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Université Paris-Saclay

78035-Versailles Cedex France

e-mail: alain.rouault@uvsq.fr

April 8, 2016

Working version

Abstract

This work is a companion paper of [20] and [19]. We continue to explore the connections
between large deviations for random objects issued from random matrix theory and sum
rules. Here, we are concerned essentially with measures on the unit circle whose support is
an arc that is possibly proper. We particularly focus on two matrix models. The first one
is the Gross-Witten ensemble. In the gapped regime we give a probabilistic interpretation
of a Simon sum rule. The second matrix model is the Hua-Pickrell ensemble. Unlike the
Gross-Witten ensemble the potential is here infinite at one point. Surprisingly, but as in [20]
and [19], we obtain a completely new sum rule for the deviation to the equilibrium measure
of the Hua-Pickrell ensemble. The extension to matrix measure is also studied.
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1 Introduction

Two of the most famous sum rules are Szegő’s formula and Killip-Simon’s sum rule. They are
related respectively to the theory of orthogonal polynomials on the unit circle (OPUC) and to
the theory of orthogonal polynomials on the real line (OPRL).

In the OPUC frame, the Szegő-Verblunsky theorem (see [41], Theorem 1.8.6, p. 29) concerns a
deep relationship between the coefficients involved in the construction of the orthogonal poly-
nomial sequence of a measure supported by the unit circle and its logarithmic entropy. More
precisely, the inductive equation between two successive monic orthogonal polynomials φn+1 and
φn (deg φn = n, n ≥ 0) associated with a probability measure µ on the unit circle T supported
by at least n+ 1 points involves a complex number αn and may be written as

(1.1) φn+1(z) = zφn(z)− αnφ∗n(z), where φ∗n(z) := znφn(1/z̄).

The complex number αn = −φn+1(0) is the so-called Verblunsky coefficient. In other contexts, it
is also called Schur, Levinson, Szegő coefficient or even canonical moment ([16]).

The Szegő-Verblunsky theorem is the identity

(1.2)
1

2π

∫ 2π

0

log gµ(θ)dθ =
∑
n≥0

log(1− |αn|2) ,

where the Lebesgue decomposition of µ with respect to the normalized Lebesgue measure on T
is

dµ(θ) = gµ(θ)
dθ

2π
+ dµs(θ) ,

and where both sides of (1.2) are simultaneously finite or infinite. Changing the signs in both
side in this equation leads to

(1.3) K(UNIF |µ) = −
∑
n≥0

log(1− |αn|2)

where, for probability measures ν and µ, K(ν|µ) denotes the Kullback-Leibler divergence or
relative entropy of ν with respect to µ (see (4.1)), and UNIF is the normalized Lebesgue measure
on T.

In the OPRL frame, for a probability measure µ having an infinite support, a.k.a. nontrivial
case (resp. with a finite support consisting of n > 0 points, a.k.a. trivial case), the orthonor-
mal polynomials associated to µ (with positive leading coefficients) obtained by applying the
orthonormalizing Gram-Schmidt procedure to the sequence 1, x, x2, . . . obey the recursion rela-
tion

xpk(x) = ak+1pk+1(x) + bk+1pk(x) + akpk−1(x)(k ≥ 0(resp.for0 ≤ k ≤ n− 1))(1.4)

The Jacobi parameters (ak), (bk) satisfy bk ∈ R, ak > 0. Notice that here the orthogonal polyno-
mials are not monic but normalized in L2(µ).

To describe the Killip-Simon sum rule, we need some more notations. Let M1(I) denote the
set of all probability measures on I a subset of R or of the unit the circle T. For α− < α+, let
SR1 (α−, α+) be the set of all probability measures µ on R with
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(i) supp(µ) = J ∪ {λ−i }N
−

i=1 ∪ {λ+
i }N

+

i=1, where J ⊂ [α−, α+], N−, N+ ∈ N ∪ {∞} and

λ−1 < λ−2 < · · · < α− and λ+
1 > λ+

2 > · · · > α+.

(ii) If N− (resp. N+) is infinite, then λ−j converges towards α− (resp. λ+
j converges to α+).

Such a measure µ will be written as

µ = µ|I +
N+∑
i=1

γ+
i δλ+i +

N−∑
i=1

γ−i δλ−i(1.5)

The reference probability measure is now the semicircle law

(1.6) SC(dx) =
1

2π

√
4− x2 1[−2,2](x) dx .

Additionally, we set

F+
SC(x) :=


∫ x

2

√
t2 − 4 dt = x

2

√
x2 − 4− 2 log

(
x+
√
x2−4
2

)
if x ≥ 2,

∞ otherwise

and F−H(x) := F+
H(−x) for x ∈ R. Then, the Killip-Simon sum rule is the following equation

(1.7) (see [41] Theorem 3.5.5):

For a probability measure µ ∈ SR1 (−2, 2) with recursion coefficients (ak)k, (bk)k as in (1.4),

K(SC|µ) +
N+∑
n=1

F+
SC(λ+

n ) +
N−∑
n=1

F−SC(λ−n ) =
∑
k≥1

(
1
2
b2
k +G(a2

k)
)
,(1.7)

where G(x) = x− 1− log x, and where both sides may be infinite simultaneously.

The common feature of formulas (1.3) and (1.7) is that they state equalities between non-negative
functionals. We can consider them as equalities of two discrepancies. On the left side it is the
reverse relative entropy with respect to some reference probability measure plus eventually a
contribution of the outliers point masses. On the right side it is a sum vanishing only when the
coefficients involved are related to the reference probability measure.

In [21] and [20], we revisit these results by giving a probabilistic proof based on large deviations
(as we we will explain below). This allowed in the OPRL case to discover new sum rules,
corresponding to the Marchenko-Pastur and Kesten-McKay measures, respectively. The main
interesting feature of (1.7) is the role played by the outliers of the measure µ, i.e. its discrete
masses located out of the support of the reference measure. Coming back to the the OPUC case,
in the Szegő-Verblunsky theorem (1.2) there is no outlier as the reference probability measure is
supported by the full unit circle. Nevertheless, in the context of the unit circle, there are some
very interesting probability measures supported by a proper arc. In this paper, we give and prove
new original sum rules for families of reference probability measures that are possibly supported
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by a proper arc of the unit circle. One of our new sum rule (see Theorem 5.1) concerns the
reference probability measure HPd (see (3.17), d is a positive parameter) that is supported by the
a proper arc depending on d included in (0, π) and whose density is proportional to [sin(2−1θ)]−1.
Up to our knowledge, Theorem 5.1 is completely new.

Our method for finding and showing a sum rule relies on the large deviations properties for a
sequence of random measures built on random matrices. Let us give in a nutshell the scheme of
our probabilistic method. We interpret the measure µ as the realization of a (random) spectral
measure of a pair (M, e) where M is a random normal operator (unitary or Hermitian) and e a
fixed vector in a Hilbert space H.

Let assume that dimH = n (n ∈ N∗). Then, µ is a discrete probability measure which can be
encoded as

(1.8) µ =
n∑
k=1

wkδλk .

A classical assumption is the invariance by any unitary conjugations of the law of M . Under this
assumption, the joint density of (λ1, . . . , λn) is proportional to the square of the Vandermonde
determinant multiplied by the exponential of some potential. Furthermore, the distribution of
the weights (w1, · · · , wn) is uniform on the simplex. This allows in the cases studied in [21] and
[20], with convenient assumptions on the potential, to show that the random measure defined
in (1.8) satisfies, as n grows, a large deviation principle (LDP). The speed of the LDP is n and
the rate function is the left hand side of (1.3) or (1.7) or its analogue. In the sum rules, the
right hand side is obtained as the rate function seeing the random measure as encoded by its
Verblunsky (OPUC) or Jacobi (OPRL) coefficients. Since a rate function is unique, the equality
of both sides is a straightforward conclusion.

Of course, there is a natural way to travel in both directions from T to R. This is the so-called
Cayley transform. So that, the results obtained for random measures on R may be carried to
random measures on T. Nevertheless, the confinement assumption made on the potential in [20]
is not always true in all the interesting cases on T. Two examples are particularly representative
and more or less emblematic of studies in OPUC and in equilibrium measures on T. The first
one is the Gross-Witten (GW) ensemble (gapped/ungapped regime), corresponding to a potential
continuous on T. The second one is the Hua-Pickrell (HP) ensemble, corresponding to a potential
infinite at one point. Both are distributions on the set (group) U(n) of unitary n × n matrices,
(see [36]) or pure Fisher-Hartwig symbol (Section 2 (for HP) and Section 5 in [3]). In the HP
case, the potential on the real line satisfies the confinement assumption. It is then possible to
use the results of [20] to state directly a LDP principle for the spectral measure. Moreover, since
the deformed Verblunsky coefficients are independent with known distributions given in [9], the
coding with these coefficients gives rise to a LDP and by uniqueness, we conclude with a new
sum rule. This method is robust enough to be extended to the matrix case.

In the GW case, the potential on the real line satisfies only a weak growth assumption and we
cannot use previous results. Nevertheless, we may work directly on T, copying the scheme of
proof of the real case, looking carefully at the differences. We do not have exponential tightness
for the extremal eigenvalues anymore, but since the potential is finite everywhere, we take benefit
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of the compactness of T. It was the secret of the paper of [25] to get the LDP for empirical
spectral distribution under the weak growth assumption. Besides and to be complete, we revisit
the gapped case, for which the LDP is a direct consequence of [21] and we give some probabilistic
evidence for the celebrated sum rule due to [39] (Theorem 2.8.1 therein). The paper is organised
as follows. In the next section we give some necessary notations and assumptions. In Section
3 we describe the two main matrix models studied. Section 4 is devoted to our large deviation
results for random spectral measure. The sum rules obtained from large deviation considerations
are setted in Section 5 while extensions to matrix spectral measure are discussed in Section 6.
All technical proofs are postponed to the last section.

2 Notations, assumptions and tools

2.1 Two encodings of a probability measure on T

If U is a unitary operator on a Hilbert space H and e a cyclic vector for H, the spectral measure
of the pair (U, e) is the unique probability measure µ on T such that

(2.1) 〈e, Uke〉 =

∫
T
zkdµ(z) (k ∈ Z) .

Actually, µ is a unitary invariant for (U, e). If the dimension of H is n and e is cyclic for U , let
λ1 = eiθ1 , . . . , λn = eiθn be the eigenvalues of U and let ψ1, . . . , ψn be a system of orthonormal
eigenvectors. The spectral measure of the pair (U, e) is then

µ(n) =
n∑
k=1

wkδλk ,(2.2)

with wk = |〈ψk, e〉|2 and δa is the Dirac measure at a. This measure is a weighted version of the
empirical eigenvalue distribution

µ(n)
u =

1

n

n∑
k=1

δλk .(2.3)

Another invariant is the CMV (or 5-diagonal) reduction of U . Let us now describe shortly the
CMV mapping between 5-diagonal matrices and spectral measures.

We consider n× n matrices corresponding to measures supported by n points (trivial case) and
semi-infinite matrices corresponding to measures with bounded infinite support (non-trivial case).
In the basis (χk)k≥0 obtained by orthonormalizing 1, z, z−1, z2, z−2, . . . , the linear transformation
f(z)→ zf(z) (multiplication by the identity) in L2(dµ) is represented by the matrix

Cµ =


ᾱ0 ᾱ1ρ0 ρ1ρ0 0 0 . . .
ρ0 −ᾱ1α0 −ρ1α0 0 0 . . .
0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 . . .
0 ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 . . .
0 0 0 ᾱ4ρ3 −ᾱ4α3 . . .
. . . . . . . . . . . . . . . . . .

(2.4)
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with

(2.5) |αk| < 1 and ρk =
√

1− |αk|2

for every k ≥ 0 in the non-trivial case and for 0 ≤ k ≤ n− 1 in the trivial case, with |αn−1| = 1
[11]. If the measure is supported by n points, then the last line is{

0 . . . 0 0 ᾱ2rρ2r−1 − ᾱ2rα2r−1 if n = 2r + 1,

0 . . . 0 ρ2rρ2r−1 − ρ2rα2r−1 − ᾱ2r+1α2r if n = 2r + 2, r ≥ 0 .

Actually, there is a one-to-one correspondence between such a matrix, called finite CMV matrix
and a finitely supported measure. If C is a such a matrix, we can take the first vector of the
canonical basis as the cyclic vector e. Let µ be the spectral measure associated to the pair (C, e1),
then C represents the multiplication by z in the basis (χk) of orthonormal polynomials associated
to µ and C = Cµ.

More generally, if µ is a non-trivial probability measure on T, we may apply the same Gram-
Schmidt process and consider the associated semi-infinite CMV matrix Cµ. Notice that now we
have |αk| < 1 for every k. The mapping µ 7→ Cµ (called here the CMV mapping) is a one to one
correspondence between probability measures on T having infinite support and this kind of CMV
matrices. This result is sometimes called Verblunsky-Favard’s theorem (see [38] p. 432).

2.2 The Cayley transform, random matrices and invariant models

We will switch several times between R and T and betwen distributions of unitary and Hermitian
matrices. There is a natural connection between this two sets and also between this two sets
of matrices. This transformation is the so-called Cayley transform or stereographical projection.
We follow here partly [4] in its presentation. Let R̄ = R ∪ {∞} be the compactified real line,
which is topologically isomorphic to T. Let τ be the Cayley transform defined by:

ζ ∈ T \ {1} 7→ τ(ζ) := i
1 + ζ

1− ζ
(2.6)

τ(1) = ∞

x ∈ R 7→ τ−1(x) =
x− i

x+ i
(2.7)

τ−1(∞) = 1 .

It is clear that τ−1 is a homeomorphism from R onto T\{1}. Let us notice the important relations

(2.8) |τ−1(x)− τ−1(y)| = 2|x− y|
√

1 + x2
√

1 + y2
, |1− τ−1(x)| = 2√

1 + x2
,

and with angular coordinates

ζ = eiθ ⇐⇒ x = τ(ζ) = − cot θ/2
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and

(2.9) dθ =
2dx

1 + x2
.

At the level of measures, we will consider three spaces. First M1(R) and M1(T) are the space
of probability measures equipped with the topology of the weak convergence. Finally we need to
use the setM≤1 of subprobabilities on R, equipped with the topology of vague convergence. Let
us define the mapping τ̂ which sends any ν ∈M1(T) on τ̂(ν) defined by

(2.10) f ∈ C0(R) 7→
∫
R
f(x)dτ̂(ν)(x) =

∫
T\{1}

f(τ(ζ))dν(ζ) .

The mapping τ̂ is continuous if we equip M≤1 with the topology of vague convergence. Notice
thatM1(T) andM≤1(R) are compact sets. We endow all these sets with the corresponding Borel
σ-algebra. The image of the uniform distribution on T is the Cauchy distribution on R Let U(n)
be the set of unitary n× n matrices and let In the identity n× n matrix. The Cayley transform
induces a transformation from U(n) \ {In} onto H(n), the set of Hermitian n× n matrices by

(2.11) M = τ(U) := i
In + U

In − U
⇐⇒ U = τ−1(M) =

M − iIn
M + iIn

,

in the sense of functional calculus. We denote by P(n) the normalized Haar measure on U(n). It
is classical that under P(n) the array of eigenvalues has a density with respect to the Lebesgue
measure dζ1 . . . dζn on Tn which is proportional to

|∆(ζ1, · · · , ζn)|2 ,

where ∆ is the Vandermonde determinant.

More generally, it is usual to equip U(n) with a probability measure of the form

dP(n)
V (U) =

1

ZVn
e−ntrV(U)dP(n)(U) ,(2.12)

with ZVn the normalizing constant and where V satisfies a convenient integrability assumption.

The density of eigenvalues under P(n)
V is then proportional to

(2.13) |∆(ζ1, · · · , ζn)|2 exp

(
−n

n∑
j=1

V(ζj)

)
.

If Q(n) is the Haar measure on the additive group H(n) of Hermitian matrices defined by

dQ(n)(M) =
n∏
k=1

dMkk

∏
1≤k<l≤n

d(<Mkl)
∏

1≤k<l≤n

d(=Mkl) .

the pushforward of P(n) by τ is the Cauchy ensemble whose density with respect to Q(n) is
proportional to det(In+M2)−n. Let us compute the density of the (real) eigenvalues of M = τ(U),
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which are the pushforward of the eigenvalues of U by τ , when U(n) is equipped with P(n)
V . From

(2.8) we have, if ζi 6= 1 for i ≤ n,

|∆(ζ1, · · · , ζn)| = 2n(n−1)/2 |∆(x1, · · · , xn)|
n∏
k=1

(1 + x2
k)
−(n−1)/2 .

and with (2.9) we conclude that the array of eigenvalues of M has a joint density proportional to

|∆(x1, · · · , xn)|2 exp

(
−n

n∑
j=1

V (xj)

)
,

with respect to the Lebesgue measure on Rn, where the potentials V and V are related by

(2.14) V (x) = V(τ−1(x)) + log(1 + x2) .

The inverse relation is
V(eiθ) = V (− cotan θ/2) + log | sin θ/2| .

Of course, the same distribution of eigenvalues can be obtained by observing that the pushforward
of (2.12) by τ is

dP(n)
V (M) =

1

ZVn
e−ntrV(τ−1(M)) det(In +M2)−ndQ(n)(M) .(2.15)

Besides, it is known that in all these unitary invariant models, the matrix [ψ1, . . . , ψn] of eigen-
vectors (defined up to multiplication of each vector by a phase) is Haar distributed on U(n).
In particular, the array of weights (w1, . . . , wn) defined in (2.2) is uniformly distributed on the
simplex

∑n
1 wk = 1.

Since our main study concerns spectral measures, we may generalize the above models to log-
gases. In this framework n is the number of particles (or eigenvalues), denoted by λ1, . . . , λn,

with the joint distributions Π
(n)
V on Tn having the density

dP
(n)
V (λ)

dλ
=

1

Zn
V
e−nβ

′∑n
k=1 V(λk)

∏
1≤i<j≤n

|λi − λj|β ,(2.16)

with respect to the Lebesgue measure dλ = dλ1 · · · dλn. Here β′ = β/2 and β > 0 is a parameter
interpreted as the inverse temperature. Then it is possible to consider the CMV matrices having
these particles as eigenvalues and weights distributed according to the density proportional to

n∏
k=1

wβ
′−1
k

with respect to the uniform measure on the simplex (the Dirichlet distribution of parameter β′).
In the Haar case V ≡ 0 the Verblunsky coefficients are independent. More precisely, in this case
with β = 2 the vector α(n) :=

(
α0, . . . , αn−1 = eiφ

)
has the distribution

dP
(n)
0 (α0, · · · , αn−1) =

(
⊗n−2
j=0 ηn−j+1(dαj)

)
⊗ dφ

2π
,

with ηr(dα) = r−2
π

(1− |α|2)r−3
1D(α)d2α (see [29]), with D the open unit disk.
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2.3 Assumptions on the potentials

2.3.1 Real line

We will assume that the potentials V on R are finite and continuous everywhere. The classical
assumption on the growth of the potential is

(R1s) Strong growth: There exists β̃ > 1 satisfying β̃ > β such that

(2.17) lim inf
|x|→∞

V (x)

β̃ log |x|
> 1 .

Recently, Hardy [25] introduced the weaker assumption

(R1w) Weak growth: There exists β̃ > 1 satisfying β̃ > β such that

(2.18) lim inf
|x|→∞

(
V (x)− β̃ log |x|

)
> −∞ .

Under (R1w), the empirical distribution µ
(n)
u of eigenvalues λ1, . . . , λn has a limit µV (in proba-

bility), which is the unique minimizer of

µ 7→ EV (µ) :=

∫
R
V (x)dµ(x)−

∫∫
R2

log |x− y|dµ(x)dµ(y) , µ ∈M1(R).(2.19)

The minimal value is denoted as
FV = EV (µV ) .

Under (R1s), it is known that the support of µV is compact. We will make in this case the
additional assumption

(R2) One-cut regime: the support of µV is a single compact interval [α−, α+] ( α− < α+).

The minimizer µV is characterized by the Euler-Lagrange variational equations

(2.20) JV (x)

{
= 2ξV if x ∈ [α−, α+]

≥ 2ξV if x /∈ [α−, α+]

where JV is the effective potential

JV (x) := V (x)− 2

∫
R

log |x− ξ| dµV (ξ) ,(2.21)

and ξV is the so-called modified Robin constant. We will make use of the following assumption

(R3) Control (of large deviations):

JV achieves its global minimum value on the complement of (α−, α+) only on the boundary
of this set.
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Furthermore, to obtain a non-variational expression for the rate we need the following conditions:

(R4) Offcriticality:

dµV (x) =
1

π
S(x)

√
(α+ − x)(x− α−) dx

where S > 0 on [α−, α+].

(R5) Analyticity: V can be extended as a holomorphic function is some open neighborhood of
[α−, α+].

We remark that for V strictly convex, the assumptions (R2), (R3) and (R4) are fulfilled (see [7]
and [28]).

Proposition 2.1 ([20] Prop. 3.2) If the conditions (R1s), and (R2) to (R5) are satisfied, then

(2.22) JV (x)− ξV =

{∫ x
α+ S(t)

√
(t− α−)(t− α+) dt if x > α+∫ α−

x
S(t)

√
(α− − t)(α+ − t) dt if x > α+ .

2.3.2 Unit circle

Let ϕ, ψ ∈ [0, 2π] be two angles with ϕ < ψ. We define [̂ϕ, ψ] to be the arc [eiϕ, eiψ] ⊂ T where we
go from eiϕ to eiψ in a counterclockwise direction. The potential V is supposed to be continuous
on T \ {1}. We make the additional assumption:

(T1) V is semicontinuous in 1. Without loss of generality we may assume that

V(0) = lim inf
z→1

V(z) ∈ (−∞,∞] .

This implies that there is a unique minimizer µV of

(2.23) µ 7→ EV(µ) =

∫
T
V(z)dµ(z)−

∫∫
T2

log |z − ζ| dµ(z)dµ(ζ) , µ ∈M1(T).

The minimal value is denoted by

(2.24) FV = EV(µV) .

We will suppose that either the support of µV is T or

(T2) One-cut regime: the support of µV is a single arc ̂[α−, α+] ⊂ (̂0, 2π).
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In this case, µV is characterized by the Euler-Lagrange equations:

(2.25) JV(eiθ)

{
= 2ξV if θ ∈ ̂[α−, α+]

≥ 2ξV if θ /∈ ̂[α−, α+] ,

where JV is the effective potential

JV(eiθ) := V (eiθ)− 2

∫
R

log |eiθ − ζ| dµV(ζ) ,(2.26)

and ξV is the modified Robin constant. Like in the case of the real line, we make the assumption

(T3) Control (of large deviations):

JV achieves its global minimum value on the complement of ̂[α−, α+] only on the boundary
of this set.

When θ 7→ v(θ) := V(eiθ) is convex, this condition is satisfied. Indeed, it is

(2.27)

∫
T

log |eiθ − ζ| dµV(ζ) =

∫ eiα
+

eiα−
log

∣∣∣∣sin θ − ϕ2

∣∣∣∣ dµV(eiϕ) + log 2

so that, for 0 < θ < α−, the function θ 7→ JV(eiθ) is strictly convex, nonegative and vanishes for
θ = α−, hence is positive on [0, θ−). An analogous argument can be made (mutatis mutandis)
for α+ < θ < 2π.

The additional assumptions to obtain a non-variational expression for the rate are on the unit
circle:

(T4) Offcriticality:

dµV(z) =
1

π
S(eiθ)

√
|(eiθ − eiα−)(eiθ − eiα+)| dθ

where S(eiθ) > 0 for θ ∈ [α−, α+].

(T5) Analyticity: V can be extended as a holomorphic function is some open neighbourhood in

C of the arc ̂[α−, α+].

Remark 2.2 Assumption (T1) is equivalent via (2.6) and (2.14) to Hardy’s assumption (2.18).

Proposition 2.3 If V satisfies assumptions (T1) to (T5), then

(2.28) JV(eiθ)− ξV =

{∫ α−
θ

S(eiτ )
√
|(eiτ − eiα−)(eiτ − eiα+)| dτ if θ ∈ (0, α−]∫ θ

α+ S(eiτ )
√
|(eiτ − eiα−)(eiτ − eiα+)| dτ if θ ∈ [α+, 2π)
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2.4 Large deviations

2.4.1 Introduction

In order to be self-contained, let us recall the definition of a large deviation principle. For a
general reference of large deviation statements we refer to the book of [14] or to the Appendix D
of [1].

Let U be a topological Hausdorff space with Borel σ-algebra B(U). We say that a sequence (Pn)n
of probability measures on (U,B(U)) satisfies a large deviation principle (LDP) with speed an
and rate function I : U → [0,∞] if:

(i) I is lower semicontinuous.

(ii) For all closed sets F ⊂ U :

lim sup
n→∞

1

an
logPn(F ) ≤ − inf

x∈F
I(x)

(iii) For all open sets O ⊂ U :

lim inf
n→∞

1

an
logPn(O) ≥ − inf

x∈O
I(x)

The rate function I is good if its level sets {x ∈ U | I(x) ≤ a} are compact for all a ≥ 0. If in the
conditions above, we replace closed sets by compact sets, we say that (Pn)n satisfies a weak LDP.
In this case, we can recover a LDP if the additional condition of exponential tighness is fulfilled:

For every M > 0 there exists a compact set KM ⊂ U such that

lim sup
n→∞

1

an
logPn(U \KM) ≤ −M .

In our case, the measures Pn will be the distributions of the random spectral measures µn and
we will say that the sequence of measures µn satisfies a LDP. All LDPs for spectral measures in
this section are in the weak topology.

2.4.2 LDP for ESD

The most famous LDP in random matrix theory is for the sequence of empirical spectral measures
(ESD) as defined in (2.3). The improved version is

Theorem 2.4 (Hardy [25] Thm. 1.1) If the potential V in R satisfies assumption (R1), and

if (λ1, . . . , λn) is distributed according to P(n)
V (see (2.16)), then the sequence of random probability

measures (µ
(n)
u ) satisfies in M1(R) a LDP with speed β′n2 and good rate function

IV (µ) := EV (µ)− FV

where EV is defined in (2.19) .
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An equivalent statement may be claimed via the Cayley transform (see also Remark 2.4 in [25]).

Theorem 2.5 If the potential V satisfies assumption (T1), and if (λ1, . . . , λn) is distributed

according to P(n)
V (see (2.16)), then the sequence of random probability measures (µ

(n)
u ) satisfies

in M1(T) a LDP with speed β′n2 and good rate function

IV(µ) := EV(µ)− FV

where EV is defined in (2.23) .

As an application, we have the following theorem, collecting all the LDP’s for the ESD in our
basic models. Recall that here we consider β′ = 1.

Theorem 2.6

1. For any g ∈ R, the sequence of distributions of (µ
(n)
u ) under GW(n)

g satisfies the LDP in
M1(T), with speed n2 and good rate funtion IV with V = Vg given by (3.2).

2. For any d > 0, the sequence of distributions of (µ
(n)
u ) under HP(n)

dn satisfies the LDP in
M1(T), with speed n2 and good rate funtion IV with V = Vd given by (3.16).

3. For any g ∈ R, the sequence of distributions of (µ
(n)
u ) under G̃W

(n)

g satisfies the LDP in
M1(R), with speed n2 and good rate funtion IV with V = V−g given by (3.12).

4. For any d > 0, the sequence of distributions of (µ
(n)
u ) under H̃P

(n)

dn satisfies the LDP in
M1(R), with speed n2 and good rate funtion IV with V = Vd given by (3.22).

Point 1. is in [26] p.225 and point 2. is in [9] Theorem 5.5. The points 3. and 4. are obtained
carrying the results to the real line by the Cayley transform.

3 Our two main examples of matrix ensembles

We give here all the details on our two examples with explicit constants. For the sake of simplicity
we will assume β = 2 whenever we consider one of these examples, although we remark that at
least in the scalar case, a general β > 0 could be considered, see [20].

3.1 Gross-Witten ensemble

The following model is important in the analysis of problems involving random permutations [2].
Let us consider the Gross-Witten measure on U(n), absolutely continuous with respect to the
Haar measure P(n) with density:

(3.1)
dGW(n)

g

dP(n)
(U) :=

1

Zn(g)
exp

[ng
2

tr(U + U?)
]
,

13



where g ∈ R and Zn(g) is the normalizing constant. For details and applications of this distri-
bution we refer to [26] p.203, [24], [42]. The potential is

Vg(z) = −g<(z) .(3.2)

If |g| ≤ 1 (ungapped or strongly coupled phase), the equilibrium measure is supported by T and
is

(3.3) GWg(dz) =
1

2π
(1 + g cos θ) dθ

for z = eiθ, θ ∈ [−π, π]. Moreover, the values for FGW
g = FVg and ξGWg = ξVg are given by

FGW
g = g2/2 ,(3.4)

ξGWg = g2/4 .(3.5)

Let us recall from Simon [39], p. 86 that the equilibrium measure has Verblunsky coefficients

(3.6) αn(µg) = − x+ − x−
xn+2

+ − xn+2
−

where x± = −g−1 ±
√
g−2 − 1 are roots of the equation

x+
1

x
= −2

g
,

when |g| < 1 and αn(µg) = (−g)n+1/(n + 2) if |g| = 1. We remark that these distributions have
only nontrivial moments of order ±1.

For |g| > 1 (gapped or weakly coupled phase), let θg ∈ [0, π] be such that

(3.7) sin2(
θg
2

) = |g|−1 .

For g > 1, the equilibrium measure is

(3.8) GWg(dz) =
g

π
cos( θ

2
)

√
sin2(

θg
2

)− sin2( θ
2
) 1[−θg,θg] dθ ,

for z = eiθ, θ ∈ [−π, π]. Moreover, the free energy and the modified Robin constant are in the
gapped case

FGW
g = −g +

1

2
log(g) +

3

4
,(3.9)

ξGWg =
1

2
(log(g)− g + 1) .(3.10)

The result (3.9) is known since [24] and (3.10) is formula (4.14) in [2].

When g < −1, the equilibrium measure is

(3.11) GWg(dz) =
|g|
π

sin( θ
2
)

√
sin2( θ

2
)− cos2(

θg
2

) 1[π−θg,π+θg] dθ ,
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for z = eiθ, θ ∈ [0, 2π] and θg is the same as before. It is the same to say that the support of µg

is ̂[π − θg, π + θg].

Let G̃W
(n)

−g be the probability measures on H(n) obtained by pushing forward GW(n)
−g by τ . We

get

dG̃W
(n)

−g

dQ(n)
(H) :=

1

Z̃n(g)
exp

[
ngTr

I −H2

I +H2

]
[det(I +H2)]−n .

The potential is

(3.12) V−g(x) = g
x2 − 1

x2 + 1
+ log(1 + x2) .

For 0 ≤ g ≤ 1 the equilibrium measure (supported by (−∞,∞)) is

(3.13) G̃W−g(dx) =
(1− g)x2 + 1 + g

π(x2 + 1)2
dx

(for g = 0 it is the Cauchy distribution). For g > 1, the equilibrium measure has a compact
support:

(3.14) G̃W−g(dx) =
2
√

1 + m2

πm2

√
m2 − x2

(1 + x2)2
1[−m,m](x) dx ,

where m2 = (g− 1)−1.

3.2 Hua-Pickrell ensemble

The following distribution was introduced by [27] and reconsidered by [35]. We also refer to [33],
who introduced a complex parameter and for further analysis to [6] and [9]. The Hua-Pickrell
ensemble is defined by the density

(3.15)
dHP(n)

δ

dP(n)
(U) :=

1

Zn(δ)
[det(In − U)]δ̄

[
det(In − Ū)

]δ
with respect to the Haar measure on U(n), where δ is a complex parameter such that <δ > −1/2.

Let H̃P
(n)

δ denote the probability measure on H(n) obtained by pushing forward HP(n)
δ by τ . We

get

dH̃P
(n)

δ

dQ(n)
(H) :=

1

Z̃n(δ)

[
det(In +H2)

]−n
[det(In + iH)]−δ̄ [det(In − iH)]−δ .

A particularly interesting case is the regime δ = dn, which requires <d ≥ 0 for integrability. The
case d = 0 is the same as g = 0 above and corresponds to the Cauchy ensemble. For simplicity of
the computations we will consider here the symmetric case d > 0, although it is possible to treat
the general case. In the framework laid out in Section 2.2, this corresponds to the potential

Vd(z) = −2d log |1− z| .(3.16)
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The equilibrium measure is

(3.17) HPd(dz) = (1 + d)

√
sin2( θ

2
)− sin2( θd

2
)

2π sin( θ
2
)

1(θd,2π−θd)(θ)dθ

where z = eiθ, θ ∈ [0, 2π] and θd ∈ (0, π) is such that

(3.18) sin( θd
2

) =
d

1 + d
.

The support of the equilibrium measure is thus the arc ̂[θd, 2π − θd]. Moreover, we have for the
free energy and the modified Robin constant

FHP
d = (d + 1)2 log(d + 1) + d2 log d(3.19)

−1

2
(1 + 2d)2 log(1 + 2d) + 2d2 log 2 ,

ξHPd = (d + 1) log(d + 1)− 1 + 2d

2
log(1 + 2d) .(3.20)

The orthogonal polynomials are the Geronimus polynomials with constant Verblunsky coefficients
of this equilibrium measure are constant

(3.21) αk = − d

1 + d
, k ≥ 0 .

Pushing forward this measure on the set H(n) of n× n Hermitian matrices, we get the potential

(3.22) Vd(x) = (d + 1) log(1 + x2)

This model is sometimes called the modified Cauchy ensemble, see [18], [32], [31], [34] Problem
11.4.15, or the Lorentzian ensemble [10]. The equilibrium measure on the real line is

(3.23) H̃Pd(dx) =
1

π(
√

1 + p2 − 1)

√
p2 − x2

1 + x2
1[−p,p](x) dx ,

where p2 = (1 + 2d)d−2 (see [5] Prop. 11.2.2, p. 359). Moreover

F̃HP
d = (d + 1)2 log(d + 1) + d2 log d(3.24)

−1

2
(1 + 2d)2 log(1 + 2d) + (2d2 − 1) log 2 ,

ξ̃HPd =

(
d +

1

2

)
log(2d + 1)− d log d− (2d + 1) log 2 .(3.25)

Remark 3.1 The corresponding Jacobi coefficients of the tridiagonal representation are

a1 =

√
2(1 + 2d)

(1 + d)3
, ak =

1 + 2d

(1 + d)2
(k > 1) ,(3.26)

b1 = − 2d

1 + d
, bk = −2

d2

(1 + d)2
.(3.27)

We didn’t find easily the corresponding values in the literature.
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4 LDP for spectral measures

4.1 Measure encoding approach

In this subsection, we state LDPs for the weighted measures given in (2.2). They are element
of M1(T). We first recall the main theorem of [20] on R, then we state the LDP on T which
allows to improve the result on R with weaker assumptions. First we recall the definition of the
Kullback-Leibler divergence.

Let µ and ν be two probability measures on some measurable space and 0 < χ ≤ 1, the Kullback-
Leibler divergence between µ and χν is given by

(4.1) K(µ|ν) =

∫
log

(
dµ

d(χν)

)
dµ

if µ is absolutely continuous with respect to ν and K(µ|ν) = ∞ otherwise. In our LDP, the
rate function will involve the reversed Kullback-Leibler distance, where µ will be the reference
measure and χν is the argument.

Recall the definition of the set SR1 (α−, α+) in the introduction, consisting of probability measures

µ = µ|I +
N+∑
i=1

γ+
i δλ+i +

N−∑
i=1

γ−i δλ−i .(4.2)

In our extension of the Killip-Simon sum rule we will also consider reference measures supported
by the whole real line. To keep a consistent notation, we write SR1 (−∞,∞) for the set of probabil-
ity measure with support R. In this case, N+ = N− = 0. In the same vein, we define SR≤1(α−, α+)

for subprobabilities. Notice that, this last set may be seen as S R̄1 (α−, α+).

We now introduce the analogue on the circle. If [α−, α+] is an interval in (0, 2π), let I = ̂[α−, α+]
and let ST1 = ST1 (α−, α+) be the set of all probability measures µ on T with

(i) supp(µ) = J ∪ {eiθ−i }N−i=1 ∪ {eiθ+i }N+

i=1, where J ⊂ I, N−, N+ ∈ N ∪ {∞} and θ±i ∈ [0, 2π).
Furthermore,

0 ≤ θ−1 < θ−2 < · · · < α− and θ+
1 > θ+

2 > · · · > α+.

(ii) If N− (resp. N+) is infinite, then θ−j converges towards α− (resp. θ+
j converges to α+).

We will also write λ±i = eiθ±i as in the real case for the outlying support points. For a measure
µ ∈ ST1 (α−, α+) we have then the analogous way of writing it as in (4.2). Similar to the real
case, we write ST1 (0, 2π) for the probability measures supported by T. It should be clear that the
Cayley transform carries {µ ∈ ST1 |µ(1) = 0} onto SR1 and ST1 onto SR≤1. We remark that since the
circle is rotationally invariant, separating between θ+

i and θ−i at 1 is essentially arbitrary, but it is
consistent with this mapping of measures. We endow all sets ST1 and SR1 with the weak topology
and the corresponding Borel σ-algebra.
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We need one more definition in order to formulate the general result. Recall that JV has been
defined in assumption (A3). We define, in the general case, the rate function for the extreme
eigenvalues,

F+
V (x) =

{
JV (x)− infξ∈R JV (ξ) if x ≥ α+,

∞ otherwise,
(4.3)

F−V (x) =

{
JV (x)− infξ∈R JV (ξ) if x ≤ α−,

∞ otherwise.
(4.4)

On the unit circle, we have similar notations, with V replaced by V . Notice that if V(1) < ∞,
then FV(1) <∞. In this case let us denote

(4.5) κV = FV(1)

Theorem 4.1 ([20] Thm. 3.1) Assume that the potential V satisfies the assumptions (R1),

(R2) and (R3). Then the sequence of spectral measures µ(n) under P(n)
V ⊗ Dirn(β′) satisfies the

LDP with speed β′n and rate function

IV (µ) = K(µV | µ) +
N+∑
n=1

F+
V (λ+

n ) +
N−∑
n=1

F−V (λ−n )

if µ ∈ SR1 (α−, α+) and IV (µ) =∞ otherwise.

On the unit circle, we claim

Theorem 4.2 1. Assume that the potential satisfies (T1) and that the support of µV is T.

Then the sequence of spectral measures µ(n) under P(n)
V ⊗ Dirn(β′) satisfies the LDP in

M1(T) with speed β′n and good rate function

(4.6) IV(µ) = K(µV | µ) .

2. Assume that the potential V satisfies the assumptions (T1), (T2) and (T3). Then the

sequence of spectral measures µ(n) under P(n)
V ⊗ Dirn(β′) satisfies the LDP in M1(T) with

speed β′n and good rate function

IV(µ) = K(µV | µ) +
N+∑
n=1

F+
V (λ+

n ) +
N−∑
n=1

F−V (λ−n )(4.7)

if µ ∈ ST1 (α−, α+) and IV(µ) =∞ otherwise.

To transfer the LDP in Theorem 4.2 to the real line we use the mapping τ̂ given in (2.10) . We
get the following proposition.
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Proposition 4.3 1. Assume that the potential V satisfies the assumption (R1w) and that the

support of µV is R. Then the sequence of spectral measures µ(n) under P(n)
V ⊗ Dirn(β′)

satisfies the LDP inM≤1(R) (equipped with the vague convergence) with speed β′n and rate
function

(4.8) IV (µ) = K(µV | µ)

2. Assume that the potential V satisfies the assumptions (R1w), (R2) and (R3). Then the se-

quence of spectral measures µ(n) under P(n)
V ⊗Dirn(β′) satisfies the LDP inM≤1(R) (equipped

with the vague convergence) with speed β′n and rate function

IV (µ) = K(µV | µ) +
N+∑
n=1

F+
V (λ+

n ) +
N−∑
n=1

F−V (λ−n ) + κV1µ(R)<1

if µ ∈ SR≤1(α−, α+) and IV (µ) =∞ otherwise.

Proof: We only prove point 2. since the other one is simpler. From the definitions, 1 is P(n)
V

almost surely not an eigenvalue, so that we may consider the two random measures

ν(n) =
n∑
k=1

wkδζk and µ(n) = τ̂(ν(n)) =
n∑
k=1

wkδτ(ζk)

The mapping τ̂ is continuous, and IV is good. We may apply the contraction principle (Theorem
4.2.1 in [14]). We obtain a LDP in M≤1(R) with good rate function

Î(µ) = inf
ν:τ̂(ν)=µ

IV(ν) .

Actually only those ν such that IV(ν) is finite contribute to the infimum. But then ν ∈ ST1 (α−V , α
+
V )

implies τ̂(ν) ∈ SR≤1(α−V , α
+
V ) with α±V = τ(α∓V ). Under our assumptions, µV has no atom at 1 and

µV = τ̂(µV). For a ν such as above, we have by pushforward by τ̂

K(µV |ν) = K(τ̂µV |τ̂(ν)) = K(µV |µ) .

Moreover, the outliers of ν different from 1 are carried upon outliers of µ, and FV(ζ) = FV (τ(ζ)).
Now, assume that ν has an outlier at 1, say ν = ν0 + aδ1 then µ(R) = ν0(T) = 1 − a, and the

contribution of 1 in IV(ν) hence in Î(µ) is κV . This proves that Î = IV and ends the proof of
the corollary. 2

As a consequence, we have for our models the following results.

Proposition 4.4

1. Under HP(n)
nd , the sequence of spectral measures µ(n) satisfies the LDP in M1(T) with speed

n and rate function IV where µV = HPd is given in (3.17) and F±V = F±HP , where for
0 < θ ≤ θd

F−HP (eiθ) :=

∫ θd

θ

(1 + d)

√
sin2

(
θd/2

)
− sin2(ϕ/2)

2 sin(ϕ/2)
dϕ(4.9)

and for θ ∈ (2π − θd, 2π), F+
HP (eiθ) := F−HP (e−iθ).
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2. Under H̃P
(n)

nd , the sequence of spectral measures µ(n) satisfies the LDP with speed n and rate

function IV , where µV = H̃Pd is given by (3.23) and F±V = F±HP , where for x ≥ p

F+

H̃P
(x) =

∫ x

p

2√
1 + p2 − 1

√
ξ2 − p2

1 + ξ2
dξ ,(4.10)

and F−
H̃P

(x) = F+

H̃P
(−x) for x ≤ −p.

Proposition 4.5

1. Under GW(n)
g , |g| ≤ 1, the sequence of spectral measures µ(n) satisfies the LDP in M1(T)

with speed n and rate function IV where µV = GWg is given in (3.3) and (3.11).
If |g| ≤ 1 there are no outliers and the rate function reduces to

IV(µ) = K(GWg |µ) .

If f g < −1, we have F±V = F±GW , where for 0 < θ < π − θg

F−GW (eiθ) =

∫ π−θg

θ

2|g| sin ϕ
2

√
cos2

θg
2
− sin2 ϕ

2
dϕ = 4

∫ √|g| cos θ
2

1

√
u2 − 1 du ,

and F+
GW (eiθ) = F−GW (e−iθ) if π + θg < θ < 2π.

2. Under G̃W
(n)

−g , g ≥ 0, the sequence of spectral measures µ(n) satisfies the LDP with speed n

and good rate function IV with µV = G̃W−g as in (3.13) and (3.14).
If 0 ≤ g ≤ 1, the support of µV is R the LDP is in in M1(R) and the rate function is

IV (µ) = K(G̃W−g|µ) .

If g > 1, the LDP is in M≤1(R). We have F±V = F±
G̃W

where for x > m

F+

G̃W
(x) =

∫ x

m

4
√

1 + m2

m2

√
ξ2 − m2

(1 + ξ2)2
dξ = 4

∫ x|g|√
1+x2

m

√
u2 − 1 du ,

and for x < −m, F−
G̃W

= F+

G̃W
(−x).

4.2 Verblunsky coefficient encoding approach

To begin with, let recall the simplest example. It is the Circular Unitary ensemble where U(n)
is equipped with the Haar measure. Then the Verblunsky coefficients are independent. More
precisely, the n-uple α(n) :=

(
α0, · · · , αn−1 = eiφ

)
has the distribution

(4.11) dP
(n)
0 (α0, · · · , αn−1) =

(
⊗n−2
j=0 ηn−j+1(dαj)

)
⊗ dφ

2π
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([29]). From that, it is deduced in [21], Section 5.2 that the family of distributions of µ(n) under
CUE(n) satisfies the LDP (in M1(T) equipped with the weak topology) with speed n and good
rate function

I0(µ) =
∞∑
j=0

− log(1− |αj|2) ,

when αj, j ≥ 0 are the Verblunsky coefficients of µ. In the Hua-Pickrell case, the Verblunsky
coefficients are no more independent (except when d = 0). To recover a structure of independence,
it is necessary to introduce the so-called deformed Verblunsky coeffficients. Given a measure
µ ∈M1(T) with at least n distinct support points and monic orthogonal polynomials φ0, . . . , φn−1,
define

(4.12) bk =
φk(1)

φ∗k(1)
and γk = ᾱk(bk)

−1 , k = 0, . . . , n− 1 .

This is equivalent to the recursive definition

(4.13) γ0 = ᾱ0, γk = ᾱk

k−1∏
j=0

1− γ̄j
1− γj

, k = 1, . . . , n− 1 .

For a more detailed description and meaning of these quantities we refer to [9], Section 2.2.

In Theorem 3.2 therein, it is proved that under HP(n)
δ , the random variables γ

(n)
0 , . . . , γ

(n)
n−1 are

independent and for k = 0, . . . , n− 2, the density of γ
(n)
k on D is

(4.14)
Γ(n− k + δ)Γ(n− k + δ̄)

πΓ(n− k − 1)Γ(n− k + δ + δ̄)
(1− |z|2)n−k−2(1− z)δ̄(1− z̄)δ ,

and γ
(n)
n−1 ∈ T has the density

(4.15)
Γ(1 + δ)Γ(1 + δ̄)

Γ(1 + δ + δ̄)
(1− ζ)δ̄(1− ζ̄)δ

with respect to the Haar measure on T.

When δ = nd, d ≥ 0, a straightforward study of the density (4.14) leads to a LDP for γ
(n)
j for j

fixed. It remains to use independence to get the following lemma.

Lemma 4.6 For fixed k, (γ
(n)
0 , γ

(n)
1 , . . . , γ

(n)
k )n≥k satisfies under HP(n)

nd the LDP in D̄k with speed
n and good rate function

Ik(γ0, . . . , γk) =
k∑
j=0

Hd(γj) ,

where

Hd(γ) = − log(1− |γ|2)− 2d log |1− γ|+Hd(0),(4.16)

Hd(0) = (1 + 2d) log(1 + 2d)− 2(1 + d) log(1 + d) .(4.17)
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Using the classical method of projective limits (see the proof in Section 8), this allows to claim

Theorem 4.7 Under HP(n)
nd , the sequence of measures µ(n) satisfies the LDP inM1(T) with speed

n and good rate function

JHPd (µ) =
∞∑
k=0

Hd(γk) .

In the Gross-Witten case, the Verblunsky coefficients are not independent (except when g = 0).
More precisely, the joint distribution is given by the following lemma.

Lemma 4.8 The law of
(
α

(n)
0 , . . . , α

(n)
N−1

)
under GW(n)

g is given by

(4.18)

dP (n)
g

(
α0, . . . , αn−1 = eiφ

)
= Zn(g)−1 exp

[
ng<

(
α0 −

n−1∑
k=0

αkᾱk−1

)](
⊗n−2
j=0 ηn−j+1(dαj)

)
⊗ dφ

2π
.

Proof: By definition, we have

dPg
dP0

(U) = exp
(ng

2
tr (U + U †)

)
= exp (ng<(trU)) .

Now, from the CMV representation (2.4), we get

(4.19) trU = −α0 +
N−1∑
k=0

αkᾱk−1 ,

(see also Simon [39] p. 273). It remains to use (4.11). 2

Given the explicit density in Lemma 4.8, we may conjecture a LDP for the spectral measure in
terms of its Verblunsky coefficients.

Conjecture 4.9 Under GW(n)
g , the sequence of measures µ(n) satisfies the LDP in M1(T) with

speed n and rate function

JGWg (µ) = H(g)− g<

(
α0 −

∞∑
k=1

αkᾱk−1

)
−
∞∑
k=0

log(1− |αk|2).

5 Sum rules from large deviations

5.1 Hua-Pickrell case

Our new sum rule is a straightforward consequence of Theorem 4.7 and Theorem 4.2.
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Theorem 5.1 Let µ ∈ M1(T) with infinite support and let (γk)k≥0 ∈ DN be the sequence of
its deformed Verblunsky coefficients. Then for any d ≥ 0, we have

∑∞
k=0 Hd(γk) = ∞ if µ /∈

ST1 (θd, 2π − θd). If µ ∈ ST1 (θd, 2π − θd), we have

K(HPd |µ) +
N+∑
n=1

F+
HP (λ+

n ) +
N−∑
n=1

F−HP (λ−n ) =
∞∑
k=0

Hd(γk) ,(5.1)

where both sides may be infinite simultaneously.

5.2 Gross-Witten case

As we saw above, we do not have an easy structure of the density of Verblunsky coefficients
and could not succeeded in finding a LDP in this encoding. Nevertheless, Simon found a sum
rule. Here the reference measure is supported by the full circle T and there is no contribution of
outliers.

Theorem 5.2 ([39] Thm. 2.8.1) Let µ be a probability measure on T with Verblunsky coeffi-
cients (αk)k≥0 ∈ DN. Then

(5.2) K(GW−1 |µ) = 1− log 2 + <(α0) +
|α0|2

2
+

1

2

∞∑
k=1

|αk − αk−1|2 +
∞∑
k=0

h(αk) ,

where
h(α) = − log(1− |α|2)− |α|2 .

In particular,

(5.3) K(GW−1 |µ) <∞⇐⇒
∞∑
k=0

|αk+1 − αk|2 + |αk|4 <∞ .

As an easy corollary, we have

Corollary 5.3 Let µ be a probability measure on T with Verblunsky coefficients (αk)k≥0 ∈ DN.
Then for 0 ≤ g < 1, we have

K(GW−g |µ) = H(g) + g

(
<(α0) +

|α0|2

2
+

1

2

∞∑
k=1

|αk − αk−1|2
)

(5.4)

+
∞∑
k=0

− log(1− |αk|2)− g|αk|2 ,

where

H(g) := 1−
√

1− g2 + log
1 +

√
1− g2

2
.
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In particular, we have

(5.5) K(GW−g |µ) <∞⇐⇒
∞∑
k=0

|αk|2 <∞ .

Remark 5.4 In the way to prove (5.2), Simon arrived at the equivalent expression:

(5.6) K(GW−1 |µ) = 1− log 2 + <

(
α0 −

∞∑
k=1

αkᾱk−1

)
+
∞∑
k=0

− log(1− |αk|2) .

In the same vein, (5.4) is equivalent to

(5.7) K(GW−g |µ) = H(g) + g<

(
α0 −

∞∑
k=1

αkᾱk−1

)
+
∞∑
k=0

− log(1− |αk|2) .

For |g| > 1, we may still propose a sum rule. The left hand side of such an identity would be
given by the rate function of the LDP for the spectral measure encoded by the eigenvalues and
the weights. It will be a particular case of our general Theorem 4.2. The right hand side can be
only conjectured. It is natural to state the following conjecture.

Conjecture 5.5 Let µ be a probability measure on T with Verblunsky coefficients (αk)k≥0 ∈ DN.
Then for any g < −1 and µ ∈ ST1 (π − θg, π + θg),

K(GWg |µ) +
N−∑
n=1

F+
g (λ+

n ) +
N+∑
n=1

F−g (λ−n ) = H(g)− g<

(
α0 −

∞∑
k=1

αkᾱk−1

)
−
∞∑
k=0

log(1− |αk|2).

(5.8)

If µ /∈ ST1 (π − θg, π + θg), the right hand side equals +∞.

This statement would be a direct consequence of Theorem 4.2 and of Conjecture 4.9, as soon as
the latter is true.

6 Matrix extensions

In this section we show how several results can be extended to the case of operator values
measures. Since the arguments necessary for the proofs are mostly identical to the scalar case or
can be found in the companion paper [19], we omit most of the proofs.
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6.1 Matrix spectral measure

A matrix measure Σ = (Σi,j)i,j of size p × p on T is a matrix of signed complex measures, such
that Σ(A) = (Σi,j(A))i,j ∈ H(p) is Hermitian and non-negative definite for any Borel set A ⊂ T.
A matrix measure on T is normalized, if Σ(T) = In. We denote byMp,1(T ) the set of normalized
p × p matrix measures with support in T ⊂ T. Given a unitary operator U and a collection
of vectors e1, . . . , ep cyclic for U , one can define the spectral matrix measure Σ of (U, e1, . . . ep)
similar to 2.1 by the relation

〈ei, Ukej〉 =

∫
T
zk d(e†iΣej)(z), k ∈ Z.(6.1)

In fact, if U ∈ U(n) with eigenvalues λ1 = eiθ1 , . . . , λn = eiθn and ψ1, . . . , ψn a corresponding
system of orthonormal eigenvectors, the spectral matrix measure is given by

Σ(n) =
n∑
k=1

Wkδλk ,(6.2)

where Wk = ψ
(p)
k (ψ

(p)
k )† and ψ

(p)
k is the projection of ψk onto the first p coordinates.

If Σ ∈ Mp,1(T) is a quasi scalar measure, that is if Σ = Ipσ with σ ∈ M1(T) a scalar measure
and if Π is a normalized matrix measure with Lebesgue decomposition

Π(dz) = h(z)σ(dz) + Πs(dz) ,

we define

(6.3) K(Σ|Π) := −
∫

log deth(z) σ(dz) .

Note that if we define a density

dΣ

dΠ
=

(
dσ

dΠi,j

)
i,j

componentwise, then it is possible to rewrite the above quantity in the flavour of the Kullback-
Leibler information (or relative entropy)

K(Σ|Π) =

∫
log det

dΣ

dΠ
(z)dσ(z) ,

if the density dΣ
dΠ

exists and infinity otherwise (see [30] or [37]).

As in the scalar case, we can define matrix versions of Verblunsky coefficients, where now the
correspondence is via matrix orthogonal polynomials on the unit circle (MOPUC).
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6.2 MOPUC

We follow the notation of [23] and [12]. A p × p matrix polynomials F is a polynomial with
coefficents in Cp×p. Given a measure Σ ∈M1,p(T), we define two inner products on the space of
p× p matrix polynomials by setting

〈〈F,G〉〉R =

∫
T

F(z)†dΣ(z)G(z) ∈ Cp×p ,

〈〈F,G〉〉L =

∫
T

G(z)dΣ(z)F(z)† ∈ Cp×p .

A sequence of matrix polynomials (ϕj) is called right-orthonormal if and only if

〈〈ϕi,ϕj〉〉R = δijIp .

Analogous to the scalar case, we can construct orthonormal polynomials satisfying a recursion
and the matrices appearing in this recursion are the so-called matrix Verblunsky coefficients
(see [12] and an historical introduction therein). For the sake of completeness, we give some
more details. First, assume that the support of Σ is infinite. We define the right monic matrix
orthogonal polynomials ΦR

n by applying the block Gram-Schmidt algorithm to {Ip, zIp, z2Ip, . . . }.
In other words, ΦR

n is the unique matrix polynomial ΦR
n (z) = znIp+ lower order terms, such that

〈〈zkIp,ΦR
n 〉〉R = 0 for k = 0, . . . , n− 1. The normalized orthogonal polynomials are defined by

ϕ0 = Ip , ϕRn = ΦR
nκ

R
n

where the sequence of p× p matrices κRn satisfies, for all n the condition
(
κRn
)−1

κRn+1 > 0p and is
such that the set {ϕRn} is orthonormal. We define the sequence of left-orthonormal polynomials

{ϕLn} in the same way except that the above condition is replaced by κLn+1

(
κLn
)−1

> 0. The
matrix Szegő recursion is then

zϕLn − ρLnϕLn+1 = α†n(ϕRn )∗(6.4)

zϕRn −ϕRn+1ρ
R
n = (ϕLn)∗α†n ,(6.5)

where for all n ∈ N,

• αn belongs to Bp, the closed unit ball of Cp×p defined by

(6.6) Bp := {M ∈ Cp×p : MM † ≤ Ip} ,

• ρn is the so-called defect matrix defined by

ρRn :=
(
Ip −αnα†n

)1/2
, ρLn =

(
Ip −α†nαn

)1/2
,(6.7)

• for a matrix polynomial P with degree n, the reversed polynomial P∗ is defined by

P∗(z) := znP(1/z̄)† .
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Notice that the construction of the recursion coefficients uses only the matrix moments. Verblun-
ski’s theorem (the analogue of Favard’s theorem for matrix orthogonal polynomials on the unit
circle) establishes a one-to-one correspondance between matrix measures on T with infinite sup-
port and sequences of elements of the interior of Bp (Theorem 3.12 in [12]).

Now, for a matrix measure having a finite support, the construction of the Verblunsky coefficients
is not obvious. In [17] Theorem 2.1, a sufficient condition on the moments for such a construction
is provided. It is related to the positivity of a block-Toeplitz matrix, as it is also mentioned in
[39] at the top of p. 208.

In the basis (χk), the matrix of U is (see formula (3.70) in [12])

CΣ =



α†0 ρL0α
†
1 ρL0ρ

L
1 0 0 . . .

ρR0 −α0α
†
1 −α0ρ

L
1 0 0 . . .

0 α†2ρ
R
1 −α†2α1 ρL2α

†
3 ρL2ρ

L
3 . . .

0 ρR2 ρ
R
1 −ρR2α1 −α2α

†
3 −α2ρ

L
3 . . .

0 0 0 α†4ρ
R
3 −α†4α3 . . .

. . . . . . . . . . . . . . . . . .


(6.8)

with

(6.9) 0p ≤ αkα†k < Ip

for every k ≥ 0 in the non-trivial case. If the measure Σ is supported by N = np points, then Σ
is non non-trivial and αn−1 ∈ U(p). In this case, the last line is

0 . . . 0 0 α†2rρ
R
2r−1 −α†2rα2r−1 if n = 2r + 1 ,

0 . . . 0 ρR2rρ
R
2r−1 −ρR2rα2r−1 −α2rα

†
2r+1 if n = 2r + 2, r ≥ 0 .

6.3 Deformed Verblunsky coefficients

This section is devoted to a detailed study of the deformed Verblunsky coefficients in the matrix
setting, consisting in identification of their different definitions and properties. To make the
reading easier, we recall the essential results of the scalar case proved in [9].

6.3.1 Scalar case

Motivated by the study of the (scalar) Hua-Pickrell ensemble, Bourgade et al. [9] introduced the
so-called deformed Verblunsky coefficients. They could be defined in various ways.

OPUC recursion and the Schur machinery Let us assume that µ ∈ M1(T) has either a
finite support consisting in n points, or infinite support and we will say n =∞ and k ≤ n−1 will
mean k ≥ 0. Then, starting with the orthogonal polynomials Φk in L2(µ) we define for k ≤ n− 1
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the functions

bk(z) :=
Φk(z)

Φ∗k(z)
(6.10)

γk(z) : = z − Φk+1(z)

Φk(z)
.(6.11)

From the Szegő’s recursion (1.1), we have

γk(z) =
ᾱk
bk(z)

and successively

Φk(z) =
k−1∏

0

(z − γj(z) ,(6.12)

γk(z) = ᾱk

k−1∏
0

1− zγ̃j(z)

z − γj(z)
,with γ̃j(z) = γj(z̄−1) .(6.13)

The deformed Verblunsky coefficients are by definition

γk := γk(1)

and may be computed recursively as

γ0 = ᾱ0 , γk = ᾱk

k−1∏
j=0

1− γ̄j
1− γj

.

If n is finite, the obvious relation Φn(1) =
∏n−1

0 (1−γk) may be lifted up, when (U, e) is given, as

det(I− U) = Φn(1) =
n−1∏
j=0

(1− γj) .

To explain the connection with Schur parameters, let us recall that the Carathéodory function
of a measure µ ∈M1(T) is defined as

(6.14) F (z) =

∫
eiθ + z

eiθ − z
dµ(eiθ)

and its Schur function f : D→ D is defned by means of F by:

f(z) =
1

z

F (z)− 1

F (z)− 1
.

The Schur algorithm allows to parametrize the Schur function f by a sequence of so-called Schur
parameters. For α ∈ D, let

(6.15) Tα : ζ 7→ (ζ − α)(1− ᾱζ)−1 ,
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The reverse mapping is T−α. Let us define the sequence

(6.16) f0(z) = f(z) , fj+1(z) = z−1Tαj(fj(z)) , , αj = fj(0) .

We say that f is the Schur function associated with the sequence (α0, α1, . . . ).

The Geronimus theorem states that these are exactly the Verblunsky coefficients.

From the basic recursion and its star version

Φn+1(z) = zΦn(z)− ᾱnΦ∗n(z)

Φ∗n+1(z) = Φ∗n(z)− αnzΦn(z) ,(6.17)

we deduce that the sequence of quotients bk(z) defined in (6.10) satisfies the recursion

(6.18) bk(z) =
zbk−1(z)− ᾱk−1

1− zαk−1bk−1(z)
,

i.e.
bk−1(z) = z−1T−ᾱk−1

(bk(z)) .

In other words, bk is the Schur function corresponding to the reversed sequence
(−ᾱk−1, · · · ,−ᾱ0, 1) (see [40] Prop. 9.2.3), we say that the sequence (bk)k is the sequence of
inverse Schur iterates.

Decomposition by reflections Moreover, when n is finite, a geometrical interpretation is
given, with a decomposition of U into a product of complex reflections parametrized by the
coefficients γk, k = 0, · · · , n− 1.

A n-(complex) reflection is an element of U(n) such that r − In has rank 0 or 1. If e and m 6= e
are unit vectors of Cn, there is a unique reflection r such that r(e) = m, and it is

(6.19) r = In −
1

1− 〈m, e〉
(m− e) 〈(m− e)| ·

If F := span {e,m}, then r leaves F⊥ invariant. Now setting

γ = 〈e,m〉 , ρ =
√

1− |γ|2 , eiϕ =
1− γ
1− γ̄

,

then, in the basis (e, g) of F obtained by the Gram-Schmidt procedure, the restriction of r to F
has the matrix

Ξ(γ) =

(
γ ρeiϕ

ρ −γ̄eiϕ

)
.

Let u ∈ U(n), e cyclic for u and let (ε1, · · · , εn) be the orthonormal basis obtained from the Gram-
Scmidt procedure applied to (e, ue, · · · , un−1e). We define recursively n reflections as follows. r1

is the reflection mapping e = ε1 onto ue = uε1 and for k ≥ 2 rk is the reflection mapping εk onto
r−1
k−1r

−1
k−2 · · · r

−1
1 uεk. Then u = r1 · · · rn and

〈εk, rkεk〉 = γk .
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6.3.2 The matrix case

By convention, 1 = Ip in the following.

MOPUC recursion and the Schur machinery Let us define, for k = 0, . . . , n− 1,

(6.20) b0(z) = 1, , bk(z) = ϕLk (1)
(
ϕR,∗k (1)

)−1

,

which is consistent with the definition, given in (6.31) of bk = bk(1):

(6.21) bk = ϕLk (1)
(
ϕR,∗k (1)

)−1

and γk = b−1
k α

†
k .

As in the scalar case, we can make the connection with the inverse Schur iterates.

The Carathéodory function F is now matrix-valued, defined again by (6.14), and the Schur
function is ([12] Prop. 3.15)

f(z) = z−1(F(z)− 1)(F(z) + 1)−1 .

To define the Schur algorithm, we set for α ∈ Bp,

Tα(ζ) = (ρR)−1(ζ −α)(1−α†)−1ρL

The reverse mapping is T−α, and we notice that

(6.22) (Tα(ζ))−1 = Tα†(ζ
−1) .

Theorem 6.1 ([12] Th. 3.19) For the Schur functions f0, f1, . . . associated with Verblunsky
coefficients α0,α1, . . . , the following relations hold:

fj+1(z) = z−1Tαj(fj(z))(6.23)

αj = fj(0)(6.24)

and the connection is the following

Proposition 6.2 ([12] Prop. 3.26) For k ≥ 1, bk(z) is the Schur function associated with the
reversed sequence (−α†k−1, . . . ,−α

†
0,1).

Decomposition by reflections Let us first fix the notations. Let e = [e1, . . . , ep] a n × p
matrix consisting in p column vectors of dimension n. If U ∈ U(n), we denote by Ue the n × p
matrix Ue := [Ue1, . . . , Uep] . The pseudo-scalar product of e with f = [f1 · · · fp] is a matrix
p× p denoted by � f , e� and defined by

� f , e�i,j = 〈fi, ej〉 i, j = 1, . . . , p .
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Assume that e is cyclic for U (see definition 2.3 in [23]). If n = Qp with Q ≥ 2, let (ε1, . . . , εQ) be
the orthonormal basis obtained from the Gram-Schmidt procedure applied to (e, Ue, . . . , UQ−1e).
Actually, Neretin [33] defined a sequence of operations on unitary matrices of decreasing dimen-
sions. Up to a slight change of notations, it is the following. For m < n we decompose a unitary
matrix U ∈ U(n) into four blocks

U =

(
A B
C D

)
with A a m×m matrix, and then define

Ξm
n (U) = D + C(Im − A)−1B ∈ U(n−m) .

Actually, In−m − Ξm
n (U) = (In − U)�(Im −A) where M�N is the Schur complement of M with

respect to its upper left block (submatrix) N . This doubly indexed sequence of transformation
enjoys the projective property:

(6.25) Ξr
n−m ◦ Ξm

n = Ξr+m
n ,

as soon as r+m < n ([33] Prop. 0.1). In the sequel, for q > p, we denote by [M ]p the upper left
block of the q × q matrix M .

We define the successive iterations

(6.26) c0(U) := [U ]p , cr(U) := [Ξrp
n (U)]p , 1 ≤ r ≤ Q− 1 .

Then Neretin proved ([33] Sect. 1.5)

(6.27) det(In − U) =

Q−1∏
r=0

det (1− cr(U)) .

These operators Ξ are used to define the successive reflections. More precisely, we define

π̂0(U) = U , π̂k(U) = Ikp ⊕ Ξkp
n , 1 ≤ k ≤ Q− 1 , π̂Q(U) = In

Rj(U) = π̂j−1(U)π̂j(U)∗ , 1 ≤ j ≤ Q .

Then, when U is written in an orthonormal basis (e, e2, . . . , eQ), then R1 maps e onto Ue and is
a reflection since the rank of R1 − In is the same as the rank of U − (1⊕ Ξp

n) which is at most p
(see Prop. 2.5 in [8]).

More generally, for k ≥ 2, Rk is a reflection mapping ek onto R∗k−1R
∗
k−2 . . . R

∗
1Uek and

U = R1 . . . RQ

In particular, let G be the matrix of a unitary operator u written in the basis (εk)k obtained by
orthonormalizing the sequence e, ue, . . . , uQe. Usually G is called the block GGT matrix :

G := GR(α0,α1, . . . ) =


α†0 ρL0α

†
1 ρL0ρ

L
1α
†
2 ρL0ρ

L
1ρ

L
2α
†
3 . . .

ρR0 −α0α
†
1 −α0ρ

L
1α
†
2 −α0ρ

L
1ρ

L
2α
†
3 . . .

0 ρR1 −α1α
†
2 −α1ρ

L
2α
†
3 . . .

0 0 ρR2 −α2α
†
3 . . .

...
...

...
...

. . .
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Note Rj for Rj(G). Then R1 maps ε1 onto Gε1 and is a reflection since the rank of R1 − In is
the same as the rank of G − (1⊕ Ξp

n) which is at most p (see Prop. 2.5 in [8]).

More generally, for k ≥ 2, Rk is a reflection mapping εk onto R∗k−1R∗k−2 . . .R∗1Gεk and

G = R1 . . .RQ

Of course, we have

(6.28) det(Id− u) = det(In − G) =

Q−1∏
r=0

det(1− cr(G))

We have the following identification.

Proposition 6.3 Let (u, e) be given and call G the matrix of u written in the ε basis. Then for
k = 1, . . . , n

ck−1(G) =� εk,Rkεk �= γk−1 .(6.29)

6.4 LDP for matrix Verblunsky coefficients

In a previous work ([23]), the first and last author studied the CUE case. If N = np, the matrix
Verblunsky coefficients α0, . . . ,αn−1 are independent, and for j ≤ n − 2, αj has the density in
Bp

(6.30) Kp,(n−k)p det(Ip −αα†)(n−2−k)p ,

where Kp,(n−k)p is some explicit constant. Note that all densities in this section are with respect
to

dM =
∏

1≤k,l≤n

d(<Mkl)
∏

1≤k,l≤n

d(=Mkl).

From this density, we deduced the LDP:

Proposition 6.4 ([23] Theorem 3.6) Let U ∈ U(N) with N = np be chosen according to the

Haar measure P(N) and let (α
(n)
j )0≤j≤n−1 be the matrix Verblunsky coefficients of the spectral

matrix measure of (U, e1, . . . ep). Then, for any fixed k ≥ 1, (α
(n)
0 ,α

(n)
1 , · · · ,α(n)

k )n≥k satisfies the
LDP in (Bp)k with speed N and good rate function

Ik(α0, . . . ,αk) =
k∑
j=0

− log det(Ip −αjα†j) .
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To study the Hua-Pickrell case, we define the deformed matrix Verblunsky coefficients as

(6.31) bk = ϕLk (1)
(
ϕR,∗k (1)

)−1

and γk = b−1
k α

†
k .

Their interest is broader than the simple study in the Hua-Pickrell case. We have the following
result for the distribution of the deformed matrix Verblunsky coefficients, the proof is in Section
6.3.

Theorem 6.5 Let U be chosen at random in U(N), N = np with n > 2, according to the

Hua-Pickrell measure with parameter δ. Let (γ
(n)
j )0≤j≤n−1 be the deformed matrix Verblunsky

coefficients of the spectral matrix measure of (U, e1, . . . ep). Then, γ
(n)
1 , . . . ,γ

(n)
n−1 are independent.

Moreover, for j ≤ n− 2, γ
(n)
j has in Bp the density

(6.32) K
(δ)
n,j det (Ip − γ)δ̄ det

(
Ip − γ†

)δ
det(Ip − γγ†)(n−2−j)p

where

(6.33) K
(δ)
n,j = π−p

2

p∏
k=1

Γ(N − (j + 1)p+ k + δ)Γ(N − (j + 1)p+ k + δ̄)

Γ(N − (j + 2)p+ k)Γ(N − (j + 1)p+ k + δ + δ̄)

and γn−1 follows the Hua-Pickrell distribution on U(p) with parameter δ.

If δ = Nd, we get the following LDP for the deformed coefficients. We remark that if d = 0, the
rate reduces to the rate in Proposition 6.4, since the matrices bk are unitary by Theorem 3.9 in
[12].

Proposition 6.6 Let U be chosen at random in U(N), N = np, according to the Hua-Pickrell

measure HP(N)
Nd with d ≥ 0. Let (γ

(n)
j )0≤j≤n−1 be the deformed matrix Verblunsky coefficients

of the spectral matrix measure of (U, e1, . . . ep). Then, for any fixed k, (γ
(n)
0 ,γ

(n)
1 , · · · ,γ(n)

k )n≥k
satisfies the LDP in (Bp)k with speed N and good rate function

Ik(γ0, . . . ,γk) =
k∑
j=0

Hd,p(γj) ,

with

(6.34) Hd,p(γ) = − log det(Ip − γγ†)− d log det
(
(Ip − γ)(Ip − γ)†

)
+ pHd(0)

where Hd is as in (4.17).
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6.5 LDP for matrix spectral measures

Our next LDP holds for matrix spectral measures of (U, e1, . . . , ep), when U is chosen randomly

according to a general measure P(N)
V on U(N) as defined in (2.12). In this case, the eigenvector

matrix is again Haar distributed, the weights (W1, . . .WN) are independent of the eigenvalues
and follow a distribution, which is a matrix analogue of the Dirichlet distribution. For the precise
statement, we refer to Proposition 3.1 in [23].

Let us introduce the matrix analogue to the set ST1 = ST1 (α−, α+). For [α−, α+] an interval

in (0, 2π), let I = ̂[α−, α+] and let STp,1 = STp,1(α−, α+) be the set of all normalized measures
Σ ∈Mp,1(T) with

(i) supp(Σ) = J ∪ {eiθ−i }N−i=1 ∪ {eiθ+i }N+

i=1, where J ⊂ I, N−, N+ ∈ N ∪ {∞} and θ±i ∈ [0, 2π).
Furthermore,

0 ≤ θ−1 < θ−2 < · · · < α− and θ+
1 > θ+

2 > · · · > α+.

(ii) If N− (resp. N+) is infinite, then θ−j converges towards α− (resp. θ+
j converges to α+).

We can write such a measure Σ as

Σ = Σ|I +
N+∑
i=1

Γ+
i δλ+i +

N−∑
i=1

Γ−i δλ−i ,(6.35)

for some nonnegative Hermitian matrices Γ+
1 , · · · ,Γ+

N+ ,Γ
−
1 , · · · ,Γ−N− and λ±i = eiθ±i . As before,

STp,1(0, 2π) is the set of measures supported by T. Then we have the following result. We omit
the proof, the necessary steps to extend the scalar case in Theorem 4.2 to the matrix case are
exactly the same as in [19], where the matrix LDP for measures on the real line is established.

Theorem 6.7 Assume that U is distributed according to P(N)
V and the potential V satisfies as-

sumptions (T1), (T2), (T3). Then the sequence of matrix spectral measures Σ
(N)
p of (U, e1, . . . ep)

satisfies the LDP in Mp,1(T) equipped with the weak topology, with speed N and rate function

(6.36) IpV(Σ) = K(Ip · µV |Σ) +
N+∑
n=1

F+
V (λ+

n ) +
N−∑
n=1

F−V (λ−n ) .

if Σ ∈ STp,1(α−, α+) and IpV(Σ) = +∞ otherwise. Here, µV is the scalar measure as in assumption
(T2).

6.6 Sum rules

The matrix version of Szegő’s formula was established in [13] (see more recently [15]) and a
probabilistic proof is in [23].

34



Theorem 6.8 Let µ ∈Mp,1(T) with infinite support and let (αk)k≥0 ∈ (Bp)N be the sequence of
its Verblunsky coefficients. Then

K(Ip UNIF |µ) =
∞∑
j=0

− log det(Ip −αjα†j) .(6.37)

The matrix version of Theorem 5.1 is the following result. It is a combination of Proposition
6.6 and Theorem 6.7, when V is the potential of the Hua-Pickrell ensemble. The proof is as
in the scalar case: Proposition 6.6 yields by the projective method a complimentary LDP for a
measure distributed according to the Hua-Pickrell ensemble, the statement follows then from the
uniqueness of rate functions.

Theorem 6.9 Let Σ ∈ Mp,1(T) with infinite support and let (γk)k≥0 ∈ (Bp)N be the sequence
of its deformed matrix Verblunsky coefficients. Then for any d ≥ 0,

∑∞
k=0 Hd,p(γk) = ∞ if

Σ /∈ ST1,p(θd, 2π − θd). For Σ ∈ ST1,p(θd, 2π − θd),

K(Ip · HPd |Σ) +
N+∑
n=1

F+
HP (λ+

n ) +
N−∑
n=1

F−HP (λ−n ) =
∞∑
j=0

Hd,p(γj) ,(6.38)

where both sides may be infinite simultaneously, and Hd,p is defined in (6.34).

For the Gross-Witten ensemble, it seems difficult (at least at a first attempt) to adapt Simon’s

proof to the matrix setup. Nevertheless, since the density of GW(N)
g with respect to the Haar

measure is proportional to

exp (Ng < trU)

and trU = tr Cµ which can be computed in matrix terms, taking into account the CMV form of
U (6.8):

tr CΣ = trTn(α0, . . . ,αn−1)

where

Tn(α0, . . . ,αn−1) = α†0 −α0α
†
1 − . . .

{
−α†2rα2r−1 if n = 2r + 1 ,

−α2rα
†
2r+1 if n = 2r + 2, r ≥ 0 .

So with

T (α0,α1, . . . ) = α†0 −α0α
†
1 −

∞∑
j=1

(α2kα
†
2k+1 +α†2kα2k−1),(6.39)

we are in the position to propose the following conjecture:

Conjecture 6.10 Let µ ∈Mp,1(T) with infinite support and let (αk)k≥0 ∈ (Bp)N be the sequence
of its matrix Verblunsky coefficients.
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1. If |g| ≤ 1, then

(6.40) K(Ip ·GW−g |µ) =
∞∑
j=0

− log det(Ip −αjα†j) + g< tr T (α0, . . . ) +Hp(g) ,

where T (α0, . . . ) is given by (6.39) and Hp(g) is some constant.

2. If |g| > 1, then a similar identity holds, with an additional term on the left hand side which
is

N−∑
n=1

F+
−g(λ

−
i ) +

N+∑
n=1

F−−g(λ+
i )

as in Conjecture 5.8.

7 Proofs

7.1 Proofs of Section 2.4

7.1.1 Proof of Theorem 4.2

We can follow verbatim the proof of the corresponding theorem in the real case. The main idea
is to apply the projective method (the Dawson-Gärtner Theorem, see [14]) to a non-normalized
version of the spectral measure. In a first step, we consider instead of µ(n) the measure

µ̃(n) =
n∑
i=1

γiδλi ,

with γ1, . . . , γn independent Gamma(β′, (β′n)−1) distributed random variables with mean n−1.
Since the self-normalized vector of these gamma-distributed random variables has a Dirn(β′)-
distribution, µ̃(n)/µ̃(n)(T) recovers the original distribution of µ(n). Then, we consider the measure

πj(µ̃
(n)) = µ̃

(n)
|I +

N+∑
i=1

γ+
i δλ+i +

N−∑
i=1

γ−i δλ−i

as in (4.2). Note that this projection is not continuous in the weak topology, and in [20] we

introduce a new topology generated by µ̃
(n)
|I and the vector of outliers. On the set of normalized

measures, this topology is stronger than the weak topology and we can claim the LDP in the
latter topology. Ultimately, this also explains why our arbitrary distinction between λ+

i and λ−i
creates no problems: the transition of an eigenvalue from eiθ−1 to eiθ+1 is continuous in the weak
topology, but not in our new one.

A crucial ingredient in the LDP for πj(µ̃
(n)) is the LDP for a finite collection of extreme eigenval-

ues. The remaining part of the proof is then the same as in the real case. To simplify notation,
let A↑j (or A↓j) denote subset of Aj with non-decreasing (resp. non-increasing) coordinates.
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Proposition 7.1 Let j and ` be fixed integers. Assume that V satisfies (T1), (T2) and the
control condition (T3). If 0 < α+ and α− < 2π, then the law of (θ+

1 , . . . , θ
+
j , θ

−
1 , . . . , θ

−
` ) under

P(n)
V satisfies the LDP in Rj+` with speed n and rate function

Iθ±(θ+, θ−) =

j∑
k=1

F+
V (eiθ+k ) +

∑̀
k=1

F−V (eiθ−k )

if θ+ = (θ+
1 , . . . , θ

+
j ) ∈ [α+, 2π)↓j and θ− = (θ−1 , . . . , θ

−
` ) ∈ [0, α−)↑` and Iθ±(θ+, θ−) = ∞

otherwise.

Proof: We first mention the main points in the proof of the large deviation upper bound. Let
us stress that there is no need of exponential tightness. The proof follows the same lines as in
[20] and makes use of the following lemmas.

Lemma 7.2 Let V be a continuous potential on T \ {1} satisfying (T1). and let r be a fixed

integer. If P(n)
Vn is the probability measure associated to the potential Vn = n+r

n
V, then the law of

µ
(n)
u under P(n)

Vn satisfies the LDP with speed n2 with good rate function

(7.1) µ 7→ E(µ)− inf
ν
E(ν)

where E is defined in (2.19).

Lemma 7.3 If the potential V is continous on T\{1} and satisfies (T1), we have for every p ≥ 1

(7.2) lim
n→∞

1

n
log

Z
(n)
V

Z
(n−p)
n
n−pV

= − inf
z1,...,zk

p∑
k=1

JV(zk) = −p inf
z
JV(z) .

Actually, to prove Lemma 7.2, it is enough to notice that there exists two constants c1 < c2 such
that

c1 ≤
1

n
log

dP(n)
Vn

dP(n)
V

≤ c2 .

Since the arguments for the two lemmas is the same as in the real case, we omit the proofs.

For the proof of the large deviation lower bound, we may make the same remark as above, we
don’t need to show exponential tightness anymore. Besides we need the fact that under Pnn+r

n
V ,

the extremal eigenvalues converges to the endpoints of the support of µV if its support is a
proper arc. It was a separate lemma in [20], but it is a direct consequence of the upper bound
and assumption (T3).

Lemma 7.4 Under Assumption (T1) and (T3), the distance of θ+
i and θ−i to {α−, α+} converges

in probability to 0 for all i ≥ 1.

Proof: We may utilize the large deviation upper bound of Proposition 7.1. The upper bound
involves the rate function JV− infx JV(x). So, if this rate function which vanishes on the support
of µV does not vanish outside by assumption (T3), that means that the probability that the
distance to {α−, α+} is greater than ε is exponentially small. 2
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7.1.2 Proof of Theorem 4.7

We mimick the proof of Theorem 4.3 and 4.4 in [22]. The weak convergence topology onM1(T)
is equivalent to the topology of convergence of moments on D̄N, which is equivalent to the con-
vergence of deformed Verblunsky coefficients. Let Γ : M1(T) → D̄N denote the mapping which
associates to each measure µ the sequence of deformed Verblunsky coefficients

Γ(µ) =
(
γ0(µ), γ1(µ), . . .

)
,

where we set γn+1(µ) = γn+2(µ) = · · · = 1 if γn(µ) ∈ T. Let pk : D̄N → D̄k be the projection

onto the first k coordinates. By Lemma 4.6, pk(Γ(µ(n))) satisfies under HP(n)
nd the LDP in D̄k with

speed n and good rate Ik. We know apply the Dawson-Gärtner theorem. When equipped with
the product topology, D̄N can be viewed as the projective limit

D̄N = lim
←
D̄k,

so that under HP(n)
nd , the sequence Γ(µ(n)) satisfies the LDP in D̄N with speed n and good rate

function

I∞(γ0, γ1, . . . ) = sup
k
Ik(pk(γ0, . . . )) = sup

k

k∑
j=0

Hd(γj) =
∞∑
j=0

Hd(γj).

Actually, this LDP holds in Γ(M1(T)), as on the complement the rate function equals +∞.
Finally, it remains to apply the continuous mapping Γ−1 to obtain the LDP for µ(n) with the
good claimed rate function JHPd . 2

7.2 Proofs of Section 5

7.2.1 Proof of Corollary 5.3

The elementary decomposition

(1− g cos θ) = g(1− cos θ) + (1− g)

and the definition of GW−g give

K(GW−g |µ) = G(g) + gK(GW−1 |µ) + (1− g)K(GW0 |µ)− gG(1)

where

G(a) :=

∫ 2π

0

(1− a cos θ) log(1− a cos θ)
dθ

2π
.

Now a routine computation gives:

(7.3) G(a) = 1−
√

1− a2 + log
1 +
√

1− a2

2
.

Remark 7.5 The minimum in formula (5.4) is 0. It is reached uniquely in µ = µ−g, which
corresponds to the Verblunsky coefficients given in (3.6).
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7.3 Proofs of Section 6

7.3.1 Proposition 6.3

First, we have

� εk,Rkεk �=� εk,R∗k−1R∗k−2 . . .R∗1Gεk �=� R1 . . .Rk−1εk,Gεk �
=� Gπ̂k(G)∗εk,Gεk �=� π̂k(U)∗εk, εk �=� εk, π̂k(G)εk �= ck−1(G) .

To compute ck(G) we start from the definitions of G and Ξp
n, which yield

Ξp
n(GR) = Θ̂(u0)GR(α1,α2, . . . )(7.4)

where, if u ∈ U(p)

Θ̂(u) =

(
u 0p,n−2p

0n−2p,p In−2p

)
and

u0 = −α0 + ρR1 (1−α†0)−1ρL0 ,

so that
c1(GR) = [Ξp

n(GR)]p = u0α
†
1 .

More generally, looking for a recursion - thinking of (6.25) - , we notice that

Ξp
n

(
Θ̂(u)GR(α0, . . . ,αQ−1)

)
= Θ̂(v)GR(α1, . . . ,αQ−1)(7.5)

where

v = v(u,α0) = −α0 + ρR0 (1− uα†0)−1uρL0 .(7.6)

We need the following observation.

Lemma 7.6 If α ∈ B(p) and u ∈ U(p) then

(7.7) −α+ ρR(1− uα†)−1uρL = (ρR)−1(u−α)(1−α†u)−1ρL = Tα(u) .

Let us assume that

(7.8) Ξjp
n = Θ̂(uj)GR(αj, . . . ,αQ−1) ,

where uj depends on α0, . . . ,αj−1.

Applying (6.25), (7.5) and Lemma 7.6 we get

Ξ(j+1)p
n (GR(α0, . . . ,αQ−1)) = Ξp

n−jp

(
Θ̂(up)GR(αj, . . . ,αQ−1)

)
= Θ̂

(
Tαj(uj)

)
GR(αj+1, . . . ,αQ−1) ,
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and the assumption (7.8) is satisfied at rank j + 1 with

(7.9) uj+1 = Tαj(uj) .

Passing to the upperleft block, we obtain easily, for every j ≤ Q− 1

cj = ujα
†
j .

Now, using (6.22), we see that βj := u−1
j satisfies the recursion

βj+1 = Tα†j
(βj)

or, reversing
βj = T−αj†(βj+1)

which allows to conclude that βj = bj and ends the proof of Proposition 6.3.

Proof of Lemma 7.6 : We have to prove E = (ρR)−1FρL (say). Actually, since ρRα = αρL

and (ρR)2 = 1−αα†, we have

ρRE(ρL)−1 = −α+ (1−αα†)(1− uα†)−1u .

Now, (1− uα†)u = u(1−α†u) and then

ρRE(ρL)−1 = −α
(
1 +α†u(1−α†u)−1

)
+ u(1−α†u)−1 ,

which is exactly F = (u−α)(1−α†u)−1.

7.3.2 Proof of Theorem 6.5

In [23] it is proved that if U(n) is equipped with the Haar measure, the distribution of
(α0, · · ·αn−1) is

(7.10) const .

Q−2∏
r=0

det(1−α†rαr)n−(r+2)p

Q−1∏
r=0

dαr ,

where, for r = 0, . . . , Q− 2, dαr is the Lebesgue measure on Bp, and dγQ−1 is the Haar measure
on U(p).

Since γr is α†r up to multiplication by a unitary matrix depending only on (α0, · · · ,αr−1),
we deduce that, the pushforward of the Haar measure on U(n) by (γ0,γ1, · · · ,γQ−1) has the
distribution

(7.11) const .

Q−2∏
r=0

det(1− γ†rγr)n−(r+2)p

Q−1∏
r=0

dγr ,
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Now, by definition

dHP(n)
δ

dP(n)
0

(U) = cste det(In − U)δ̄ det(In − U †)δ

It remains to apply (6.28) and (6.3) to conclude that under the HP(n]
δ probability, the variables

(γ0,γ1, · · · ,γQ−1) are independent and for 0 ≤ r ≤ Q− 2 the density of γpr in Bp is then

const . (det(1− γ))δ̄
(
det(1− γ†)

)δ
det(1− γ†γ)n−(r+2)p ,

and the variable γQ−1 is HP(p)
δ distributed on U(p). The value of the normalizing constant (6.33)

is then taken from formulas (2.9) in [33].

Remark 7.7 Theorem 1.3 of Neretin [33] says that if U(n) is equipped with the Haar measure,
then the distribution of (c0(U), . . . , cQ−1(U)) is also (7.11). From (6.27) we deduce that, under

HP(n)
δ , (c0(U), . . . , cQ−1(U)) and (γ0,γ1, · · · ,γQ−1) have the same distribution. The difference is

that the second array depends only on the spectral measure, and the first one depends more deeply
on U . In particular, we do not know the connection between these coefficients c(U) and α.

7.3.3 Proof of Proposition 6.6

By independence, it suffices to prove the LDP for a single γ
(n)
j with rate Hd,p. Since the LDP is

a standard consequence of the explicit density in (6.32), we only give a sketch of the proof. First,
we get from the explicit expression of the constant in (6.33)

lim
n→∞

1

np
logK

(nd)
n,j = pHd(0).

Then, note that on the set {M ∈ Cp×p|MM † < Ip} the rate function is finite and continuous,
since if γ ∈ Cp×p is a matrix with singular values smaller than 1, Ip − γ is non-singular. On the
other hand, if γ ∈ Bp \ {M ∈ Cp×p|MM † < Ip}, we have Hd,p(γ) = ∞. This implies for any
γ ∈ Bp, with Bε(γ) the open ball centered at γ with radius ε in the Frobenius norm,

lim
ε→0

lim sup
n→∞

1

np
logHP(N)

Nd (γ
(n)
j ∈ Bε(γ)) = Hd,p(γ),

lim
ε→0

lim inf
n→∞

1

np
logHP(N)

Nd (γ
(n)
j ∈ Bε(γ)) = Hd,p(γ).

From these limits, we get that (γ
(n)
j )n satisfies the weak LDP with speed N = np and good rate

Hd,p. Necessarily, this sequence is exponentially tight, since it lives on the compact set Bp, such
that the full LDP follows. 2
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