Nonparametric estimation for probability mass function with Disake: an R package for discrete associated kernel estimators - Archive ouverte HAL Access content directly
Journal Articles Revue Africaine de Recherche en Informatique et Mathématiques Appliquées Year : 2015

Nonparametric estimation for probability mass function with Disake: an R package for discrete associated kernel estimators

Abstract

Kernel smoothing is one of the most widely used nonparametric data smoothing techniques. We introduce a new R package, Disake, for computing discrete associated kernel estimators for probability mass function. When working with a kernel estimator, two choices must be made: the kernel function and the smoothing parameter. The Disake package focuses on discrete associated kernels and also on cross-validation and local Bayesian techniques to select the appropriate bandwidth. Applications on simulated data and real data show that the binomial kernel is appropriate for small or moderate count data while the empirical estimator or the discrete triangular kernel is indicated for large samples.
Fichier principal
Vignette du fichier
vol.19.pp.1-23.pdf (1.36 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01300100 , version 1 (08-04-2016)

Identifiers

Cite

W.E. Wansouwé, C.C. Kokonendji, D.T. Kolyang. Nonparametric estimation for probability mass function with Disake: an R package for discrete associated kernel estimators. Revue Africaine de Recherche en Informatique et Mathématiques Appliquées, 2015, Volume 19 - 2015 - Special issue - CRI'13, pp.1-23. ⟨10.46298/arima.1984⟩. ⟨hal-01300100⟩
151 View
1515 Download

Altmetric

Share

Gmail Facebook X LinkedIn More