Nonparametric estimation for probability mass function with Disake: an R package for discrete associated kernel estimators - Archive ouverte HAL
Article Dans Une Revue Revue Africaine de Recherche en Informatique et Mathématiques Appliquées Année : 2015

Nonparametric estimation for probability mass function with Disake: an R package for discrete associated kernel estimators

Résumé

Kernel smoothing is one of the most widely used nonparametric data smoothing techniques. We introduce a new R package, Disake, for computing discrete associated kernel estimators for probability mass function. When working with a kernel estimator, two choices must be made: the kernel function and the smoothing parameter. The Disake package focuses on discrete associated kernels and also on cross-validation and local Bayesian techniques to select the appropriate bandwidth. Applications on simulated data and real data show that the binomial kernel is appropriate for small or moderate count data while the empirical estimator or the discrete triangular kernel is indicated for large samples.
Fichier principal
Vignette du fichier
vol.19.pp.1-23.pdf (1.36 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01300100 , version 1 (08-04-2016)

Identifiants

Citer

W.E. Wansouwé, C.C. Kokonendji, D.T. Kolyang. Nonparametric estimation for probability mass function with Disake: an R package for discrete associated kernel estimators. Revue Africaine de Recherche en Informatique et Mathématiques Appliquées, 2015, Volume 19 - 2015 - Special issue - CRI'13, pp.1-23. ⟨10.46298/arima.1984⟩. ⟨hal-01300100⟩
191 Consultations
1709 Téléchargements

Altmetric

Partager

More