Object angle
filtering (λ-medial axis [CL05a]) captures features across differ-
ent scales but yields topological changes. (d) Distance-to-boundary
filtering (γ-medial axis [ACK01]) retains topology but removes
small features before spurios branches. (e) The scale axis trans-
form [BGP10] removes noise while retaining small features.
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skeleton ligature

Figure 12: A 2D skeleton can be extracted by (a) computing the
distance transform of a shape and then (b) locally detecting high-
divergence area [SBTZ02]. (b) Ligature branches get a far lower
detector-metric value as compared to other branches.

Regularization can be also done onO rather than its MAT. Formally,
this applies a smoothing filter F(·,τ) to O so that MAT(F(O)) is,
generally speaking, Cauchy or Lipschitz continuous upon changes
of O smaller than τ [BGP10]. Yet, controlling the smoothing
amount τ to get a desired level of skeletal noise removal is chal-
lenging [ABE09].

2.4.8. Reconstructibility

The MAT provides a full encoding of a shape O and is also fully
invertible (Sec. 2). In theory, this allows reconstructing the exact
O from its MAT(O), a process also known as garbing [DRF12,
ASS11, JKT13]. Yet, practical skeletons approximate formal ones,
due to approximate representations, sampling limits, or regulariza-
tion. Hence, exact reconstructibility of a shape from its skeleton is,
in practice, rarely possible. High-resolution and accurately-centered
mesh-based surface skeletons can efficiently reconstruct shapes up
to high detail (Fig. 14). Voxel-based surface skeletons also offer
good reconstruction accuracy [ASS11, JST15], albeit with lower
quality as compared to mesh methods, due to the discussed limi-
tations of fixed grids.

When collapse metrics (discussed earlier) are used to regularize
skeletons by pruning medial points having a collapse value lower
than τ, reconstruction has several guaranteed properties: For 2D
skeletons, reconstructing the simplified skeleton is equivalent to re-
placing all corners on the input shape’s contour by circular arcs of
radius τ [TvW02,SP09] (Fig. 11d). For 3D surface skeletons, this is
equivalent to replacing all corners by spherical patches of radius τ,
and all edges by cylinder patches of radius τ, respectively [RT02].

2.4.9. Computational scalability

Since their appearance more than forty years ago, skeletons have
been used in many applications. 2D skeletons require a relatively
limited computing power, as typical input shapes are in the or-
der of 10002 pixels. In contrast, modern 3D synthesis and ac-
quisition methods can easily generate shapes up to 10003 vox-
els or, equivalently, millions of surface polygons. As such shapes
can be acquired in near-real-time, interactive and scalable 3D
skeletonization methods are crucial [CSM07]. To achieve this
goal, several approaches have been proposed. Voronoi-based meth-
ods typically achieve a complexity of O(n logn) for n sample
points on S [OK95, DS06, ACK01]. Distance-based methods us-
ing voxel sampling achieve a complexity of O(T log‖S‖), where

‖S‖ is the shape boundary length and T is the average shape
thickness [TvW02, FSL04], comparable with the complexity of
Voronoi methods. Other methods achieve a linear complexity in
the number of input voxels ‖O‖ [RT05, HR08], which is slightly
higher than [TvW02, FSL04, OK95]. Shape contraction and ball-
inscription methods have a complexity of O(ns), where n is the
number of surface samples ‖S‖ and s is the number of contraction
iterations, typically a constant [MBC12, JKT13, ATC∗08]; linear-
complexity O(n) methods also exist [TAOZ12]. Overall, all such
methods are quite similar in theoretical computational costs. How-
ever, much can be gained in terms of practical costs, by parallelizing
the skeleton-detection operations, e.g. distance transform compu-
tation [CTMT10] or ball-inscription method [MBC12, JKT13]. By
exploiting the fact that skeletal points, following Def. 2.1, can be
searched for independently, GPU-based parallelization can lead to
skeleton extraction from mesh models of millions of vertices in near
real-time on modern PCs [MBC12, JKT13], however, such high-
throughput methods are hindered by complex implementations.

3. Taxonomy of skeletons

Skeletonization methods can be seen as spanning a multidimen-
sional attribute space. A point herein is a method whose attributes
describe how the method complies with the properties in Sec. 2.4.
An easy-to-use way to present such a space is via a taxonomy
tree. Yet, there are many ways to group N methods, each having
M attributes, to build such a tree. We address this by assigning
tree-levels to attributes that most separate the studied methods.
This yields the two-level tree formed by:

Level 1: Dimensionality. The first taxonomy level uses the dimen-
sionality of skeletal parts. For 3D shapes, those can either be 1D
curves or 2D surfaces. Hence, methods are subdivided into curve
skeletonization methods (yielding skeletons having only curve
parts) and surface skeletonization methods (yielding skeletons
generically having surface and curve parts).

Level 2: Sampling. The second level captures the spatial sampling
used to represent the input shape and/or its skeleton. Two options
exist here: image methods use a uniform discrete pixel or voxel
sampling of Z3; analytic methods use a continuous, typically non-
uniform, sampling into vertices in R3. While analytic methods can
be easily converted to image methods by voxelization tools [NT03],
the two representations lead to skeletonization methods having quite
different properties. Next, when presenting our proposed taxonomy,
we refer to the sampled representations of the input shapeO and its
surface S by O and S, respectively.

3.1. Surface Skeletons (SS)

These methods aim to produce skeletons that follow the equivalent
medial definitions in Sec. 2. Such methods deliver skeletons which
have a good correspondence to the input shape, and thereby a high
reconstruction power. However, surface skeletons have a complex
structure, which makes these methods relatively more complex and
slower to compute than curve skeletonization methods.

3.1.1. Analytic Surface Skeletons (ASS)

These methods represent both the input shape O and its surface
skeleton analytically. Hence, they offer the optimal approximation
and memory-efficient shape encoding. Yet, they are also arguably
the most complex methods in the 3D skeletonization arena.
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Figure 13: Skeletons progressively simplified by the collapse metrics of [TvW02] (a-c), [JST15](d-f,j-k), and [RvWT08a](g-i).

3.1.1.1. Voronoi methods: The Maxwell set form of Def. 2.1 al-
lows computing skeletons in terms of Voronoi diagrams. Indeed, the
Voronoi diagram V (S) of a sampled surfaceS partitions the space
into cells V (x∈ S) containing the points closer to x than to any other
samples. Thus, cell boundaries are points having more than one
closest neighbors in S. By considering the boundaries of Voronoi
cells inO, we get an approximation of the MAT of S. This is easily
seen in 2D, as a Voronoi edge is the locus of points having two clos-
est neighbors on S. The accuracy of this MAT depends on the sam-
pling of S (Fig. 15): Given a dense enough δ (uniform) sampling of
S a provably convergent and homotopic medial approximation of
MAT(S) is achievable [BA92, AM97]. This was later generalized
to adaptive ε-sampling to use less samples in less detailed regions
of S [AB98].

However, the results in [AM97, AB98] do not directly hold for 3D
shapes. The issue is that, even for arbitrarily fine samplings, the
Delaunay triangulation dual to the Voronoi diagram presents sliver
tetrahedra. These correspond to Voronoi vertices, which neither fall

surface garbing surface surfacegarbing garbing

Figure 14: Surface rendering (top row) and skeleton-based recon-
struction (middle row). Insets show details [JKT13].

a) b)

c) d)

Figure 15: Voronoi diagram of a boundary with increasing and
uniform sampling density. Voronoi vertices and edges completely
enclosed in the boundary approximate the medial axis. As density
increases, the approximation improves. A minimal sampling density
is needed to obtain skeletons homotopic to the input shape.

close to the skeleton nor are related to any prominent surface feature
(Fig. 16b). To address this, [AB98] approximate the skeleton by
only considering the Voronoi poles in the diagram, defined as

Definition 3.1 Given a finite set of points S ⊂ Rn which
samples a surface S, and its Voronoi diagram, each p ∈ S
is associated with a convex Voronoi polyhedron H. The
vertices of H on the two sides of S which are farthest
from p are the Voronoi poles of p.

The validity of Voronoi poles for medial approximation was for-
mally verified in [ACK01], by showing that for an ε-sampled C1

manifold, poles approach the surface skeleton as ε vanishes. Fig. 16
shows this by comparing the approximation power of poles to the
one of Voronoi vertices. Several approaches of linking the poles or
other subsets of medial-approximating Voronoi vertices exist, be-
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a) b) c)

Figure 16: Comparison of medial approximation by interior
Voronoi vertices (b) and interior poles (c) of a dense sampling of
the shape boundary (a).

sides [ACK01], e.g., filtering the Voronoi diagram [DZ04], and
flow-related distance functions [GRS06].

3.1.1.2. Bisector methods are closely related to Voronoi meth-
ods. For a point-pair (p,q) ∈ S2, the bisector B(p,q) ⊂ R3 is the
point-set equidistant from p and q. Bisector skeletonization meth-
ods [Lee82,CKM04] compute B(p,q) for all sample-pairs in S. Bi-
sectors B(p,q) are pruned next to yield their point-subsets H(p,q)
that are closest to p and q. If H(p,q) is not empty, it is the Voronoi
face dual to the Delaunay edge pq of S. Restricting ∪H(p,q) to the
inside of O yields the shape’s surface skeleton. While very similar
to Voronoi methods, bisector computation is typically far less ef-
ficient than Voronoi diagram construction – first, all bisectors are
computed with brute force, while most get discarded next. Medial
scaffold (MS) methods [LK01, LK03, LK07] address this by using
the skeletal-point classification (Fig. 7) to compute only the bisector
parts relevant to the surface skeleton. The resulting skeletons are as
accurate as those produced by Voronoi methods; while MS methods
are, still, slower than Voronoi methods, they also deliver a medial
point classification atop the computed skeleton (Sec. 2.2.3).

3.1.1.3. Shrinking ball methods literally apply Def. 2.1 on S
to compute its surface skeleton: For each x ∈ S, a ball tangent to
S at x is iteratively shrunk until it touches another point y 6= x
of S. The ball center is then a medial point. Such methods are
simple to implement, very accurate, computationally efficient by
the use of fast nearest-neighbor schemes to test if a ball is in-
scribed [AMN∗98], and parallelize easily, being the fastest exist-
ing surface-skeletonization techniques [MBC12,JKT13]. However,
they require a very fine sampling S of S to yield (equally) fine skele-
ton sampling. Also, they deliver only a skeleton point-cloud rather
than a meshed model.

3.1.2. Image Surface Skeletons (ISS)

These methods use an image model of both the input shape O
and the produced surface skeleton. For 2D skeletonization, most
methods are image-based [SP09] with only a few analytic ones
[OK95]. While in general simpler to implement than ASS meth-
ods, ISS methods have far larger memory demands – typically
O(n3) instead of O(n2) for an n-point sampling of the surface
∂S [SFM05]. Also, they can only capture centeredness within the
bounds of the sampling resolution of O (Fig. 10 for a 2D illustra-
tion). Image surface skeletonization is also discussed in recent sur-
veys [SJT14, SBdB15].

3.1.2.1. Topological thinning methods: One of the earliest ap-
proaches to compute surface skeletons was iteratively removing

voxels from the boundary ∂O until a ‘thin’ model is reached. This
simulates the grassfire evolution (Def. 2.2): Two fire fronts quench
when they reach a simple point, i.e., a voxel that cannot be removed
without changing the topology of O [TF81, Pud98, PK99b]. Thin-
ning methods differ mainly in the (a) voxel removal order; and (b)
simple point definition. Removal can be done either by alternating
thinning between the opposite faces of an axis-aligned bounding
box of O (also called directional thinning), which is cheap, but ap-
proximates centeredness poorly [PK99b]; or in the order given by
the distance transform DTS, which yields better centered skeletons
[Pud98, ASS11]. Simple points v ∈ O are usually defined by using
their 26−neighborhood N26(v). For instance, [BM94, SC94] use
the 26−connectedness of O and 6−connectedness for O to define
simple voxels v as those where both N26(v)

⋂
V and N26(v)

⋂
V

have one connected component each. Another way to define simple
points uses the collapse operation in a cubical complexes frame-
work [CB08]. Tens of simple point definitions have been proposed,
each with its strengths and limitations [SBdB15]. While all such
methods preserve topology well, they fare less well in delivering
smooth, noise-free, centered skeletons.

Thinning is an iterative process, so speeding it up by parallelizing
voxel removal has been a major focus [SBdB15]. If one can in-
dependently detect and remove non-simple points, thinning paral-
lelizes trivially to the entire voxel-set O. While many parallel thin-
ning methods exist, with optimal linear complexity O(‖O‖), their
concrete run-times are not often given in the literature. Also, recent
distance-field methods achieve identical complexity with better cen-
teredness and smoothness as discussed below.

3.1.2.2. Distance field methods: These methods exploit skele-
ton definitions based on the singularities of the distance transform
and related fields (Sec. 2.1.2) [KSKB95, GF96, RT02, SBTZ02,
HR08]. Computation of exact Euclidean distance transforms and
skeletonization can be efficiently implemented on GPUs, mak-
ing such methods amongst the fastest surface skeletonization tech-
niques [SFM05,vDvdWT06,CTMT10]. Regularization can be next
added using local [FLM03] or global [RvWT08b, JST15] metrics.
Filtering the singularity detection and/or the input distance field
yields smooth skeletons [SBTZ02, RT02]. However, such meth-
ods are inherently local, which may lead to disconnected, non-
homotopy-preserving skeletons. To correct this, singularities are re-
moved only when they are non-simple points [SBTZ02, JST15].

3.2. Curve Skeletons (CS)

Noting that applying the skeleton definitions in Sec. 2 yields very
complex structures as compared to 2D-shape skeletons, researchers
focused on creating skeletons of 3D shapes which (a) loosely fol-
low the desirable properties implied by the formal definitions, and
(b) keep the 1D simplicity of 2D-shape skeletons. These so-called
curve skeletons are loosely defined as 1D structures “locally cen-
tered” in a shape [CSM07]. The lack of a unanimously accepted for-
mal definition has led to many methods which compute curve skele-
tons following different, and typically implicit, definitions. This
makes it hard to analytically compare, and reason about, the ex-
act properties of the produced curve skeletons [SYJT13]. However,
for tubular shapes having local axial circular cross-sections, curve
skeletons can be defined as being 1D structures that, at least, pre-
serve shape topology. This has led to (a) the use of curve skele-
tons chiefly for such shapes; and (b) the derivation of computa-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, A. Telea / 3D Skeletons: A State-of-the-Art Report

(a) (b)

(c)

(d)

Figure 17: (a) ASS color-coded by the medial geodesic function
(MGF). (b) Three points (red) on a cuboid’s’ medial surface; their
corresponding image points (blue); shortest paths on the surface
between these points (black). (c) high-divergence points define the
ACS. (d) ACS of a noisy hand model. Courtesy of [DS06].

tion algorithms based on the assumption that shapes roughly satisfy
the above-mentioned local property, and that the delivered curve
skeletons should satisfy the observed desirable properties of surface
skeletons (Sec. 2.4). Such curve skeletonization algorithms are dis-
cussed next. While curve and surface skeletons have at least some
common ground in terms of definitions, requirements and proper-
ties, other descriptors exist that only share the name of skeleton.
Such descriptors are too diverse to be jointly covered in detail in
this survey.

3.2.1. Analytic Curve Skeletons (ACS)

These methods represent both the shape O and its curve skeleton
analytically. Hence, they share the accuracy and smoothness typical
to ASS, but also their higher implementation complexity.

3.2.1.1. Medial-surface-based methods: Many heuristics have
been proposed to compute curve skeletons by pruning surface skele-
tons to 1D curve. In [DS06], the ACS is computed as the shock
graph of the Medial Geodesic Function (MGF), a scalar function
defined on the ASS. Given a medial atom a(x,r) and its two fea-
ture points f1 and f2, the MGF is defined as MGF(x) = dS(f1, f2),
where dS(·, ·) is the geodesic distance on S (Fig. 17). The key value
of the MGF is that it appears to be monotonically increasing from
the ASS boundary to its center (although this property was not for-
mally proven), so the extracted curve skeletons are not only centered
within the shape, but also centered within the ASS itself. A variant
of the MGF defines curve skeletons as the locus of ASS points ad-
mitting two different equal-length geodesics between their feature
points [RvWT08a,JKT13]. MGF-based methods provide one of the
few formal definitions of curve skeletons. However, this definition
has not (yet) been recognized as being universally valuable for all
contexts where curve skeletons are needed. Also, such methods are
highly expensive, as they require accurate computation of geodesics
between all surface point-pairs that are features of ASS points.

3.2.1.2. Generalized field analysis methods: To encode the no-
tion of well-centeredness within the shape, one can replace the
Euclidean closest-point metric (Eqn. 3) with a less-localized ver-
sion [HF09]. The value of this new distance field is computed as
the average of potential fields of many boundary samples, and the
skeleton extraction is performed by tracing curves seeded at crit-
ical points along high-divergence directions. Given the averaging,

such curve skeletons are very smooth. However, they require the
expensive computation of the field throughout the full volume O,
as well as complex algorithms to robustly trace the field discontinu-
ities [CSM07].

3.2.1.3. Contraction methods: The 1D curve representation of
ACS is a geometric entity with vanishing surface area and therefore
vanishing volume. To compute the ACS, one can design a shape
evolution, or shape flow, that smoothly evolves the shape boundary
into the one of its ACS (see Fig. 18). This ‘contraction’ idea was pi-
oneered in [WL08], where a volumetric approach is proposed: The
shape’s interior is first discretized into voxels, and a flow is then de-
fined by an energy measuring the volumetric grid’s edge lengths. To
avoid this energy from isotropically scaling the contracting shape
down to a point, a constrained problem is solved where the loca-
tions of voxels close to the shrinking surface are required not to
move too far from their initial location on S. A variant was later
proposed in [ATC∗08], where the optimization is directly formu-
lated on the shape surface S. Like in [WL08], constrains are added
to avoid the trivial solution and also retain important surface fea-
tures. Both above constraints, called attraction and contraction, can
efficiently be encoded by a system of linear equations for which ef-
ficient solvers are available. The fundamental connection between
contraction and differential geometry was first revealed by [CK11]
and then formalized in [TAOZ12]. This simplified the complex opti-
mization in [ATC∗08] to a discretization of the mean curvature flow,
a well-known flow in differential geometry. The differential equa-
tion of mean curvature flow is the Euler-Lagrange of a functional
integrating the shape’s surface area. Hence, motion by mean curva-
ture results in the desired surface-area loss through time [RW03].
To adapt such flow to skeletons, the flow is modified so that it stops
once the surface is locally fully contracted, i.e.{

Ṡ(t) =−H(t)n(t) if H(t)<∞
Ṡ(t) = 0 otherwise

(5)

where Ṡ = ∂S/∂t, H is the mean curvature on S, and n is the nor-
mal of S. As curvature motion is a smoothing flow [RW03], skele-
tons extracted with this procedure are also naturally smooth and
resilient to surface noise. Mean curvature is also directly connected
to the discrete Laplace-Beltrami operator, leading to the aforemen-
tioned computational efficiency. However, this flow is known to de-
grade the quality of the underlying triangulation S [TAOZ12]. To
fix this, advanced methods that discretize Eqn. 5 by projecting its
solution in the embedding space can be used [CK11], or alterna-
tively the quality of the triangulation must be adapted during the
motion [TAOZ12]. While these ACS are not naturally centered, the
variational formulation of Eqn 5 can be naturally combined with
the grassfire interpretation of MAT (Def. 2.2), resulting in well-
centered curve skeletons [TAOZ12]. Such contraction methods can
also be used to skeletonize shapes represented as unstructured point
clouds, if an appropriate discretization of the Laplace-Beltrami op-
erator is used. A first method in this class builds the Laplacian by
first projecting the surface point samples on their local PCA tan-
gent plane and then computing their local triangulation [CTO∗10].
Other approaches contract point clouds by generalizing robust fair-
ing techniques like locally optimal projections (LOP) [LCOLTE07]
to robust L1 point cloud contraction [HWCO∗13]. While such
methods provide good performance on raw (outlier ridden) point
clouds, whether they admit an elegant variational formulation like
the one in Eqn. 5 remains an open question.
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a4)a4)

Figure 18: Top row: Surface mesh of a hand model and its surface axis, followed by four contraction steps to compute curve skele-
tons [TAOZ12]. Bottom row: Five contraction steps of a surface skeleton towards a curve skeleton [JT12].

Other contraction methods start from the surface skeleton (ASS)
rather than the input surface S. The method in [JT12] iteratively
contracts the ASS by moving its points x in the direction of the sum
of the tangent vectors of the feature-points of x to S. Since this sum
is known to be tangent to the ACS at x [LK07], contraction effec-
tively takes place within the ASS, thereby maintaining centeredness
of the resulting curve skeletons. However, to yield good results, this
method requires a finely-sampled ASS; see bottom row of Fig. 18.

3.2.1.4. Mesh decimation methods: Decimation can be used to
compute curve skeletons as, in the limit, it yields edges having no
incident faces, thus modeling a discrete 1D curve network. This idea
is pioneered in [LWTH01] by using an iterative edge collapse on a
triangle mesh. While centeredness and smoothness of the produced
ACS is suboptimal as compared to other ACS methods discussed
in this section, this approach is widely used in post-processing to
convert contracted geometry into curve networks [WL08,ATC∗08,
CTO∗10, TAOZ12]. Recent techniques have also tried to improve
the embedding quality by regularizing the connectivity before each
topological contraction step [JXC∗12].

3.2.1.5. Property-grouping methods: As stated earlier, skeletons
provide ways to decompose a shape in its fundamental parts and
their interconnections (Sec. 2.2). Property-grouping methods invert
this process: First, portions of the input shape are grouped into parts;
next, a skeleton is generated that describes their spatial configura-
tion. While reflectional symmetry (Def. 2.4) can be exploited for
skeletonization in 2D [Zhu99], in 3D it is rotational symmetry that
must be considered [TZCO09] (see Fig. 19b). Conversely, convex
decomposition segment a shape into parts whose principal axes (in
a PCA sense) are well-centered [LKA06] (Fig. 19a), while in an-
imated articulated models concavities close to bending joints cre-
ate hints to hierarchically segment the shape [KT03]. Coherence
of information over animation time also provides important hints
to extract curve skeletons associated with articulated motion. A set
of frames where the shape is posed differently can be analyzed to
discover the underlying articulated structure. Following this intu-

a) b)

c)

Figure 19: (a) Convex decomposition allows to recycle PCA axes as
skeletal branches [LKA06]; the finer the decomposition, the more
accurate the skeletonization. (b) Local rotational symmetry of a
group of samples can be measured by observing the surface nor-
mals arrangement on the Gaussian image [TZCO09]. (c) The artic-
ulation of a shape is essentially described by a set of locally rigid
transformations [AKP∗04]; these transformations can be identified
and exploited to create a kinematic skeleton.

ition, [AKP∗04,SY07,DATTS08] construct curve skeletons by first
clustering parts of the shape undergoing similar transformations, as-
sociating a so-called ‘bone’ (1D ACS branch) to each of them and
connecting them together to create the ACS (Fig. 19c).

3.2.1.6. Topology-driven methods: A different, very efficient,
way to compute curve skeletons uses a topological approach: Given
a shape O, consider a real-valued function f defined on the man-
ifold contour S of O. The simplicial complex [Ree46], usually

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, A. Telea / 3D Skeletons: A State-of-the-Art Report

a) b) c) d)

Figure 20: (a) Reeb graph of a 3D shape built by the integral
geodesic distance [HSKK01]. Shape reconstruction (d) from its
Reeb graph (b) using level set tiling (c) [BPS∗10].

known as Reeb graph, is the quotient space defined by the equiv-
alence relation that finds points belonging to the same connected
component of f ’s level sets. Under some hypotheses on S and f ,
this space is a finite and connected simplicial complex K of dimen-
sion 1, so that the counter-image of each vertex of K is a singular
connected component of f ’s level sets, and the counter-image of
each simplex’s interior is homeomorphic to the topological prod-
uct of one connected component of the level sets by R [Ree46].
Hence, Reeb graph vertices are given by the critical points of f , and
its edges represent compact sets of homeomorphic level-set com-
ponents between critical-point pairs. Reeb graphs can be embedded
geometrically to define curve skeletons in a very compact way, not
necessarily linked to a reasoning on symmetry (Fig. 20a).

The definition of Reeb graphs nicely formalizes the concise topo-
logical encoding of shapes. Various geometric embeddings can be
used for the Reeb simplicial complex. The traditional barycentric
one maps simplex vertices are mapped to images of f ’s critical
points on S, and edges to the barycentres of the non-singular level
sets of f . This mapping guarantees that the Reeb graph embedding
remains internal to the shape and thus gives a well-defined surface-
skeleton correspondence. As f is a parameter, different choices for
f yield different curve skeleton, which reflect the behaviour of f
on S. This gives flexibility in the delineation of a skeletal line,
which may be guided to follow specific characteristics, e.g., Reeb
graphs defined by the integral geodesic distance [HSKK01] or by
Laplace-Beltrami eigenfunctions [BMMP03]. On the other hand,
some choices of f may yield skeletons which poorly character-
ize the shape geometrically. For any f , however, the Reeb graph
preserves the shape topology. Concerning other skeleton properties
(Sec. 3), the Reeb graph’s invariance to isometric transformations
of the shape depends on the invariance of f ; thinness is ensured by
construction; centeredness depends on the geometric embedding;
and detail resolution depends mostly on the smoothness of f . Con-
cerning reconstructability, Biasotti et al. [BPS∗10] proposed an au-
tomatic coding/decoding of 3D shapes using Reeb graphs thanks
to an iterative refinement of level sets and their tiling (Fig. 20b-d).
Reeb graphs can be extracted following a multi-resolution strategy,
as in one of the first papers exploring them in graphics [SKK91].
Recent trends studying the persistence of f ’s critical points propose
a LOD-like organization of Reeb graphs. Their computational scal-
ability and discretization issues are discussed in [BDF∗08].

3.2.2. Image Curve Skeletons (ICS)

Similar to ISS methods, ICS methods use an image model for both
the input shape and the produced curve skeleton. They can be or-

ganized along the main categories of ICS methods – thinning and
distance-based. However, defining a suitable regularization metric
for ICS is harder than for ISS. As such, ICS methods have in gen-
eral a higher difficulty in being noise-resistant and simultaneously
capturing fine-scale shape details. Separately, delivering centered
and smooth curve skeletons is hard due to the inherent fixed-grid
limitations and the difficulty of suitably defining centeredness for a
curve skeleton, both mentioned earlier.

3.2.2.1. Topological thinning methods: Most ICS methods fall
in this class. Tools from mathematical morphology [Ser82] were
among the first used to compute curve skeletons by thinning. The
residue of openings, using Lantuéjoul’s formula [Lan79], usu-
ally leads to disconnected skeletons; methods based on homo-
topic thinning [Beu94, PK99a, MBPL99], yield connected skele-
tons. Yet, pure (directional) thinning cannot ensure centeredness
and smoothness [MS96,PK99a]. To favor noise-resistance, Ju et al.
extract curve skeletons by alternating thinning and skeleton prun-
ing [JBC07]; Liu et al. propose a robust thinning method that works
on cell-complexes built using voxelization. They introduce a me-
dial persistence regularization metric that discriminates shape parts
with different anisotropic elongations, e.g., tubes or plates, similar
to [JBC07], which can deliver a continuum between surface skele-
tons and curve skeletons, similar to meso-skeletons [TAOZ12].

3.2.2.2. Distance based methods: To increase smoothness and
centeredness, thinning can be done in distance-to-boundary or-
der, much like for ISS methods [Pud98, ASS11]. Alternatively,
curve skeletons can be extracted directly from the singularities of
distance-related fields. Such methods are invariant under isometric
transformations. For example, Zhou et al. extract the local maxima
of the distance transform and connect these by 1D paths to create
curve skeletons that are connected, centered, and one-voxel-thin.
The surface skeletons delivered by the divergence-based method
in [SBTZ02] can be homotopically thinned to deliver curve skele-
tons, albeit with detail loss [SJT14]. The MGF metric proposed for
ACS [DS06] was extended to compute image-based curve skele-
tons [RvWT08a]. Extracting curve skeletons as subsets of surface
skeletons has the important advantage of enforcing centeredness of
the former based on the guaranteed centeredness of the latter.

3.2.2.3. Projection methods: A radically different approach to
compute 3D curve skeletons is to exploit the high quality and com-
putational speed of existing 2D skeletonization methods. Formally
put, let P : R3 → R2 be a ‘projection’ mapping a 3D shape O to a
2D shape, and let CSn be the curve skeletonization operation in Rn.
Projection methods compute the 3D curve skeleton CS3(O) by us-
ing suitably computed 2D skeletons CS2(P(O)). For example, one
can use for P the axis-aligned slicing of O and compute CS3(O) as
the intersection of all CS2(P(O)) for all slices taken for the three
axes [TV03]. Alternatively, one can use for P the 3D-to-2D or-
thographic projection and compute CS3(O) as the intersection of
all CS2(P(O)) for a large number of viewpoints uniformly spread
around O [LGS12].

4. Analyzing Skeletons

As outlined in Sec. 1, skeletons are not a means by themselves, but
useful tools that enable various shape analysis and processing op-
erations. However, skeletons need various analysis and processing
steps to make them directly suitable for such usage. The ones that
are most frequently used are outlined next.
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4.1. Comparing Skeletons

As shown in Section 3, skeletonization methods, and their results,
widely differ in many aspects, including their compliance with the
desired properties listed in Sec. 2.2. So, before using such methods
in practice, a first and important task is to compare them to assess
which method is optimally suited to the constraints of a specific
application. Assessment is most often done by qualitative means,
e.g., visually comparing skeletons obtained with different methods.
Figure 21 shows a typical example of such a qualitative compari-
son of 10 surface and 6 curve skeletonization methods, done by vi-
sual inspection. In this example, it is easy to observe that the com-
pared methods satisfy several properties quite differently (homo-
topy preservation, smoothness, centeredness, robustness to noise,
and thinness). This implicitly explains the continuing research ef-
forts in designing better skeletonization methods.

In contrast to qualitative (visual) assessment, quantitative assess-
ment is far less common in skeletonization papers. An exception
here is scalability, which is benchmarked by time and/or memory
consumption figures. Recently, quantitative assessment was also
used for other skeleton properties, e.g. reconstructibility [ASS11]
and centeredness [SJT14], based on Hausdorff measures between
the compared shapes.

Table 2 shows an overview of comparison efforts for a number of
recent skeletonization methods. As visible, the extent of compari-
son efforts is, in general, quite limited. This can be explained by
several factors: (a) the difficulty of obtaining (full) implementations
of competing methods; (b) the lack of unanimously accepted for-
mal definitions for certain skeletal properties such as robustness to
noise, smoothness, regularization, and centeredness (of curve skele-
tons); (c) the lack of a ‘ground truth’ skeleton (for curve skeletons),
stemming from the lack of an unanimously accepted curve-skeleton
formal definition; (d) the lack of an established benchmark of 3D
shapes exhibiting (all) relevant challenges for surface and curve
skeletonization; and (e) the sheer amount of skeletonization algo-
rithms known in the literature. Note that most of the issues above,
except (c), also hold for 2D skeletons, which explains why compar-
isons of 2D skeletons are also not very extensive in the literature.
Given the above, benchmarking 3D skeletonization methods against
desirable properties and/or against other competing methods is, and
will likely remain, hard. This is an increasingly important challenge
for both researchers and practitioners involved with 3D skeletal de-
scriptors.

4.2. Reconstructing skeletal structure

To be useful and usable for most practical applications, the ‘raw’
MAT consisting of the medial point cloud and inscribed ball radii
needs further analysis. This includes (a) creating compact represen-
tations of medial skeletons; and (b) separating skeletons into their
composing parts (manifolds for surface skeletons; curve segments
for curve-skeletons). Note that (b) is tightly related to finding the
boundaries of these parts (external boundaries and Y-intersection
curves for surface skeletons; tips and junction points and for curve
skeletons), as discussed in Sec. 2.2. Doing both (a) and (b) for
image skeletons is relatively simple – these are by definition con-
nected sets of voxels, which addresses (a); and finding intersec-
tion points and tips can be easily and efficiently done by using
the many templates available in the image morphology literature,

e.g. [BM94,SC94,PK99a], or by using the cardinality of the voxel-
based feature transform (Eqn. 4) [RT08c], which addresses (b) (see
Fig. 22a). In contrast, doing both (a) and (b) for analytic curve
and/or surface skeletons is considerably more complex, as follows.

(a) Compact skeletons: Analytic representations of medial skeletons
minimally need a raw MAT, defined above. While such point clouds
directly support several tasks like garbing (Sec. 4.3 next) or local
thickness estimation [JKT13], using them for other tasks like shape
segmentation and shape classification needs complicated heuris-
tics [ATC∗08,CLK09,KJT15]. Consider for instance the most basic
task of visualizing a compact and smooth representation of a sur-
face skeleton – this should be easily possible given a raw MAT.
This goal is closely related to surface reconstruction from unor-
ganized point clouds, a well-studied problem in computer graph-
ics [BTS∗14]. Yet, few reconstruction methods can treat multiply
intersecting manifolds with boundaries embedded in noisy point
clouds, as surface skeletons are [CLK09, KJT14a], and even such
methods have limited robustness. A simple way to create mesh rep-
resentations of surface skeletons from medial clouds is to project
the vertices of the input mesh on the skeleton using the inverse of
the feature transform (Eqn. 4) [JT12]. This yields meshed surface
skeletons of high visual quality; yet, these may contain incorrectly
oriented and/or self-intersecting triangles and duplicate vertices.
Hence, this method is mainly useful for visualization purposes.

(b) Segmenting skeletons: At the core of segmenting analytic
surface-skeleton models is the classification of medial points
[GK04, LK07] which can be done via the medial scaffold [LK07]
(Fig. 22b) or by using the cardinality of the feature transform
(Eqn. 4) [KJT15]. The medial scaffold approach is slower and more
complex to implement, but delivers a surface skeleton segmenta-
tion into manifolds. In contrast, the feature transform approach is
simpler to implement, and faster, but delivers only a medial-point
classification. To obtain separate meshed manifolds, one can clus-
ter such points into manifolds based on their type and distance, and
next use proven surface-reconstruction methods [BMR∗99] from
manifold point-clouds on each such cluster [KJT14a].

4.3. Garbing

Besides reconstructing the curve or surface structure of medial
skeletons (Sec. 4.2), reconstructing an approximation Õ of the
input shape O from MAT(O), or garbing the skeleton (Sec. 2) is
another key operation in medial applications. For image (fixed-grid)
skeletons, garbing is relatively easy, as it involves ‘inflating’ the
skeleton voxels up to a distance equal to the maximally-inscribed
ball radius. This can be done by computing the union of vox-
elized balls ∪B(x,r) of all skeleton points x having a ball radius
r [ASS11], or, more efficiently, computing DTMAT(O) and locally
thresholding it by r(x) [RT02]. As such, we next focus on the
more complex garbing methods for analytical skeletons, which we
classify in three groups: i) image-based methods; ii) object-space
methods; and iii) m-reps and variants.

4.3.1. Image-based methods

These methods aim to produce a 2D view of Õ from MAT(O). This
can be done by ball splatting ( [JKT13], Fig. 14): For each medial
atom ai = (si,ri), a 2D texture B(ai) encodes the shading and depth
profile of a unit-sphere centered at the origin (Fig. 23). These 2D
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Figure 21: Qualitative comparison of six curve and six surface skeletonization methods, illustrating several differences of their outcomes.
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Method Compared with
Type Name Surface skeleton Curve skeleton
M Huang et al. [HWCO∗13] – [TZCO09]
M Jalba et al. [JKT13] [BGP10] [RvWT08a, ATC∗08]
M Tagliasacchi et al. [TAOZ12] – [DS06, ATC∗08]
M Giesen et al. [BGP10] [DZ04, BYS07, CCT09] –
M Au et al. [ATC∗08] – [GS99, PK99b, CSYB05, DS06]
M Dey and Sun [DS06] – [CSYB05]
M+V Livesu et al. [LGS12] – [CSYB05, DS06, ATC∗08, LCLJ10]
V Liu et al. [LCLJ10] – [RvWT08a, PK99b]
V Arcelli et al. [ASS11] – 0
V Reniers et al. [RvWT08a] 0 0
V Hesselink et al. [HR08] 0 –
V Ju et al. [JBC07] [Ber95] [Ber95]
V Siddiqi et al. [SBTZ02] 0 –
V Saha et al. [SBdB15] 0 0
V Jalba et al. [JST15] [RvWT08a, JBC07, JKT13, HR08, SBTZ02] [JBC07, LCLJ10, ASS11, PK99b, RvWT08a]
V Sobiecki et al. [SJT14] [SBTZ02, HR08, RvWT08a, JBC07] [SBTZ02, RvWT08a, JBC07, LCLJ10, ASS11, PK99b]
M Sobiecki et al. [SYJT13] – [ATC∗08, TZCO09, CTO∗10, JT12]
M+V Cornea et al. [CSM07] – [PK99b, GS99, CSYB05, ACK01]

Table 2: Recent 3D skeletonization comparison efforts. For each method, we show its type (Volume or Mesh), and the surface- and/or curve-
skeletonization methods it is compared with. Dashes show that a method does not compute the respective (curve or surface) skeleton type.
Last four rows are survey papers.

textures are translated to the points si, scaled with ri respectively,
and rendered parallel to the view plane, using Z-buffering. The re-
sult approximates the 3D union-of-balls ∪B(si,ri), i.e., the recon-
struction of O from its MAT, from any desired viewpoint.

While fast and simple to implement, the above ball splatting only
yields correct results for orthographic projections: A screen pixel
v is covered by texel p, which encodes the color and depth of ball
point x (Fig. 23). This is equivalent to raytracing ∪B(ai) with rays
parallel to the view direction. For perspective projection, a cor-
rect approach is to trace rays from each billboard pixel p to the
viewpoint; if a ray intersects the billboard’s ball, the corresponding
screen pixel v′ gets its color and depth from the ray-sphere inter-
section point x. This technique is also known under the name of
impostors [McK12]. Ball splatting methods can generate shape re-
constructions from skeletons of hundreds of thousand of points at
interactive rates, as their speed is bounded only by the pixel fill
rate of the GPU [JKT13]. However, they formally produce a view-
dependent approximation ofO with radial constant basis functions,
so bubble-like errors become visible when zooming in or using low
sampling rates for the surface skeleton (see insets in Fig. 14).

4.3.2. Object-space methods

In contrast to image-space garbing, object-space garbing creates
true 3D mesh representations of the reconstructed shape. The main

a) b)

Figure 22: Surface skeleton segmentation using (a) voxel-based
method in [RT08c] and (b) mesh-based method in [LK07].

v
ie

w
 p

la
n

e

v
ie

w
p

o
in

t

resulting
pro!le

splat for s
i

splat for s
j

s
i

s
j

r
i

r
j

billboard
for s

i

billboard
for s

j

z axis

depth

texture

shading

texture

p
xv

x’

naive splatting

v’

impostor splatting

Figure 23: Ball splatting for garbing. Naive splatting works for
parallel projections only [JKT13]. Impostor technique generates
correct results for perspective projections [McK12].

challenge is to efficiently construct high-resolution mesh models of
the union-of-balls surface ∪B(x,r). This can be done as follows.

4.3.2.1. Implicit surfaces: These methods define the surface
∪B(xi,ri) implicitly and extract it by computing the level set of the
respective function [dALJ∗15]. In the simplest case, the function is
defined by the sum of radial distances centered at the skeleton points
xi, scaled by ri [Bli82]. This can however produce budges and un-
dulations on Õ due to unwanted blending effects. Smoother recon-
structions can be done by computing a convolution skeleton from
the medial skeleton [ZBQC13]. For curve skeletons modeled as 1D
polylines, the corresponding function can be defined by linearly in-
terpolating the vertex radii ri along polyline segments, which leads
to reconstructions Õ being quad-dominant mesh with good edge
flow [JLW10]. Overall, implicit surfaces are simple to implement
and offer a good smoothness control of Õ. Yet, they are in general
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quite expensive, as the reconstruction quality mainly depends on the
resolution of the volumetric discretization of O.

4.3.2.2. Regular triangulation: Let {Bi = (xi,ri)} be a set of
balls. The non-void intersection of two balls Bi and B j contains
two spherical caps bounded by the spheres ∂Bi and ∂B j and by
a plane orthogonal to the line (xi,x j). The interior of any cap is
contained in the union-of-balls ∪Bi. The portion of a sphere ∂Bi
that does not belong to any cap represents the contribution of
Bi to the surface of ∪Bi. This is precisely the restriction of ∂Bi
to the so-called power cell of Bi [CKL11]. The power cell is a
weighted version of a Delaunay cell obtained with the power dis-
tance metric defined by dpow(Bi,B j) = ‖xi − x j‖2 − r2

i − r2
j and

dpow(Bi,x ∈ R3) = ‖xi− x j‖2− r2
i . The set of power cells forms

the power diagram, which is the dual of the regular triangulation of
the points xi weighted by the values ri. Hence, one of the first garb-
ing methods relied on the regular triangulation to create a meshed
representation of a skeleton’s union-of-balls [AE96]. Here, the re-
spective mesh is composed of the power cell faces that are outside
any spherical caps.

4.3.2.3. Skin surfaces: A number of garbing methods are based
on the so-called skin surfaces [Ede99], a structure widely used to
model molecules. A skin surface is defined by a set of balls {Bi =
(xi,ri)} and a shrink factor s > 0. Formally, the skin surface is
the 3D boundary of the convex hull of the four-dimensional points
(xi,‖xi‖2− s2r2

i ). For s = 1, the skin surface is the surface of the
union-of-balls∪Bi. For s< 1, the skin surface is tangent-continuous
and composed of spherical and hyperboloid patches. Several meth-
ods exist to compute triangulations of skin surfaces [CS04, KV07,
CS09] which can deliver our union-of-balls surface, as noted above.
However, such methods are relatively slow, e.g. minutes for a few
hundred balls [CS04,KV07]. Computational scalability is addressed
by mixed CPU-GPU implementations [CLM08], where the CPU
computes the equations of the spherical and hyperboloids patches,
and the GPU ray-traces these. This approach is over one order of
magnitude faster, and more robust, than the CGAL [Kru15] imple-
mentation of [KV07]. However, this raytraced approach only pro-
duces a rendering of the skeleton reconstruction, rather than a 3D
shape, akin to the image-based methods listed in Sec. 4.3.1.

4.3.2.4. M-Reps and variants: In contrast to modeling Õ as an
union-of-balls with centers located on the skeleton, medial repre-
sentations (m-reps) propose using an union of various types of sur-
face primitives formed by the spoke vectors emerging from the
sampled medial surface [PFJ∗03]. Such primitives can be flexibly
controlled based on the position and tangent directions at the me-
dial samples, and lengths and angles of the spoke vectors. This al-
lows reconstructing both the surface skeleton and the input shape
by subdivision surfaces [CC78], which have guaranteed smooth-
ness properties. A related approach is given by continuous me-
dial representations (cm-reps) which use cubic B-splines and allow
extracting a parametric model of Õ [YZG06]. While both above
approaches generate a reconstruction Õ of higher-order continuity
than the union-of-balls methods discussed earlier, they can only be
applied to a single-sheet medial surface, due to parameterization
constraints. To solve this issue, Pouch et al. remove the require-
ment of explicit parameterization of the medial skeleton [PTT∗15].
Medial points are grouped to form separate manifold patches, based
on their medial classification (Sec. 2.2.4). Next, these point-sets are
triangulated and duplicated to create two separate parallel skele-

tal sheets, which are next transported to the shape surface via their
spoke vectors to create the final triangulation of Õ.

5. Applications

As noted in Sec. 1, a key driver in skeletonization research has been
to use medial descriptors for a variety of shape analysis, synthesis,
and processing applications. We present here a (necessarily brief)
overview of the most important applications classes where surface
and/or curve skeletons are an important element. For each class, we
outline several representative use-cases and example applications.
While skeletons are not mandatory tools for supporting any of the
presented applications, they are, as our survey shows, useful and
usable alternative tools to other methods, and as such, deserve due
attention from both researchers and practitioners.

5.1. Computer animation and shape synthesis

Developing geometry-manipulation tools for end users is a core
problem in geometry processing. The MAT offers an alternative to
the more commonly used surface-based methods by exploiting the
volumetric information of the shape it captures (Fig. 24). For in-
stance, Storti et al. [STG∗97] propose to use the medial domain,
rather than surfaces, for shape parameterization. This lays the basis
for the widely used m-reps of [PFJ∗03] and skeleton-based shape
modeling [AC02]. Intuitively, the shape can be manipulated by
changing the position and radius of a few medial atoms and then re-
constructing the object surface. Following a similar idea, Bloomen-
thal et al. [BL99] connected the use of geometric (medial) skele-
tons to traditional kinematic skeletons for shape animation, by an-
imating the former based on the latter one. A variant hereof uses
the medial domain to fit a kinematic-skeleton template and also
to transfer animations between different shapes [BP07]. Tradition-
ally, transforming vertices of animated surfaces is done by (linear)
combinations of transforms defined on kinematic skeletons. While
such blending weights are typically set by artists by expensive trial
and error, the MAT can be used to create a convolution scheme
to automatically create them, yielding natural-looking surface an-
imations [JBPS11]. Extracting skeletons from a sequence of pre-
animated meshes allows computing skinning weights, that describe
how specific control points influence shape synthesis, fully auto-
matically [SY07]. Rather than directly modifying the medial skele-
ton, or using a kinematic skeleton as a control structure, freeform
deformation of medial surfaces can also be used to support shape
deformation [YBS03, YBS07]. The volumetric nature of the MAT
allows more natural large-scale deformations with local thickness
preservation and correction of self-intersections. Generating kine-
matic skeletons and weights using medial skeletons is not restricted
to surface models, but extends to volumetric data [GS01,TAM∗04].
Skeletons are also used in animation to accelerate collision detec-
tion algorithms, e.g. by bounding volume hierarchies constructed by
decomposing shapes with skeletons [LWTH01].

5.2. Geometry processing

Arguably the best-known application of curve skeletons in geom-
etry processing is part-based segmentation of organic shapes like
plants, humans, animals, and anatomic parts [XSW03, WXS06,
ATC∗08, SSCO08]. Similarly, surface skeletons are used for
patch-based segmentation of edge-rich shapes, e.g. man-made ob-
jects [RT08b,CLK09,KJT15]. Figure 25 (bottom row) compares six
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a) b) c)

d) e)

Figure 24: Animation and modeling: (a) Skeleton solid model-
ing [AC02]. (b) Re-using animation rigs [BP07]. (c) Volume-
preserving shape deformation [YBS07]. (d) Skeleton skinning
weights [JBPS11]. (e) Example-based pose extrapolation [SY07].

part-based segmentations using skeletons [LKA06,AFS06,TVD07,
RT08a, FJT15] with one classical segmentation method using clus-
tering the surface curvature [LZ04]. As illustrated, skeleton-based
segmentation methods can produce comparatively good results. As
skeletons compactly encode topology, they have been used to au-
tomatically correct topological problems in implicit-function iso-
surfaces [WHDS04] and low-quality surface models [ZJH07]. The
skeletons’ approximate reconstruction power has been used for
modeling organic shapes [AJC02, JLW10] as well as for correcting
geometry in point-cloud data [TZCO09, CTO∗10, ZST∗10].

Curve skeletons compactly represent a shape as the graph of its
components, their relationship and, in some cases, a rough descrip-
tion of their geometry [BFS00,SSGD03]. As such graphs are much
smaller than corresponding mesh- or voxel-based shape represen-
tations (typically hundreds vs millions of elements respectively),
they can be used to efficiently support shape comparison, match-
ing, and retrieval, or more generally finding correspondences be-
tween shapes, via graph matching [HSKK01]. When shapes exhibit
large variation in poses and surface details, graph representations
obtained from (simplified) skeletons capture better the shape’s over-
all structure than local geometric measures, e.g., curvature. To better
disambiguate symmetric shape parts, e.g., the left vs right limbs of
a body, skeletons can be stretched prior to matching [ATCO∗10].
To further accelerate graph comparison, spectral decompositions of
the graph’s adjacency matrix can be used to match graphs in a hier-
archical coarse-to-fine manner [SSDZ99, SSGD03].

Apart from the above, MAT regularization can be used for shape
simplification schemes from a volumetric point of view, by elim-
inating small-scale shape parts corresponding to low-importance
skeletal branches [TH03]. Finally, the continuous connection be-
tween medial surfaces and the shape surface [SSCO04] can be used
to generate high-quality hexahedral meshes, which are essential for
accurate numerical simulations in e.g. computational fluid dynam-
ics [PA95, PA97, TKGC03].

5.3. Shape metrology

Skeletons can be used to measure many geometric shape properties
that further support applications in shape metrology (Fig. 26). The
distance-to-boundary directly delivers a way to define and estimate
local shape thickness, or wall thickness [Geo10], used to estimate

e.g. the printability and mechanical resistance of 3D shapes [DK09,
JKT13], anatomic tissue resistance [YP03], characterize anatomic
shapes [NSK∗97], and find tubular shape parts [MPS∗04]. Finding
similar-thickness shape parts enables high-quality shape segmenta-
tion [SSCO08, FJT15]. Separately, finding input-surface points that
correspond to the boundaries of the medial surface via the feature
transform allows robustly finding edges even for complex noisy
shapes, which serves shape classification [RJT08, KJT15].

5.4. Medical shape analysis

Curve skeletons are well suited to describe tube-like anatomical
structures, e.g. vessels, nerves, and elongated muscles [NdBS01,
FPAB04] (see Fig. 27). This supports efficient registration of par-
tially overlapped vessel images [AJWB03] and the flattening of
their 3D structure to a plane [KWFG03]. The encoded local vol-
umetric information can help detecting abnormalities in vascu-
lar structures, like stenosis [SHE∗02] and aneurisms [SCC∗04].
In virtual navigation, curve skeletons and centerlines are used to
generate camera fly-through paths for the inspection of the colon
[HMK∗97,WDK01], lungs [PFP04], and blood vessels [BSSW99].
Alternatively, curve skeletons can be used to ‘unfold’ such tubular
structures to create 2D flat depictions thereof, which are much eas-
ier to visualize [VWKG01]. Surface skeletons can be used to detect
the subtle shallow creases separating teeth from surrounding gums
for orthodontic cast segmentation [KJT14b]. Further notable appli-
cations of curve skeletons in medical image segmentation are shown
in [WH10, HAM04].

6. Open challenges

Concluding our review, we have shown that 3D shape skeletoniza-
tion is a very active research area, with impressive developments
being shown in the few last years in terms of methods and applica-
tions. 3D skeletons have established themselves as essential tools in
shape analysis and processing, much like 2D skeletons have done
it in previous decades for similar tasks involving 2D shapes. How-
ever, for 3D skeletons to become tools which are as easy to use,
efficient, and effective as their 2D counterparts are, several devel-
opments need to take place, as follows.

6.1. Theory

Solid techniques and tools require a solid formal background. In
this respect, 3D skeletonization meets a few key challenges. First, a
formal and universally accepted definition of curve skeletons is still
due. While [DS06, RvWT08a, JKT13] do provide one, this defini-
tion still lacks a fundamental setting, similar to the classical surface-
skeleton definition. Having such a definition would solve the prob-
lem of qualitative curve-skeletonization algorithm comparison, on
the one hand, and focus efforts towards creating an optimal curve-
skeletonization method, on the other hand.

Separately, the issue of quantitatively (and formally) comparing
skeletonization algorithms is still open. As already noted, sev-
eral desirable skeleton properties are still weakly measurable, e.g.,
noise robustness, regularization, and smoothness. Providing unnan-
imously accepted, easily computable, formal definitions hereof is
mandatory if we want to compare 3D skeletonization algorithms
with explicit provisions for their potential end-users.
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a) b) c)

[FJT15][RT08a][TVD07][AFS06][LKA06][LZ04]

Figure 25: Geometry processing applications: (a) Shape segmentation and thickness estimation [ATC∗08]. (b) Topology fixing for low-
quality meshes [ZJH07]. (c) Skeleton stretching for robust pose-invariant shape matching [ATCO∗10]. Bottom row: comparison of six
part-based segmentation methods. Except [LZ04], all these methods use curve skeletons.

a) b))) b)b)

d) e)

c)

Figure 26: Metrology applications. (a) Finding tubular
parts [MPS∗04]. Estimating shape thickness with (b) curve
skeletons [SSCO08] and (c) surface skeletons [JST15]. Finding
shape edges via medial surfaces for (d) voxel shapes [RJT08] and
(e) mesh shapes [KJT15].

6.2. Practice

Usable techniques require a practical setting. Here, 3D skeletoniza-
tion meets many challenges. Practitioners in the field require open
access to algorithm implementations, test-sets, and experience re-
ports. 3D skeletonization is, we believe, particularly restricted here:
Obtaining ready-to-use, robust, commercial-grade implementations
is hard. While initiatives for disseminating algorithms and bench-
marks recently appeared [Tel16], it is still very hard for applica-
tion practitioners to quickly test-and-try existing methods in their
specific application contexts. Albeit mundane, the need for more
openness, dissemination, and comparison of 3D skeletonization al-
gorithms is a major challenge.

a) b) c)

d) e)

Figure 27: Medical applications: Curve skeletons (a) Vir-
tual colonoscopy [WDK01]. (b) Vessel planar reformation
[KWFG03]. (c) Virtual bronchoscopy [PFP04]. (d) Colon unfold-
ing [VWKG01]. Surface skeletons (e) Teeth segmentation [KJT14b]

6.3. Applications

Skeletonization has emerged as a research field decades ago, in a
relatively theoretical area [Blu67, Blu73]. Recent developments,
especially for 3D shapes, show a great application potential for
shape segmentation, simplification, denoising, and retrieval [TV08,
MBC12, JKT13, SBdB15, KJT15]. Given the current developments
in 3D surface-and-curve skeletonization, the basic tools are avail-
able. What still misses, is their wide deployment in many relevant
applications. We believe it is the task of the research community to
involve itself and show that the recent scalable, robust, and easy-
to-use 3D skeletonization methods they created can indeed be ef-
fectively used to solve many concrete open shape analysis and pro-
cessing problems.

7. Conclusions

We presented a survey of the state-of-the-art in computing and using
three-dimensional shape skeletons. Several important observations
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can be distilled from this survey. First and foremost, we see a strong
and sustained interest in using 3D skeletons for a wide variety of
applications, including but not limited to shape segmentation, path
planning, shape metrology, animation, shape modeling, and shape
matching. In all these contexts, 3D skeletons show their added-value
as compared to classical boundary or volumetric representations in
terms of compactly capturing, and allowing reasoning about, the
shape geometry, topology, and symmetry. Originally pioneered for
similar use-cases for 2D shapes, skeletons are increasingly showing
their advantages in the 3D context. This trend is sustained by the ad-
vent of recent skeletonization methods which deliver accurate and
high-resolution 3D skeletons with low computational and imple-
mentation efforts. In contrast to a decade ago, computing centered,
detail-rich, and noise-resistant 3D skeletons for complex shapes is
now a given fact. Given all above, we argue that 3D skeletons are
here to stay, and will lead to increasingly more and more diverse
applications. In particular, while most existing applications have fo-
cused on using the properties of the simpler to compute curve skele-
tons, recent developments have made surface skeletons an equally
interesting, and equally practical, tool.

In the same time, the 3D skeletonization arena is complex. Tens (if
not hundreds) of methods exist, each having specific assumptions
and limitations. Such methods are not always easy to compare with
respect of the many, often mutually conflicting, application-specific
requirements. The formal analysis of intrinsic skeleton properties
implied by their definitions, started by this survey, and further re-
fined to account for properties implied by practical skeletonization
methods, proves in our eyes to be a valuable practical and theoret-
ical guide to assessing and selecting suitable methods for practical
use – or finding one’s way in the wide world of 3D skeletonization.

Given the above, future developments in 3D skeletonization are nu-
merous. On the theoretical side, formal definitions of curve skele-
tons, and their relation with the well-established surface skeletons,
are due, and emerging. On the practical side, recent advances in effi-
ciently and robustly computing accurate 3D surface skeletons have
broken the status quo of such descriptors being complex, inefficient,
and unreliable. As such, we expect a steadily increasing number of
innovative applications using such descriptors in the near future.
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Appendix: Skeletonization Resources

Obtaining benchmark datasets for comparing 3D skeletonization
methods, and implementations of such methods, is challenging. An
ongoing effort in this direction is the project [Tel16] which pro-
vides an updated list of models, shape processing tools, and openly-
available 2D and 3D skeletonization methods implementations for
both practitioners and researchers in the field [SJT14].

Acknowledgments

This work was partially funded by the advanced grant no. 291184
EXPRESSIVE from the European Research Council (ERC-2011-
ADG_20110209), and by the H2020 EC Project GRAVITATE (RE-
FLECTIVE7, grant no.665155).

References
[AB98] AMENTA N., BERN M.: Surface reconstruction by Voronoi fil-

tering. In Proc. ACM SCG (1998), pp. 39–48. 10

[AB02] AYLWARD S., BULLITT E.: Initialization, noise, singularities,
and scale in height ridge traversal for tubular object centerline extraction.
IEEE Trans. Med. Imag. 21, 2 (2002), 61–75. 2

[ABE09] ATTALI D., BOISSONNAT J. D., EDELSBRUNNER H.: Stabil-
ity and computation of medial axes – a state-of-the-art report. In Math-
ematical foundations of scientific visualization, computer graphics, and
massive data exploration (2009), Springer, pp. 109–125. 2, 6, 9

[ABK98] AMENTA N., BERN M., KAMVYSSELIS M.: A new Voronoi-
based surface reconstruction algorithm. ACM TOG (1998), 415–421. 4

[AC02] ANGELIDIS A., CANI M. P.: Adaptive implicit modeling using
subdivision curves and surfaces as skeletons. In Proc. ACM SMA (2002),
pp. 45–52. 18, 19

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, A. Telea / 3D Skeletons: A State-of-the-Art Report

[ACK01] AMENTA N., CHOI S., KOLLURI R. K.: The power crust. In
Proc. ACM SMA (2001), pp. 249–266. 8, 9, 10, 11, 17

[AE96] AKKIRAJU N., EDELSBRUNNER H.: Triangulating the surface of
a molecule. Discr Appl Math 71, 1-3 (1996), 5–22. 18

[AFS06] ATTENE M., FALCIDIENO B., SPAGNUOLO M.: Hierarchical
mesh segmentation based on fitting primitives. Visual Comput 22, 3
(2006), 181–193. 19

[Ago05] AGOSTON M.: Computer Graphics and Geometric Modelling.
Springer, 2005. 1

[AJC02] ANGELIDIS A., JEPP P., CANI M. P.: Implicit modeling with
skeleton curves: Controlled blending in contact situations. In Proc. ACM
SMA (2002), pp. 85–92. 19

[AJWB03] AYLWARD S., JOMIER J., WEEKS S., BULLITT E.: Regis-
tration and analysis of vascular images. IJCV 55, 2 (2003), 123–138.
19

[AKP∗04] ANGUELOV D., KOLLER D., PANG H., SRINIVASAN P.,
THRUN S.: Recovering articulated object models from 3D range data.
In Proc. Uncertainty in Artificial Intelligence (2004), pp. 18–26. 13

[AL01] ATTALI D., LACHAUD J.: Delaunay conforming iso-surface,
skeleton extraction and noise removal. Comp. Geom. 19, 2 (2001), 175–
189. 6

[AM97] ATTALI D., MONTANVERT A.: Computing and simplifying 2D
and 3D continuous skeletons. CVIU 67, 3 (1997), 261 – 273. 10

[AMN∗98] ARYA S., MOUNT D., NETANYAHU N., SILVERMAN R.,
WU A.: An optimal algorithm for approximate nearest neighbor search-
ing. J. of the ACM 45, 6 (1998), 891–923. 11

[ASS11] ARCELLI C., SANNITI G., SERINO L.: Distance-driven skele-
tonization in voxel images. IEEE TPAMI 33, 4 (2011), 709–720. 6, 8, 9,
11, 14, 15, 17

[ATC∗08] AU O. K. C., TAI C., CHU H., COHEN-OR D., LEE T.: Skele-
ton extraction by mesh contraction. In Proc. ACM SIGGRAPH (2008),
pp. 441–449. 5, 8, 9, 12, 13, 15, 17, 18, 20

[ATCO∗10] AU K., TAI C., COHEN-OR D., ZHENG Y., FU H.: Electors
voting for fast automatic shape correspondence. CGF 29, 2 (2010), 645–
654. 19, 20

[BA92] BRANDT J. W., ALGAZI V.: Continuous skeleton computation
by voronoi diagram. CVGIP: Image Understanding 55, 3 (1992), 329 –
338. 10

[BBB∗97] BLOOMENTHAL J., BAJAJ C., BLINN J., CANI M.-P.,
ROCKWOOD A., WYVILL B., WYVILL G.: Introduction to Implicit Sur-
faces. Morgan Kaufmann, 1997. 1

[BCAC04] BRUSCO N., CARMIGNATO S., ANDREETTO M., CORTE-
LAZZO G.: Metrological analysis of a procedure for the automatic 3D
modeling of dental plaster casts. In Proc. 3DPVT (2004), pp. 592–599. 6

[BDF∗08] BIASOTTI S., DE FLORIANI L., FALCIDIENO B., FROSINI
P., GIORGI D., LANDI C., PAPALEO L., SPAGNUOLO M.: Describ-
ing shapes by geometrical-topological properties of real functions. ACM
Computing Surveys 40, 4 (2008), 1–87. 14

[Ber95] BERTRAND G.: A parallel thinning algorithm for medial sur-
faces. Pattern Recogn Lett 16, 9 (1995), 979–986. 17

[Beu94] BEUCHER S.: Digital skeletons in euclidean and geodesic spaces.
Signal Process 38, 1 (1994), 127–141. 14

[BFS00] BIASOTTI S., FALCIDIENO B., SPAGNUOLO M.: Extended
Reeb graphs for surface understanding and description. In Proc. DGCI
(2000), Springer, pp. 185–197. 19

[BGP10] BALINT M., GIESEN J., PAULY M.: Discrete scale axis repre-
sentations for 3D geometry. ACM TOG 29, 4 (2010), 1–10. 8, 9, 17

[BKP∗10] BOTSCH M., KOBBELT L., PAULY M., ALLIEZ P., LÉVY B.:
Polygon Mesh Processing. A K Peters, 2010. 1

[BL99] BLOOMENTHAL J., LIM C.: Skeletal methods of shape manipu-
lation. In Proc. ACM SMA (1999), pp. 44–47. 18

[Bli82] BLINN J. F.: A generalization of algebraic surface drawing. ACM
Trans. Graph. 1, 3 (July 1982), 235–256. 17

[Blu67] BLUM H.: A transformation for extracting new descriptors of
shape. Models for the perception of speech and visual form. MIT Press,
1967. 2, 3, 20

[Blu73] BLUM H.: Biological shape and visual science (Part I). J Theor
Biol 38, 2 (1973), 205–287. 20

[BM94] BERTRAND G., MALANDAIN G.: A new characterization of
three-dimensional simple points. Patt Recog Lett 15, 2 (1994), 169–175.
11, 15

[BMMP03] BIASOTTI S., MARINI S., MORTARA M., PATANÉ G.: An
overview on properties and efficacy of topological skeletons in shape
modelling. In Proc. IEEE SMI (2003), IEEE, pp. 245–254. 14

[BMR∗99] BERNARDINI F., MITTLEMAN J., RUSHMEIER H., SILVA
C., TAUBIN G.: The ball-pivoting algorithm for surface reconstruction.
IEEE TVCG 5, 4 (1999), 349–359. 15
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