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ABSTRACT
Numerical solutions are obtained for the fully coupled and highly nonlinear system of differential equations,
arising due to the steady Kármán flow and heat transfer of a viscous fluid in a porous medium. The conven-
tional no-slip boundary conditions are replaced by partial slip boundary conditions owing to the roughness
of the disk surface. Combined effects of the slip λ and porosity γ parameters on the momentum and thermal
boundary layers are studied in detail. Both parameters produce the same effects on the mean velocity pro-
files, such that all velocity components are reduced by increasing either λ or γ . The temperature slip factor
β has a dominating influence on the temperature profiles by decreasing the fluid temperature in the whole
domain. The porosity parameter strongly decreases the heat transfer coefficient at the wall for low values of
β and tends to an asymptotical limit around 0.1 for β ' 10. The porosity parameter γ increases the moment
coefficient at the disk surface, which is found to monotonically decrease with λ .

Keywords: Kármán flow; porous medium; partial slip.

EFFETS DES CONDITIONS D’ADHÉRENCE SUR L’ÉCOULEMENT DE VON KÁRMÁN
CHAUFFÉ DANS UN MILIEU POREUX

RÉSUMÉ
Des solutions numériques ont été obtenues pour l’écoulement stationnaire de von Kármán anisotherme dans
un milieu poreux. Les conditions classiques de non-glissement à la surface du disque sont remplacées par
des conditions de glissement partiel permettant de simuler un disque rugueux. Les effets combinés des
paramètres de glissement λ et de porosité γ sur les couches limites hydrodynamique et thermique sont
étudiés en détails. Ces deux paramètres ont les mêmes effets sur les profils de vitesse, de telle sorte que
toutes les composantes de vitesse sont réduites lorsque λ ou γ augmente. Le facteur de glissement pour
la température β a une influence primordiale sur les profils de température en diminuant la température du
fluide dans tout le domaine. La porosité induit une forte chute du coefficient de transfert de chaleur à la paroi
pour des faibles valeurs de β et tend vers une valeur asymptotique autour de 0.1 pour β ' 10. La porosité γ

augmente le coefficient de moment à la surface du disque, alors que celui-ci décroît monotoniquement avec
λ .

Mots-clés : écoulement de Kármán; milieu poreux; conditions d’adhérence partielle.
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NOMENCLATURE

Cm dimensionless moment coefficient (−)
cp heat capacity of the fluid at constant pressure (J/kg/K)
F , G, H normalized radial, tangential and axial velocity components (−)
K Darcy permeability (m2)
Nu Nusselt number (−)
p, P pressure (Pa) and normalized pressure (−)
Pr Prandtl number (−)
q heat flux supplied to the disk (W/m2)
r,φ ,z cylindrical coordinates (m)
Re rotational Reynolds number (−)
T temperature (K)
u, v, w radial, tangential and axial velocity components (m/s)
β normalized temperature slip factor (−)
β1 proportionality constant (−)
ε porosity (−)
γ normalized porosity parameter (−)
κ thermal conductivity of the fluid (W/(m·K))
λ , η normalized velocity slip parameters (−)
µ , ν dynamic (Pa.s) and kinematic (m2/s) fluid viscosities
Ω rotation rate of the disk (rad/s)
ρ voluminal mass of the fluid (kg/m3)
ζ normalized distance from the disk (−)
θ normalized temperature (−)
w denotes a quantity evaluated at the wall
∞ denotes a quantity evaluated at infinity
′ denotes a derived quantity according to the axial direction

1. INTRODUCTION

Swirling flows are one of the classical problems in fluid mechanics. They have indeed many interesting fea-
tures and industrial applications: rotating machineries, nuclear reactor or computer storage devices among
other things. Porous and rough rotating disks are also used in the chemical industry as electrodes to catalyse
or promote electrochemical reactions [1] and in process engineering for ultra-fine filtration [2].

The steady flow of an incompressible viscous liquid due to an infinite rotating disk was first discussed by
von Kármán in 1921 [3]. Sharp gradients in the centrifugal force across the boundary layer can generate
high velocities along the bounding surfaces resulting in a secondary flow. Little attention has been paid to
its strong influence on the primary rotating flow outside the boundary layer. Many configurations with no-
slip boundary conditions have been considered in the past by many researchers including various physical
effects. One can refer to the works by Rott and Lewellen [4], Owen and Rogers [5], Zandbergen and
Dijkstra [6] and all references herein for a state-of-art about von Kármán swirling flows.

However, swirling flows subject to partial slip boundary conditions are more practical in nature and math-
ematically challenging. Effects of slip and suction on swirling flows have been thoroughly investigated by
Miklavčič and Wang [7] and Turkyilmazoglu and Senel [8]. Joseph [9] has reported that the suction param-
eter may be identified to the permeability parameter, which depends itself on the Darcy’s law and accounts
for the drag exerted by the porous medium. Recently, Attia [10] solved the system of differential equations
for the steady flow over a rotating disk in porous medium with heat transfer. It has been extended in a
later paper to the cases where the porosity parameter tends either to zero or infinity [11]. Literature survey
reveals that there is not a single report on the combined effects of slip and porosity on the swirling flow.
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This paper is an endeavor to fill this gap by providing reference data. In this note, one will mainly focus on
the combined effects of velocity slip and porosity on the von Kármán swirling flow and heat transfer of a
viscous fluid for a rough rotating disk. The temperature jump arising due to the velocity slip has also been
considered.

2. FORMULATION OF THE PROBLEM

One considers a viscous incompressible fluid occupying the space z > 0 over an infinite porous disk, which
coincides with z = 0. The steady motion is due to the rotation of the disk at a constant rotation rate Ω

through a porous medium, where the Darcy model is assumed [10, 12]. In view of the rotational symmetry
(∂/∂φ ≡ 0), the flow is described, in the cylindrical polar coordinates (r,φ ,z), by the following set of
equations:
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where V = (u,v,w) is the fluid velocity vector, p the pressure, ρ the fluid density, µ the fluid dynamic
viscosity, K the Darcy permeability and ε the porosity. Using the von Kármán transformations [3], the
following non-dimensional functions of ζ are introduced:

ζ =
z√

ν

Ω

,

F(ζ ) =
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Ωr

, G(ζ ) =
v(z)
Ωr

, H(ζ ) =
w(z)√

Ων
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−ρνΩ
(5)

where F , G, H and P are the normalized velocity components and pressure respectively, ζ the non-
dimensional distance measured along the rotation axis and ν the fluid kinematic viscosity. Following Attia
[10] and Rashidi et al. [12], the homogenized equations of continuity and motion, in a spatially periodic
porous medium in the φ direction, take the form:

dH
dζ

+2F = 0, (6)

d2F
dζ 2 −H

dF
dζ
−F2 +G2− γF = 0, (7)

d2G
dζ 2 −H
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d2H
dζ 2 −H
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dζ

+
dP
dζ
− γH = 0 (9)

This set of equations is valid under the assumption that the Reynolds number remains small enough
Re� 1 to neglect the Forchheimer correction factor F = O(Re) [13].
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Fig. 1. Schematic representation of the Von Kármán flow in a porous medium with relevant boundary conditions.

The partial slip boundary conditions [7, 8, 14] are introduced as:

u|z=0 = λ1τrz|z=0, v|z=0 = λ2τφz|z=0 (10)

where τrz and τφz are the wall shear stresses, and λ1 and λ2 two coefficients. The boundary conditions for
the velocity problem in their dimensionless form are given by

F(ζ = 0) = λF ′(ζ = 0), G(ζ = 0) = 1+ηG′(ζ = 0), H(ζ = 0) = 0,

F(ζ → ∞)→ 0, G(ζ → ∞)→ 0, P(ζ → ∞)→ 0. (11)

where γ = ν

KΩε
is the porosity parameter. A sketch of the flow configuration with the relevant boundary

conditions is displayed in Figure 1. In Eq. (11), λ and η are the non-dimensional slip parameters defined as

λ = λ1

√
Ω

ν
µ, η = λ2

√
Ω

ν
µ (12)

For sake of clarity, one will set λ = η in all calculations.
Due to the temperature difference between the disk surface and the ambient fluid, heat transfer takes place.

One will assume, as a first step, that the solid matrix is thermally inert. Thus, the energy equation without
viscous dissipation takes the form:
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where cp is the specific heat at constant pressure and κ is the thermal conductivity of the fluid. Introducing
the non-dimensional temperature θ = T−T∞

Tw−T∞
and using the aforementioned von Kármán transformations,

Eq. (13) becomes

H
dθ

dζ
=

1
Pr

d2θ

dζ 2 , (14)

where Tw is the wall temperature, T∞ is the temperature of the ambient fluid at a large distance from the
disk, Pr =

cpµ

κ
is the Prandtl number. A temperature slip condition similar to the Navier’s condition is

introduced [8, 15]:
∂TT − Tw = β1 
∂ z 
|z=0,                                                                      (15) 
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where β1 is a proportionality constant. The boundary conditions in terms of the non-dimensional parameter
θ are expressed as

θ(ζ = 0) = 1+βθ
′(ζ = 0),

θ(ζ → ∞)→ 0. (16)

where β = β1
√

Ω/ν is the thermal slip factor. The heat transfer from the disk surface to the fluid is com-
puted by the application of the Fourier’s law, q = −κ( ∂T

∂ z )w. Introducing the transformed variables, the
expression for q becomes

q =−κ(Tw−T∞)

√
Ω

ν

dθ(0)
dζ

. (17)

By rephrasing the heat transfer results in terms of the Nusselt number defined as

Nu =
q
√

ν

Ω

κ(Tw−T∞)
,

one obtains

Nu =−dθ

dζ
|ζ=0 . (18)

3. NUMERICAL SOLUTION

Here one has adopted the direct multiple shooting method to solve the system of nonlinear differential
equations (6)-(9) and (14) subject to the slip boundary conditions (11) and (16) in the infinite domain 0 ≤
ζ < ∞. A finite domain 0 ≤ ζ ≤ ζ∞ can be used instead with ζ∞ chosen large enough to ensure the correct
asymptotic conditions at a finite distance from the disk. Computations have been carried out for ζ∞ = 14
to be compared with the value ζ∞ = 12, used by Attia [10]. The whole domain of integration [0,ζ∞] has
been divided into subintervals by introducing additional grid points ζ0 = 0 < ζ1 < ζ2 < .. . < ζN = ζ∞. The
aforementioned system of equations can be written as a system of seven first-order equations. One sets:

y1 = F, y2 = G, y3 = H, y4 = F ′,

y5 = G′, y6 = P, y7 = θ , y8 = θ
′ (19)

Equations (6)–(9) and (14) can be rewritten as

dy1

dζ
= y4; y1(0) = λ s1

dy2

dζ
= y5; y2(0) = 1+ηs2

dy3

dζ
=−2y1; y3(0) = 0

dy4

dζ
= y3y4 + y2

1− y2
2 + γy1; y4(0) = s1 (20)
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Table 1. Variations of G′(0) with λ and η for γ = 0.
λ η G′(0)

Miklavčič and Wang [7] Current result
0.0 0.0 –0.61592201 -0.61592118
0.0 0.1 –0.56451092 -0.56451083
0.1 0.1 –0.60583524 -0.60583521
0.0 0.2 –0.52202696 -0.52202692
0.1 0.2 –0.55643671 -0.55643669
2.0 10.0 –0.07948551 -0.07948548
5.0 10.0 –0.08054447 -0.08054443
10.0 10.0 –0.08103009 -0.08103002

dy5

dζ
= y3y5 +2y1y2 + γy2; y5(0) = s2

dy6

dζ
= 2y4−2y1y3 + γy3; y6(0) = s3

dy7

dζ
= y8; y7(0) = 1+β s4

dy8

dζ
= Pry3y8; y8(0) = s4 (21)

The initial guesses for yi at each nodal points are wisely chosen. The solutions obtained in each interval
are pieced together to form continuous trajectories of the velocity and temperature profiles. Utmost care has
been taken while refining values of the missing initial guesses s1, s2, s3 and s4 by the Broyden’s method [16].

4. RESULTS

To validate the numerical method, the computed values of the velocity gradient G′(0) are compared for
γ = 0 with the numerical solutions reported by Miklavčič and Wang [7]. As shown in Table 1, a very
good agreement has been obtained with a maximum difference less than 10−6 on the axial gradient of the
dimensionless tangential velocity at the disk surface. The present solver can be now used extensively to
investigate the combined effects of the porosity and slip coefficients on the velocity components and the
temperature distribution.

Figures 2(a) and (b) elucidate the effects of the velocity slip and porosity parameters on the radial velocity
component F . It decreases with increase values of either λ or γ . However, the influence of porosity on F is
prominent near the disk surface. The axial distributions of the azimuthal velocity component G are shown
for various values of λ and γ in Figs. 3(a) and (b) respectively. It decays exponentially in a monotonic
fashion as one moves away from the wall. The tangential velocity component is strongly reduced also for
increasing values of either λ or γ . Increasing the porosity parameter decreases also the thickness of the
boundary layer developed along the disk. Figure 4(b) depicts that porosity has a significant effect on the
axial velocity component −H, which decreases with an increase in γ throughout the integration domain.
The same effect is also induced by increasing the slip parameter λ (Fig. 4a).

To investigate the heat transfer process, the Prandtl number has been fixed to Pr = 5 to simulate a water
flow. Figures 5a–5c show the axial distributions of the non-dimensional temperature θ with λ , γ and β

when other flow parameters are kept constant. Clearly, temperature increases with an increase in velocity
slip and porosity. From Fig. 5(b), again it is evident that porosity has a tremendous effect on the thermal
boundary layer. The absence of fluid at a near-ambient temperature close to the wall increases the heat
transfer. Interestingly, the temperature jump β has an opposite effect on θ , as shown in Fig. 5(c).
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(a) (b)

Fig. 2. Axial distributions of the normalized radial velocity component F with (a) the velocity slip parameter λ (= η)
for γ = 1 and (b) the porosity parameter γ for λ = η = 1.

(a) (b)

Fig. 3. Axial distributions of the normalized tangential velocity component G with (a) the velocity slip parameter
λ (= η) for γ = 1 and (b) the porosity parameter γ for λ = η = 1.
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(a) (b)

Fig. 4. Axial distributions of the normalized axial velocity component−H with (a) the velocity slip parameter λ (= η)
for γ = 1 and (b) the porosity parameter γ for λ = η = 1.

(a) (b) (c)

Fig. 5. Axial distributions of the normalized temperature θ for various values of (a) the velocity slip parameter λ (= η)
for γ = β = 1, (b) the porosity parameter γ for λ = η = β = 1 and (c) the thermal slip parameter β for γ = λ = η = 1.

One interesting quantity for practical applications is the power required to overcome the frictional drag on
the disk surface or to maintain the disk at a constant rotation rate Ω. The dimensionless moment coefficient
is then defined as: Cm =−πG′(0)/Re, where Re = ΩR2/ν is the Reynolds number fixed here to Re = 0.01.
Note that Re = 0.01 has been chosen arbitrarily for more convenience but it remains within the validity
range of the equation system (6)-(9). This definition of Cm is the extension to the finite disk problem, which
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(a) (b)

Fig. 6. (a) Variations of the moment coefficient Cm with the velocity slip parameter λ (= η) for γ = 0 and γ = 1;
(b) Variations of the Nusselt number Nu with the thermal slip parameter β when (γ = 0, λ = 1), (γ = 1, λ = 0) and
(γ = λ = 1).

supposes that the disk radius is large enough. Its variations with λ are plotted in Fig. 6(a) for two values of
the porosity parameter γ = 0 and γ = 1. It is to be compared to the value obtained Cm = −242.8 by Sahoo
et al. [14] for a viscous Bödewadt flow with γ = λ = 0. In the present case, the axial gradient of G at ζ = 0
is indeed here negative, such that the moment coefficient is always positive. As expected, Cm decreases
exponentially with λ whatever the value of γ . For a porous disk with a porosity parameter equal to γ = 1,
the moment coefficient is increased significantly for small values of the slip parameter. On the contrary, for
large values of λ (around 10), the porosity parameter has only a very weak influence.

Finally, the variations of the Nusselt number are exhibited in Fig. 6(b). It is noteworthy that for β = λ = 0
(no slip) and γ = 0 (impermeable disk), Nu is equal to 1 for laminar flows [5]. Thus, when partial slip is
imposed at the surface of a non-porous rotating disk (λ = 1 and γ = 0), the Nusselt number is slightly
reduced compared to the basic case previously evoked with Nu = 0.97 for β = 0. It shows in particular that,
as expected, the mean flow field has only a weak effect on the thermal one. On the contrary, the porosity
parameter has a prominent effect on the heat transfer coefficient. As example, for a porous disk with no-slip
conditions (γ = 1, λ = 0), Nu is reduced by almost a factor 2 for β = 0. Whatever the values of γ and
λ considered here, Nu is found to decay exponentially in a monotonic fashion as the thermal slip factor is
increased to tend to an asymptotical value slightly lower than 0.1 for β = 10.

5. CONCLUSION

In this note, the steady von Kármán flow and the heat transfer in a porous medium have been numerically
studied. A direct multiple shooting method has been adopted to solve the resulting coupled, highly nonlinear
system of differential equations. The results show the various effects of the porosity and slip parameters on
the velocity and temperature profiles. Increasing the porosity parameter γ induces a decrease of all velocity
components and an increase of the temperature throughout the domain of integration. It has besides a
dominating influence on the heat transfer coefficient compared to the velocity slip parameter λ . The moment
coefficient to maintain the disk at a constant rotation rate is also enhanced by increasing values of γ . The
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temperature jump or an increase of the temperature slip factor β acts in favor of a decrease of the Nusselt
number, which tends to 0.1 for β ' 10.
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