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Abstract—Even though the proven benefits of cloud com-
puting paradigm, it must face a serious problem that can
compromise its commercial success. It concerns the lack of
efficient approach for using optimally the available resources.
For this, several approaches have been proposed. However,
they suffer from several shortcomings. For instance, often only
one objective is taken into account expressing all operations
in terms of cost. Furthermore, business processes should be
insured with elasticity and multitenancy mechanism while
adjusting the available resources to the dynamic load distribu-
tion. The proposed approach aims to optimize two conflicting
objectives, namely the number of migrated tenants and the cost
incurred using a set of resources. It allows to take into account
the multi-tenancy property and the Cloud computing elasticity,
and is efficient as shown by an extensive experimentation based
on real data from Bonita BPM customers.

I. INTRODUCTION

For years, software was sold and installed in customers
premises and operated by their IT teams. This business
model requires that the software is deployed on the user
computer infrastructure who will operate it. The customer
will ensure its maintenance and transition between versions.
Recently, several businesses adopted a new paradigm where
the software is operated in a data center and accessed
remotely. This new way to consume software transfers the
burden of IT management to the software provider. The later
must ensure the required quality of service (QoS) at the
lowest possible operating cost for its customers. Achieving
that efficiently remains an issue. Here, we consider the
delivery of a business process execution as a service as
part of a Business Process Management System (BPMS)
[1]. The goal of a BPMS is, among others, to control the
execution of business processes, according to their model.
Providing business process execution as a service (BPMaaS)
means to accommodate the service requirement of a set of
customers and to support the execution of their processes
with the required level of quality of service, for the best cost.
We want that at each point in time the available resources
match the current demand as closely as possible. Thus,
we must set up an elastic infrastructure [2] adapted to the
specific requirements of business process execution. Generic
auto scaling techniques provided by cloud providers do not

usually take into account software usage metrics, but rather
system or OS level metrics such as CPU or memory. We
argue that we can use business processes and their history
of usage to anticipate resource allocation need, and that it
will be useful to achieve an efficient infrastructure elasticity
for business process execution.

In this paper, we consider a service provider that wants to
provide process execution as a service. The BPMS supports
multi-tenancy, i.e. it can accommodate several customers
on the same installation. It is possible to migrate a tenant
from a BPMS installation to another BPMS installation
with a limited interruption of service. Considering these
assumptions, our goal is to propose a way to ensure the
required quality of service for each tenant at the minimal
cost while minimizing tenant migrations. That requires to
adjust the number of computers to the load required for
each tenant while minimizing the number of migrations of
tenant from one set of resources to another. We propose an
efficient bi criteria approach based on migrations number
and cost optimization, solving iteratively for each number
of migrations a repacking step for the existing resources,
followed by a variable cost and size bin packing, and by
a step of consolidation. We compare this approach to the
solving of the corresponding model, using data based on
customer information.

The reminder of the paper is organized as follows. In
the next section, we discuss the problem in more details
and we describe our hypothesis and the limits of this study.
Section III summaries the existing work. Section IV gives
our problem formulation of resource allocation to execute
business processes in cloud computing environment. This
section also presents the optimization objectives, namely the
cost incurred using a set of resources and the number of
migration. Section V presents our proposition to provide an
approximate solution to the problem that can be computed
in polynomial time. In section VI we describe the evaluation
that we have conducted using Bonita BPM as an example
of BPMS and AWS as the cloud provider. We show that it
diverges very reasonably from an exact solution that could
not scale. Section VII concludes the paper and describes its
future extensions.



II. MOTIVATION AND HYPOTHESIS

Providing business process execution as a service requires
for an operator to be able to manage execution of thousands
of processes from hundreds of customers at the same time on
its infrastructure. This requires an environment able to adjust
itself to the load of the different customers automatically.
We could rely on basic scalability techniques available in
the cloud, adding more computing power in a BPMS cluster
when needed. This is not so easy since a BPMS is database
write intensive and we would certainly reach a maximum
number of customer on the same cluster. We consider a more
light weight approach based on a multi-tenant BPM solution
where each tenant share the resources. We want to support
as many tenants as possible at the minimal cost, while
ensuring a defined quality of service. For that we assume
that tenants can migrate from a BPMS installation to another
with an acceptable service interruption. Our approach favor
the management of hundreds of small BPMS installations
over large scale cluster management. Also, we consider the
distribution tenant by tenant, and not process by process as
it can be done in similar research.

In the literature, many consider business process oriented
optimization, at various level of elasticity completion, as we
will see in the existing work part. In this paper, we consider
a tenant-centric BPMaaS elasticity, by looking on tenant
related usage data, as the total number of tenant BPM tasks.
This avoids to replicate tenant data between installations and
to maintain consistency among them.

Here we discuss about distribution of tenants and their
activities on a cloud infrastructure. Our contribution is a new
bi-objective model, an efficient tenant distribution method
and algorithm which optimize operating cost for the service
provider while ensuring limited number of interruptions. We
only consider the change in the distribution from one hour
to the other based on the knowledge of the load evolution
of each tenant.

As many other applications, a BPM stack requires many
software elements (see figure 1). It needs one or several
instances of ACID compliant relational database systems
which it uses to store process data, one or several web
application servers who will contain the BPM Engine, load
balancers in the case of clustered applications, and other
services used in distributed applications.

We propose to measure BPM task execution throughput
to estimate the required performance for tenants and the
capability of various cloud configurations. Task execution
throughput is strongly related to the transaction perfor-
mances of the underlying database. In order to execute the
tasks of a BPM process, the BPM engine may execute one or
several transactions in its database, before, during and after
the execution of the task. A transition in BPM process also
triggers state changes in the database. Database transactions
as a performance metric are often used in precedent works

Figure 1. Simple BPMS architecture. Here we have a clustered version of
a BPMS using a clustered database, behind a load balancer. The user can
use its own application interfaced to the BPMS, or access directly to this
last one via end-user interfaces. The BPMS may contact other applications
via web services.

and in industry [3], [4], [5].
We assume that we have access to a public cloud provider

with unlimited resources, and on demand billing. Compute
resources are paid per hour and their price is constant. We
consider that compute resources have stable performance.
With the cloud resources, it is possible to build stacks
of different sizes i.e. able to support different loads as
defined before. For instance a stack can be composed of
a compute instance for the database, another one for the
BPMS. We name a defined group of compute instances a
cloud configuration.

Each cloud configuration has a defined capability. We
assume that each tenant can fit on at least one cloud config-
uration type, i.e the sum of its activities can be supported
by the configuration type which can handle the most activity
count per hour. Small tenant can share configurations. We
neglect the effect of tenant execution on the other tenants
executing on the same configuration : we will consider that
tenants’ workload adds up. For instance, a tenant with 10000
tasks per hour is similar to two tenants with 5000 tasks per
hour.

In order to distribute the tenants on the cloud configura-
tion, we need to have a way to estimate its required load.
We have some knowledge on the behavioral patterns of every
tenant for a given period of time. This information will be
used to organize resources and distribute the load between
configurations. This could be determined manually (in the
contract part between the customer and the service provider),
or using some prediction system.

Migration is the action of moving software and data
from a cloud configuration to another. If a tenant needs
more throughput than the current configuration can provide,
either we migrate it to a bigger configuration in accordance
with the QoS of the customer, or we migrate other tenants
from the same configuration to free computing power. On
the other way, we should move a tenant which requires



less resources. We assume that tenant awareness, automated
migration, and tenant consolidation are totally supported by
the BPM engine and its corresponding database systems.

However, migrations usually have negative effects on the
origin and destination cloud configurations and the tenants
they host. We consider that a tenant migration produces a
service interruption that is acceptable for customers and that
migration operations can be initiated and totally done in less
than one hour, but we have chosen to take it into account
in our approach. We can start building the configuration
for hour n + 1 at hour n. There are several solutions that
are already available to do live migration of databases and
servers very efficiently with minimal interruption such as
[6].

These hypothesis provide us with a framework that re-
mains realistic and that will allow us to define a model which
can be optimized to ensure the best operation conditions for
BPM tenants on a cloud. In the next section, we explore the
current solutions for similar problems.

III. RELATED WORK

Schulte et al. [7] have made a review on the current
status on BPM elasticity, and the different important criteria.
Several attempts have been made recently on BPM elasticity,
usually aiming to distribute processes without taking into
account multi tenancy, and consider mainly CPU and RAM
such as [8], [9], [10]. In [11], Sellami et al. propose a multi
tenant approach based on customizable thresholds but it does
not take into account migration cost or the database tier.

A lot of papers study virtual machine assignment in data-
centers such as [12], [13]. However these works consider
only the scheduling part, as the resources in data-center
already exist.

Less attempts have been made on reassignment. A well
known initiative is the Google Reassignment Problem [14]
where the problem is mono objective and sums up load,
balance, process, service, and program move cost. Several
attempts to solve this problem have been made. The best one
use variable neighborhood search [15], [16] , or constraint
programming [17]. However these approaches aims at data
centers, who have a predefined set of machines, and assume
a fixed cost for migrations.

Other attempts such as multi-tenant relational database
management system [5] or generic SaaS elasticity have been
made for this problem, but there is no known work who take
into account BPMS cloud migrations and cost in a multi-
objective way.

IV. OUR MODEL FOR ELASTIC MULTI-TENANT BPM IN
THE CLOUD

The objective of our study is to minimize the total
cost incurred using a set of resources and the number of
migration that produce QoS degradation. Thus we face a
multi-objective problem who can be tackled using three

approaches: (i) the mono-criterion approach, (ii) the ε-
constraints and (iii) the multi-criteria approach. The criteria
that we consider are conflicting. If we consider only the
cost objective part, an intuitive best solution could provoke
the migration of all the tenants. But as the migrations can
lead to QoS degradation, this is not worth considering. On
the other side, minimizing the migration objective can lead
to leave tenants on too expensive configurations. Therefore,
the most appropriate approach is the multi-criteria one. We
will consider the two objective functions simultaneously.
The most used optimality notion when we deal with multi-
criteria problems is the Pareto optimality concept defined as
follows.

Definition 1. We say that a solution x ∈ X is a Pareto
solution (or belong to the Pareto front) iff:
• @x′ ∈ X,∀ i ∈ {1, ..., n}, fi(x′) ≤ fi(x) ∧ ∃ j ∈
{1, ..., n}, fj(x′) < fj(x).

In order to formalize the problem, we assume that an
installation of a BPMS is deployed on a configuration
consisting in several cloud resources. We rely on several
configuration types with different cloud instance types.
We consider that a configuration type has a cost, and a
throughput capability. This cost is the total of the cost of its
composing cloud resources for a given time slot of one hour,
since it is the unit of cost for most public cloud providers.

Let the following variables :
• J the set of configuration with m its cardinality
• Cj and Wj configuration j cost and capacity
• I the set of tenants with n its cardinality
• wi the tenant i needed capacity
• xj

i(k) tenant i assigned to configuration instance j in
time slot k

• yj(k) configuration j active in time slot k
We define an indicator function 1{xj

i(k)6=xj
i(k+1)}. which

corresponds to actual tenant migration which will be equal

to :
{

0 if xji(k) = xj
i(k + 1)

1 if xji(k) 6= xj
i(k + 1)

We aim to minimize the total configurations cost and
the number of migrations for the time slot k + 1 from the
configurations distribution at time k where we apply the
needed capacity at time k + 1. The problem can be defined
as follows:

min f1 =

j∈J∑
j

Cjyj(k + 1) (1)

min f2 =

j∈J∑
j

i∈I∑
i

1{xj
i(k) 6=xj

i(k+1)}xj
i(k + 1) (2)

We have the following constraints :

∀i ∈ I
j∈J∑
j

xj
i(k + 1) = 1 (3)



∀j ∈ J
i∈I∑
i

wixj
i(k + 1) ≤Wjyj(k + 1) (4)

∀i ∈ I,∀j ∈ J xij ∈ {0, 1}, yj ∈ {0, 1} (5)

Equation 1 presents the cost objective, and equation 2
the migration quantity objective. Equation 3 indicates that
a tenant should be assigned to only one configuration.
Equation 4 means that the sum of the required throughput
of tenants on one resource should be less or equal than the
capability of this resource.

For a defined number of resources, and without taking
into account migrations, this is a classic assignment problem.
However the resource allocation part and the migration part
makes it more difficult to solve. Since, as we will precise in
the next section, the problem is NP-hard, it is appropriate
to propose heuristic algorithms rather than exact algorithms
that would not scale. The following section describes the
approach we propose.

V. AN EFFICIENT APPROACH FOR MULTI-TENANT
ELASTIC BUSINESS PROCESS EXECUTION IN CLOUD

CONTEXT

The approach we propose is composed of two parts: (i)
the resource allocation part and (ii) the scheduling part. Re-
source allocation and task scheduling are NP-hard problems.
Greedy heuristics, integer and mixed integer linear program-
ming, meta-heuristics, or constraint programming [18] are
often used to deal with such problem. Greedy algorithms are
heuristics who make the assumption that by aiming at the
best local solution, a good global solution is reachable. This
type of algorithm is usually simple and fast, but could get
stuck in a local optimum. Integer linear programming (ILP)
and mixed integer linear programming (MILP) are usual
operational research algorithms, seeking to minimize an
objective function under constraints with discrete variables
(ILP), or mixed discrete and continuous variables. Solving
these problems usually include LP relaxation in order to
find valid solutions with continuous methods. However,
depending on the problem size the computing can be long,
and a solver is needed in order to resolve the problem.

Here, we choose to observe the migration number first
since it is discrete, and to calculate the best cost for each
migration number with an heuristic. Reducing the cost
requires to reduce the number and the cost of configurations.
In our approach, apart of the throughput constraint, we
decided to not consider swapping tenants and to focus on
resource reduction. We show an example of configurations
and their tenants in figure 2.

The minimum number of tenants we have to move will be
the number of tenants that can’t fit anymore in their current
resources. We divide them among two classes :

Figure 2. An example of distribution of tenants and configurations.
Three configurations contain ten tenants in this situation. The outer boxes
represent the configurations, and the inner ones the tenants. Crossed
stripped boxes represent the unfit tenants, that can’t stay anymore in
their configuration. Single stripped boxes represent the overloading tenants.
Blank boxes represent tenants that fit in their current resource.

• tenants that we must migrate because their future
throughput is greater than the capability of their current
resource. The migration of these tenants is mandatory.
We name these type of tenants unfit tenants. These are
the crossed line boxes in the figure 2 such as T6.

• tenant which, put together, are overloading their current
resource. We choose to ”remove” from the resources
and force the migration of the biggest tenants in each
overloaded resource until none is overloaded anymore.
We name these type of tenants the overloading tenants.
In figure 2 these are tenants T9 and T10.

The main loop is described in algorithm 1. At each
number of migrations, we consider the combination of
resources containing precisely the number of tenants we
wish to migrate if we add to it the number of mandatory
tenants. This is a subset sum problem, where we have used a
simple recursive approach. In figure 2, the minimum number
of migrations is 3 (T9, T10 and T6), and it is possible to
also reassign 4 or 6 tenants - by removing respectively conf1
or m3 medium 1 0 configuration, but not 5 as there is no
combination of resources hosting 5 tenants. However the
number of possibilities increases exponentially, which will
lead to memory and CPU time problems. For this, we must
limit the number of resources combinations we wish to test.
Moreover, there are cases where the algorithm could be
slower than the exact method in particular when the resource
quantity is high. Let’s imagine we have 30 tenants, that are
all hosted on their own configuration. In the case where we
don’t limit the number of subset sum combinations, for 15
migrations we will have C50

25 which means more than 1014

combinations to test. This number of migrations is very high
and can’t be computed in acceptable time. This is why it is
important, even if it gives less interesting results, to limit
the number of the subset sum combinations. Here we have
considered 1000 resource combinations as a limit.



Algorithm 1 Main loop
1: procedure MAIN LOOP(tenant distribution for previous hour, needed throughput)
2: resultNumberLimit = 1000
3: unfit ← tenants whose throughput is bigger than their current resource
4: overloading ← biggest tenants to remove until there is no more overloaded resource
5: mandatoryTenants← overloading ∪ unfit
6: minMigrations = size(mandatoryTenants)
7: maxMigrations = size(tenants)
8: distribution = remove mandatoryTenants from distribution
9: for i = minMigrations → maxMigrations do

10: costByMigration[i]← +∞
11: possibleResourcesCombinations← FINDSUBSETSUM(i, resources, resultnumberlimit)
12: for all resourceCombination ∈ possibleResourcesCombinations do
13: newDistribution ← distribution - resources ∈ resourceCombination
14: tenantsToRepack ← mandatoryTenants tenants ∈ resources ∈ resourceCombination
15: REPACKING(newDistribution, tenantsToRepack)
16: BINPACKING(newDistribution, tenantsToRepack)
17: CONSOLIDATION(newDistribution, tenantsToRepack)
18: if cost(newDistribution) ≤ costByMigration[i] then
19: costByMigration[i]← cost(newDistribution)
20: distributionResult[i]← newDistribution

21: return distributionResult

For each possible combination, we then virtually suppress
the concerned resources, and consider the mandatory ten-
ants and the orphan tenants resulting from the suppression
of the resources. In our heuristic we chose to replace at
best these tenants in the existing resources - that we cannot
delete without adding more migrations. For this part, we
used a best fit decreasing approach, where we aim to load
into the most appropriate resources the tenants.

After this step, we must create new resources for the
remaining tenants. At this point, the existing resources can
no longer be filled. We used for this part a variable cost bin
packing heuristic with the remaining tenants, more precisely
a variation of Iterative Best Fit Decreasing algorithm [19].

Since we have two separated parts, one looking to existing
resources and the other creating new resources, both generate
unused space that should be used at best. In order to
solve this problem, we have added a consolidation step
which tries to delete resources one by one and replace the
concerned orphan tenants with the repacking procedure. This
consolidation step is inspired by one of the operators of
the local search used in [20]. We adapted it by looking on
resources who contain only orphan tenants.

A configuration combination is kept only if is less costly
than the previous computed, in order to obtain the Pareto
front (as we compute from the minimum to the maximum
number of migrations). Figure 3 shows an example of cost
migration. The best solutions are for 3, and 7 migrations.
Other solutions such as 6, 9, 10 migrations are useless as
they involve more migrations for the same price. There is
no solution under 3 migrations, and for 5 or 8 migrations.

Figure 3. This represents the best results of our algorithm after we run it
against the configuration in figure 2. The bigger dots represents the points
in the Pareto frontier. Absence of dot means that there is no solution for
the corresponding number of migrations.

VI. EXPERIMENTAL RESULTS

In this section, we present a summary of the results
we obtained based on real data from Bonitasoft customers.
In order to evaluate the quality of the results using our
approach, given the particularity of the Pareto front due to
the fact that the migration criterion is discrete, we compare
for each migration number the cost between the heuristic
and the results given by a solver.

We need to know first the size of each cloud config-
uration in term of throughput capability. We must also
estimate the tenant size in term of BPM task throughput.
For this, we use Bonita BPM [21] open-source business
process management and workflow suite. Bonita BPM is



a multi-tenant BPMS where several customer can have their
applications on the same Bonita BPM instance and uses a
shared-schema strategy [22] in order to manage tenants. We
have launched tests on Bonita BPM 7.0.3 using PostgreSQL
9.3 database, each on a separated EC2 instance on Amazon
Web Services public cloud. A business process definition
used by Bonitasoft for their internal performance tests has
been used in order to compare the various configurations.
The business process which we will name ”standard pro-
cess” contains twenty sequential automated tasks, each one
launching one connector computing the 25 first Fibonacci
numbers. We have launch each time 3000 processes with an
injector tool on various cloud configurations and on different
parallel process number injections. Our goal is to observe
the correlation between the number of parallel processes and
the average computing duration for each process considering
each configuration, in order to find each configuration mean
BPM task throughput.

Figure 4. Test architecture used for the cloud configuration capability
determination. Here we show three different databases and application
servers.

As we don’t know the duration of a task, we have
computed the number of tasks for a given process duration.
As the performances stay globally linear when we inject
more processes in the engine (apart from the first ones, when
we can assume there is not a lot of usage of the parallelism
of the processor), we consider that it is possible to do a
simple linear regression in order to find the capability in
parallel processing. We have computed the corresponding
process throughput for a duration of 10 second, by linear
regression between the two corresponding values. We use
this process throughput to compute the corresponding task
throughput, by looking at the corresponding total duration
and dividing it by the total number of tasks (here 60000).
This gives us the mean task throughput we can expect for
a mean duration of 10 second of standard process. In order
to use realistic performances and prices, we have used these

configuration’s task throughput (in table I), and prices in our
experimentation.

DB inst. type AS inst. type price task TP task TP per $
m1.small m1.small 0.094 8.120 86.392
m3.medium m3.medium 0.146 17.762 121.660
m3.medium m3.large 0.219 24.669 112.644
m3.medium m3.xlarge 0.366 25.293 69.107
m3.large m3.xlarge 0.439 41.147 93.730
m3.large m3.2xlarge 0.693 42.813 61.868
m3.xlarge m3.2xlarge 0.839 45.274 53.962

Table I
PRICE, MEAN TASK THROUGHPUT, AND MEAN TASK THROUGHPUT BY
DOLLAR FOR A MEAN STANDARD PROCESS DURATION OF 10 SECONDS

For the size of the tenants, we have used anonymous
customer information fragments where we have observed
the minimum and the maximum task throughput. In our
experimentation, for each tenant i, we used an uniform
distribution in interval [wmin

i , wmax
i ] to adjust the customer

throughput, where wmin
i and wmax

i represent respectively
the minimum and the maximum observed throughput. We
have capped at the maximum configuration throughput the
task throughput for each tenant in order to be able to fit
them in cloud configurations. We show a summary of the
data we collected in in table II.

customer observed interval (in days) minimum maximum
A 4 2 45
B 1 14 16
C 45 0 45
D 7 1 3
E 45 5 45
F 550 0 4

Table II
SYNTHESIS OF THE USED CUSTOMER DATA. FOR EACH CUSTOMER, THE

OBSERVED INTERVAL, THE MINIMUM AND THE MAXIMUM TASK
THROUGHPUT PER SECOND FOR EACH HOUR.

Using a solver could suffice to have all required results.
However for a high number of tenants it becomes very slow.
This is why we propose an to use an heuristic.

In order to test our approach we have implemented this
algorithm with a linear optimization solver. In order to
simplify the multi-objective characteristic of the problem,
we used the same migration number approach. For this
we have transformed the objective function described in
equation 2 in a constraint, as seen in equation 6, where M
is the number of migrations for which we want to have the
solution. Furthermore, J is initialized with all the possible
tenants and configuration combinations.

j∈J∑
j

i∈I∑
i

1{xj
i(k) 6=xj

i(k+1)}xj
i(k + 1) =M (6)

This model can be easily resolved with linear program-
ming solvers. We have used PuLP linear programming
toolkit [23] coupled with Gurobi [24] linear solver on a



AWS c4.xlarge EC2 instance. A first step is to determine the
minimum number of migrations, and compute the optimal
cost without considering the migrations (by removing the
constraint described in equation 6). We then compute the
optimal cost for each number of migrations between the
minimum number and stop computing once we reach the
optimal cost. We have configured the solver with a time
limit of 3 hours for a migration number computation.

For the heuristic test, we have launched 30 times the
previously discussed uniform distribution for various number
of tenants. We began with a distribution where all the tenants
are on a minimum configuration, without considering the re-
quired load. We have then launched two times the heuristic.
Indeed, this algorithm will be launched sequentially with an
previously computed distribution. The results described in
table III shows the second launch efficiency and duration.
In order to compare the two methods, we launched the exact
algorithm on the same tenant distributions. In some cases,
the solver was not able to find a solution in the time limit.

Tenant
quantity

Exact
method
results

Heuristic
duration

Exact
algorithm
duration

Pareto
front

percent

Heuristic
efficiency
percent

5 30 0.003 0.128 85.55 1.41
10 30 0.047 0.864 85.38 0.97
20 30 5.243 13.625 81.55 1.97
30 29 78.56 579.31 78.56 2.26
40 29 1013.85 1850.66 66.22 4.10

Table III
HEURISTIC QUALITY VS. EXACT ALGORITHM (DURATION IN SECONDS,

PARETO FRONT PERCENT AND EFFICIENCY)

The heuristic Pareto frontier percent corresponds to the
ratio of migration optimum found in the heuristic which are
optimum in the exact method. We compute the heuristic
efficiency for all the heuristic Pareto frontier, with the
distance to the corresponding price in the exact method. In
addition, based on the results, we can see that the relative
error does not exceed 4.1%. Furthermore, in the worst case
that we studied, the Pareto front percentage is 66.22% and
the heuristic stay faster than the exact algorithm duration.

The results we obtained show that this heuristic, while
often taking a fraction of the time used in an optimization
linear solver for linear programming software, gives good
results with small errors, and most optimal migrations num-
ber obtained in the exact method. As the tenant quantity
increases, less and less results are given in a acceptable
running time by the exact algorithm. Even if the Pareto front
percent decreases with time, the heuristic’s cost efficiency
stays at a very low level. The last point shows that the two
Pareto front are very close.

We have seen that even if in this algorithm we consider
only resources combinations and ignore tenants swaps be-
tween active configuration, the heuristic gives good results
for most of the exact Pareto frontier, as the cost stay very
close to the optimal cost.

Despite the use of an intuitive algorithm for the subset
sum part by limiting the number of returned combinations,
the obtained results are very encouraging. This algorithm
should be able, without computing all the results, to give
really a limited number of random solutions. In our case,
using a approximate version of the subset sum method could
greatly speed up our heuristic, as it consists in most of the
running time from 40 tenants.

Another enhancement to speed up the heuristic is to
elaborate a multi-threaded version of this algorithm in order
to benefit from the architecture of multi-core processors
while computing the different resources combinations. For
instance, several resource combinations could be computed
simultaneously.

VII. CONCLUSION

In this paper, we described an effective approach for
business process execution as a service on the Cloud. This
approach consider tenants as a whole and proposes to min-
imize two conflicting objectives, the execution cost and the
migration number. We have validated this approach with an
experimentation that shows the efficiency of our algorithm
on data based on Bonitasoft customer usage, considering
configuration cost based on AWS cost profiles, compared
with an exact method. As [4] notes, distribution techniques
are not totally orthogonal to consolidation methods, and
some methods used for database, or in our case BPM tenants
could be used with a higher level approach such as VM, or
containers. With this heuristic architecture, it is conceivable
to use multiple different algorithms for the bin packing
part, the overloading tenants choice, or even the subset sum
algorithm. For instance, testing multiple overloading tenants
alternatives or using other variable size and cost bin packing
algorithms such as [25] could be interesting and produce
even better results. The next step for this work is to consider
optimization for several consecutive time slots in order to
optimize the cost not per hour but for a whole day, in order
to take into account customer QoS requirements. We will
also study the possibility to use other distributions that better
adjust the throughput and customer distribution.
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