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Abstract

In this paper, we study a problem of passive control of friction-induced vibrations due to mode coupling
instability in breaking systems. To achieve that, the well-known two degrees of freedom Hultèn’s model,
which reproduces the typical dynamic behavior of friction systems, is coupled to two ungrounded Nonlinear
Energy Sinks (NES). The NES involves an essential cubic restoring force and a linear damping force. First,
using numerical simulations it is shown that the suppression or the mitigation of the instability is possible
and four steady-state responses are highlighted: complete suppression, mitigation through periodic response,
mitigation through strongly modulated response and no suppression of the mode coupling instability. Then
the system is analyzed applying complexification-averaging method, the resulting slow-flow is finally analyzed
using geometric singular perturbation theory. This analysis allows to explain the observed steady state response
regimes and predict some of them. The boundary values of the friction coefficient for some of the transitions
between these regimes are predicted. However, the appearance of a three-dimensional super-slow flow subsystem
highlights the limitation of the local linear stability analysis of the slow-flow to predict all these boundaries.

Keywords: Friction-induced vibration, Passive control, Non linear energy sink, Relaxation oscillations,
Strongly modulated response.

1 Introduction

Self-excited systems play a key role in numerous in-
dustrial applications related to the fields of aeronau-
tics, railways, and cars. Dry friction systems are
good examples of these systems (Sinou et al. [2006a,b],
Chevennement-Roux et al. [2007], Sinou and Jézéquel
[2007], Hervé et al. [2008]). They develop dynamic in-
stabilities related to the friction which are explained
in major cases by two main families of mechanisms.
The first family explains the instabilities by the varia-
tion of the friction coefficient with respect to the rela-
tive speed or by a higher static friction coefficient than
the dynamic one. The stick-slip is a well-known phe-
nomenon in this context (Van De Velde and De Baets
[1998b,a]). The second family attributes the appear-
ance of instabilities to the sprag-slip mechanism and
more generally to the mode-coupling phenomenon. In

this case, self-excited oscillations may occur even with
a constant friction coefficient. In most brake models
the instability is due to mode-coupling phenomenon
(Fritz et al. [2007], Oden and Martins [1985]) which
is studied in this paper. Moreover, it has been shown
that the well-known two degrees of freedom Hultèn’s
model (Hultén [1997, 1993]) is sufficient to investigate
the mode-coupling instability (D’Souza and Dweib
[1990], Eriksson and Jacobson [2001], Hoffmann and
Gaul [2003], Nechak et al. [2013]). In a nutshell, fric-
tion systems and especially the braking systems are
subject to dynamic instabilities leading to limit cycle
oscillations that may affect their efficiency and the
user comfort. Moreover, it is very difficult to design
completely stable systems, particularly because of the
dispersion of friction laws. It is therefore necessary to
attenuate these vibrations.
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The concept Targeted Energy Transfer (TET) is
a relatively new passive control method which con-
sists in coupling an essentially nonlinear attachment
also named Nonlinear Energy Sink (NES) to an ex-
isting primary system prone to unwanted vibrations.
TET has been extensively studied numerically, the-
oretically and more rarely experimentally. The re-
sults prove that the NES is very efficient for vi-
bration mitigation (Vakatis et al. [2008]) and noise
reduction (Bellet et al. [2010]). Impulsive loading
was theoretically analyzed for example by Vakakis
and Gendelman [2001] where TET is investigated in
terms of resonance capture. Starosvetsky and Gen-
delman [2008] investigate harmonic forcing where re-
sponse regimes are characterized in terms of periodic
and strongly modulated responses using an asymp-
totic analysis (multi scale approach) of the averaged
flow obtained using the complexification-averaging
method (Manevitch [1999]). Ahmadabadi and Kha-
dem [2013] investigate the role of a single degree of
freedom NES with nonlinear damping characteristics
in annihilating undesired periodic response regimes
and simultaneously preserving strongly modulated re-
sponses (SMR). The studied system consists in a har-
monically excited three degrees of freedom system
consisting of two linear coupled oscillators and an
NES attached to it. Gourc et al. [2013] use a NES
to reduce chatter vibration in turning process. An
application of NES as a nonlinear vibration absorber
in rotor dynamics can be found in Bab et al. [2014]
where the efficiency of a collection of NES is analyzed
for vibration mitigation of a rotating system under
mass eccentricity force. Bab et al. [2015] investigated
the performance of a NES to mitigate vibration of a
rotating beam under an external forced. We can also
cite Farid and Gendelman [2015] which study the ap-
plicability of common pendulum as the NES for mit-
igation of impulsive excitations. The authors present
a theoretical analysis of the damped targeted energy
transfer into the pendulum NES from the primary
mass with an account of corrections caused by the
effect of gravity.

NES are also used to control dynamic instabilities.
The possible suppression of the limit cycle oscillations
of a Van der Pol oscillator utilizing a NES is demon-
strated numerically in Lee et al. [2006]. In Gendel-
man and Bar [2010] (resp. Domany and Gendelman
[2013]), the self-excitation response regimes of a Van
der Pol (resp. Van der Pol-Duffing) oscillator with
a NES are investigated. An asymptotic analysis of

the system related to slow/super-slow decomposition
of the averaged flow reveals periodic responses, global
bifurcations of different types and basins of attrac-
tion of various self-excitation regimes. A series of pa-
pers by Lee et al. [2007a,b], Gendelman et al. [2010]
demonstrated that a NES coupled to a rigid wing in
subsonic flow can partially or even completely sup-
press aeroelastic instability. In Lee et al. [2007a], the
suppression mechanisms are investigated numerically.
Several aspects of the suppression mechanisms are val-
idated experimentally in Lee et al. [2007b]. More-
over, an asymptotic analysis is reported in Gendel-
man et al. [2010] demonstrating the existence of the
three passive suppression mechanisms based on TET.
Suppression of aeroelastic instability of a general non-
linear multi degree of freedom system has also be
considered in Luongo and Zulli [2013]. A theoreti-
cal/numerical analysis of the capacity of a NES to
control helicopter ground resonance instability (which
is a mode-coupling instability) has been performed
by Bergeot et al. [2016a,b]. More generally, the dis-
cussion on relationship between dimensionality of the
super-slow manifold, structure of the fixed points and
the observed response regimes is explored in review
paper by Gendelman [2011].

In this context, the use of NES appears to be an in-
teresting way to control mode-coupling instability in
braking systems. The goal of the paper is therefore to
study the effect of coupling two NES to the two degree
of freedom model defined by Hultèn. The originality
of this paper focuses on two things: (1) to our knowl-
edge, there are no previous studies on this subject for
the dry friction system and (2) in the context of the
analysis of this kind of systems, the appearance of
a three-dimensional super-slow flow subsystem (the
vocabulary will be clarified in the paper) highlights
the limitation of the local linear stability analysis of
the slow-flow to predict all the steady-state response
regimes of the system.

The paper is organized as follows. In Sect. 2, the
system under study is presented. It consists in a
Hultén’s model coupled to two ungrounded NES. In
Sect. 3, the local stability analysis of the trivial so-
lution for the with-NES and without-NES systems is
presented. Using numerical simulations, the Sect. 4
presents some steady-state response regimes which
result from the NES attachments. We count four
regimes classified into two categories depending on the
fact that the trivial solution of the coupled system is
stable or not. The simple local stability analysis per-
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Figure 1: Mechanical system without NES.

formed in Sect. 3 is sufficient to find if the NES are
able to to suppress completely the dynamic instabil-
ity. By contrast, trying to describe and predict the
other mechanisms (i.e. when the trivial equilibrium
remains unstable despite the presence of the NES), a
more technical mathematical development is required.
It is performed in Sect. 5 following an analytical pro-
cedure based on complexification-averaging method
together with geometric singular perturbation theory.
Positive results and limitations of this analytical work
are discussed in Sect. 6. Finally, additional analysis
using numerical simulations and a benchmark of the
theoretical results obtained in Sect. 6 are performed
in Sect. 7.

2 System under study

2.1 The primary system

In this paper a simple self-excited system proposed
by Hultén [1997, 1993] is used. Hultèn’s model repro-
duces the typical dynamic behavior of friction sys-
tems. Therefore, it is sufficient to investigate how
passive control of friction-induced vibration due to
mode-coupling phenomenon by means of NES can be
performed. The simplicity of this model allows to
develop analytical expressions in order to better un-
derstand the role of the NES attachment.
This model is composed of a mass m held against a

moving band; the contact between the mass and the
band is modeled by two plates supported by two dif-
ferent springs (see Fig. 1). For the sake of simplicity,
it is usually assumed that the mass and band surfaces

are always in contact. This assumption may be due
to a preload applied to the system. The contact can
be expressed by two cubic stiffnesses, see for exam-
ple Sinou and Jézéquel [2007]. Damping is integrated
as shown in Fig. 1. The friction coefficient at con-
tact is assumed to be constant and the band moves
at a constant velocity. Then it is assumed that the
direction of friction force does not change because the
relative velocity between the band speed and dx1/dt

or dx2/dt is assumed to be positive. All these as-
sumptions are taken into account in order to study
a simple non-linear theoretical 2 degrees-of-freedom
system with friction such that the effects of damping
on mode coupling instability and the associated ana-
lytical developments may be easily investigated. The
tangential force FT due to friction contact is assumed
to be proportional to the normal force FN as given
by Coulomb’s law: FT = γ̃FN , where γ̃ is the friction
coefficient. Assuming the normal force FN is linearly
related to the displacement of the mass normal to the
contact surface, the resulting equations of motion can
be expressed as

m
d2x1

dt2
+ c1

dx1

dt
+ k1x1 − γ̃k2x2+

kNL1 x3
1 − γ̃kNL2 x3

2 = 0 (1a)

m
d2x2

dt2
+ c2

dx2

dt
+ k2x2 + γ̃k1x1+

γ̃kNL1 x3
1 + kNL2 x3

2 = 0. (1b)

2.2 Mechanical model with Nonlinear Energy
Sinks

Two identical NES with masses mh, linear stiffnesses
kh, damping coefficients ch and a cubic stiffnesses
kNLh , are attached on the system in an ungrounded
configuration (see Fig. 2). Because a NES is an es-
sentially nonlinear oscillator the linear stiffness kh is
assumed to be very smaller than cubic stiffness kNLh .
This assumption is in agreement with experimental
data (see for example Bellet et al. [2010], Gourdon
et al. [2007], Kerschen et al. [2007]).

Taking into account the NES displacements h1(t)
and h2(t), the equations of motion (1) become

m
d2x1

dt2
+ c1

dx1

dt
+ k1x1 − γ̃k2x2+

kNL1 x3
1 − γ̃kNL2 x3

2+
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(a)

(b) (c)

Figure 2: (a) Mechanical system with NES. (b) Zoom
on the NES1. (c) Zoom on the NES2.

ch

(
dx1

dt
− dh1

dt

)
+ kh (x1 − h1) + kNLh (x1 − h1)3 = 0

(2a)

mh
d2h1

dt2
+ ch

(
dh1

dt
− dx1

dt

)
+

kh (h1 − x1) + kNLh (h1 − x1)3 = 0
(2b)

m
d2x2

dt2
+ c2

dx2

dt
+ k2x2 + γ̃k1x1+

γ̃kNL1 x3
1 + kNL2 x3

2+

ch

(
dx2

dt
− dh2

dt

)
+ kh (x2 − h2) + kNLh (x2 − h2)3 = 0

(2c)

mh
d2h2

dt2
+ ch

(
dh2

dt
− dx2

dt

)
+

kh (h2 − x2) + kNLh (h2 − x2)3 = 0.
(2d)

Introducing the following notation η̃i = ci/
√
mki,

ωi =
√
ki/m, ϕi = kNLi /m (with i = 1, 2), ε =

mh/m, ξh = kh/m, µ̃ = ch/
√
mk1 and ϕh = kNLh /m,

Eqs. (2) become

d2x1

dt2
+ η̃1ω1

dx1

dt
+ ω2

1x1 − γ̃ω2
2x2+

ϕ1x
3
1 − γ̃ϕ2x

3
2+

µ̃ω1

(
dx1

dt
− dh1

dt

)
+ ξh (x1 − h1) + ϕh (x1 − h1)3 = 0

(3a)

ε
d2h1

dt2
+ µ̃ω1

(
dh1

dt
− dx1

dt

)
+

ξh (h1 − x1) + ϕh (h1 − x1)3 = 0
(3b)

d2x2

dt2
+ η̃2ω2

dx2

dt
+ ω2

2x2 + γ̃ω2
1x1+

γ̃ϕ1x
3
1 + ϕ2x

3
2+

µ̃ω1

(
dx2

dt
− dh2

dt

)
+ ξh (x2 − h2) + ϕh (x2 − h2)3 = 0

(3c)

ε
d2h2

dt2
+ µ̃ω1

(
dh2

dt
− dx2

dt

)
+

ξh (h2 − x2) + ϕh (h2 − x2)3 = 0,
(3d)

with 0 < ε� 1, assuming that the mass of the NES is
small with respect to the mass of the primary system.
In theoretical and experimental works devoted to the
systems with NES, the mass ratio ε is adopted to stay
in a range 0.01-0.1 and this convention will be followed
in current work. As it will be demonstrated below,
relative smallness of ε is crucial, if one develops the
analytic approach to the problem.

In the remaining of this section few notations are
introduced in order to obtain a system written into a
form which facilitate the theoretical study performed
in Sect. 5.

First, changing the time scale from t to t∗ = ω1t

and noting " · " the derivative with respect to time t∗,
Eqs. (3) take the following form

ẍ1 + η̃1ẋ1 + x1 − γ̃(1− ã)2x2+
ϕ̃1x

3
1 − γ̃ϕ̃2x

3
2 + µ̃(ẋ1 − ḣ1)+

α̃1 (x1 − h1) + α̃ (x1 − h1)3 = 0
(4a)

εḧ1 + µ̃(ḣ1 − ẋ1) + α̃1 (h1 − x1) + α̃ (h1 − x1)3 = 0
(4b)

ẍ2 + η̃2(1− ã)ẋ2 + (1− ã)2x2 + γ̃x1+
γ̃ϕ̃1x

3
1 + ϕ̃2x

3
2 + µ̃(ẋ2 − ḣ2)+
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+α̃1 (x2 − h2) + α̃ (x2 − h2)3 = 0
(4c)

εḧ2 + µ̃(ḣ2 − ẋ2) + α̃1 (h2 − x2) + α̃ (h2 − x2)3 = 0,
(4d)

with ω2/ω1 = 1 − ã, ϕ̃2 = ϕ2/ω
2
1 , ϕ̃2 = ϕ2/ω

2
1 , α̃1 =

ξh/ω
2
1 and α̃ = ϕh/ω

2
1 .

We assume that the parameters
η̃1, η̃2, γ̃, ϕ̃1, ϕ̃2, µ̃, α̃ and ã are of order ε (i.e
η̃1, η̃2, γ̃, ϕ̃1, ϕ̃2, µ̃, α̃, ã ∼ O(ε), with 0 < ε � 1).
Moreover, because the linear stiffness of the NES is
supposed to be very smaller than the cubic stiffness,
it is stated that α1/α ∼ O(ε2).

In order to perform asymptotic analysis in next sec-
tions the parameters of the system are rescaled taking
into account previous assumptions

η1 = η̃1

ε
; ϕ1 = ϕ̃1

ε
; γ = γ̃

ε
; (5a)

µ = µ̃

ε
; η2 = η̃2

ε
; ϕ2 = ϕ̃2

ε
; (5b)

a = ã

ε
; α = α̃

ε
; α1 = α̃1

ε3
, (5c)

with η1, η2, γ, ϕ1, ϕ2, µ, a, α, α1 ∼ O(1).

Using rescaled parameters (5), Eqs. (4) become

ẍ1 + εη1ẋ1 + x1 − εγ(1− εa)2x2+
εϕ1x

3
1 − ε2γϕ2x

3
2 + εµ(ẋ1 − ḣ1)+

ε3α1 (x1 − h1) + εα (x1 − h1)3 = 0
(6a)

ḧ1 + µ(ḣ1 − ẋ1) + ε2α1 (h1 − x1) + α (h1 − x1)3 = 0
(6b)

ẍ2 + εη2(1− εa)ẋ2 + (1− εa)2x2 + εγx1+
ε2γϕ1x

3
1 + εϕ2x

3
2 + εµ(ẋ2 − ḣ2)+

ε3α1 (x2 − h2) + εα (x2 − h2)3 = 0
(6c)

ḧ2 + µ(ḣ2 − ẋ2) + ε2α1 (h2 − x2) + α (h2 − x2)3 = 0.
(6d)

System of Eqs. (6) is the Rescaled Hulten’s Model
including NES (RHM+NES). The remaining of the
paper is devoted to the analysis of its steady-state
regimes.

3 Linear stability of the trivial solu-
tion

Using the notation introduced in Sect. 2.2, Eq. (1)
reduces to the Rescaled Primary System (RPS)

ẍ1 + εη1ẋ1 + x1 − εγ(1− εa)2x2+
εϕ1x

3
1 − ε2γϕ2x

3
2 = 0 (7a)

ẍ2 + εη2(1− εa)ẋ2 + (1− εa)2x2 + εγx1+
ε2γϕ1x

3
1 + εϕ2x

3
2 = 0. (7b)

We focus the analysis on the capacity of the NES at-
tachments to suppress or mitigate vibrations when the
primary system is unstable. That is why in this sec-
tion the local stability of the trivial equilibrium of the
RPS (7) is computed and compared to the local sta-
bility of the trivial equilibrium of the RHM+NES (6).

Local stability of the trivial equilibrium is found
by looking the sign of the eigenvalues real parts of
the Jacobian matrices of the vector functions F1 and
F2 evaluated at the trivial equilibrium, denoted re-
spectively DF1(0) and DF2(0). The vector functions
F1 and F2 characterize respectively the RPS (7) and
the RHM+NES (6) when they are formally written in
state-space form

Ẋ = F1 (X), with X = [x1 x2 ẋ1 ẋ2]t , (8)

and

Ẋ = F2 (X), with X =
[
x1 x2 h1 h2 ẋ1 ẋ2 ḣ1 ḣ2

]t
.

(9)
The evolution of the real and imaginary parts of the

resulting eigenvalues of the Jacobian DF1(0) with re-
spect to the rescaled friction coefficient γ is plotted
in Fig. 3 and compared to that of the Jacobian ma-
trix DF2(0) in Fig. 4 for the following values of the
parameters

a = 1, η1 = 0.4, η2 = 1.2, (10a)
ε = 0.01, ϕ1 = 5, ϕ2 = 0, (10b)
µ = 0.4, α = 7, α1 = 7. (10c)

For the RPS, there are four eigenvalues (two pair
of complex conjugate) denoted λwoi (with i ∈ [1, 4]),
they are represented in Fig. 3, only two of these eigen-
values (λ1 and λ3) are plotted in Fig. 4. Due to the
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presence of the NES, four additional eigenvalues are
observed compared to the system without NES. Be-
cause of the weak coupling between the NES and the
primary system, these additional eigenvalues are close
to the eigenvalues of the uncoupled linearized equa-
tion of motion of the NES. Each linearized equation of
motion has two eigenvalues given by the following ex-
pression: 1

2

(
−µ±

√
µ2 − 4α1ε2

)
. The RHM+NES

have therefore eight eigenvalues denoted λwi (with
i ∈ [1, 8]).
We can notice that the trivial equilibrium is hyper-

bolic for both the RPS (7) and the RHM+NES (6)
regardless the value of γ, i.e. all the eigenvalues of
DF1(0) and DF2(0) have non zero real parts (except
at the Hopf bifurcation points hereafter defined). In
this case, The Hartman-Grobman theorem (e.g., Wig-
gins [1990], Chap. 3) states that in the vicinity of such
a hyperbolic equilibrium point, the nonlinear systems
(8) and (9) have the same qualitative stability as does
the corresponding linear systems. This guarantees the
validity of the present local stability analysis1.

For both RPS and RHM+NES, as usual the Hopf
bifurcation points is defined as the particular value of
γ for which at least the real part of one of the eigen-
values switches from negative to positive while the
real part of the other eigenvalues remains negative.
At the Hopf bifurcation points the trivial equilibrium
switches from stable to unstable. We notice in Fig. 4
that the presence of the NES shifts the bifurcation to
a larger value of γ. This is the linear effect of the NES
due the additional damping µ.
For the RPS the bifurcation point is denoted γb and

it is used as the origin for following theoretical study.
Therefore, in the remaining of the paper the bifur-
cation parameter under consideration is the detuning
term σ defined as follows

γ = γb + σ (11)

The other parameters are fixed (see Eq. (10)).
For the set of parameters (10), γb = 1.12 and the

bifurcation point of the RHM+NES is equal to γ =
1.43, corresponding to

σ = 0.31. (12)

The parameters (10) are chosen to illustrate with
only one set of parameters the potential of the NES
to modify the response regimes after the bifurcation

1In the present paper all fixed points of all system of differ-
ential equations are checked to be hyperbolic.

(a) Real parts

(b) Imaginary parts

Figure 3: Evolution of real and imaginary parts of the
eigenvalues of the Jacobian matrix of the vector function
F1 evaluated at the trivial equilibrium. Parameters used:
a = 1, η1 = 0.4, η2 = 1.2 and ε = 0.01. γb is the Hopf
bifurcation point.

point. These modified steady-state regimes are pre-
sented in the following section.

4 Possible steady-state response
regimes

The aim of this section is first to present the main
steady-state response regimes which may result from
the NES attachments and their relevance. For that,
the time series x1(t∗) and x2(t∗), resulting from the
numerical integration of the RHM+NES, Eqs. (6) and
of the RPS, Eqs. (7), are compared in Fig. 5. In both
cases, same initial conditions are used, chosen as small
perturbation of the trivial solution: x1(0) = 0.05,
x2(0) = h1(0) = h2(0) = ẋ1(0) = ẋ2(0) = ḣ1(0) =

6



(a) Real parts (b) Imaginary parts

(c) Real parts (zoom) (d) Imaginary parts (zoom)

Figure 4: Evolution of real and imaginary parts of the eigenvalues of the Jacobian matrices of the vector functions F1
(solid black lines) and F2 (dashed gray lines) evaluated at the trivial equilibrium. Parameters used: a = 1, η1 = 0.4,
η2 = 1.2, ε = 0.01, α1 = 7 and µ = 0.03.

ḣ2(0) = 0.
Observing the displacements x1(t∗) and x2(t∗)

(solid red line in Fig. 5) of the RHM+NES, four main
types of response regimes which may be generated
when a NES is attached on the system are highlighted
selecting different values of the parameter σ. They are
classified into two categories depending on the fact
that the trivial solution of the RHM+NES is stable
or not:

• The trivial solution of the RHM+NES is
stable:

– Complete suppression (see. Fig. 5(a)). In
this case, the additional damping due to the
NES attachment stabilizes the system and
the mode-coupling instability is completely

suppressed.

• The trivial solution of the RHM+NES is
unstable:

– Mitigation through Periodic Response (PR)
(see. Fig. 5(b)). In this case, the steady-
state response regime is periodic with fre-
quency close to 12.

– Mitigation through Strongly Modulated Re-
sponse (SMR) (see. Fig. 5(c)). In this
case, the steady-state response regime is a
quasiperiodic regime which exhibits a "fast"
component with frequency close to 1 and a

2This can be shown for example by computing the power
spectrum of the steady part of the signal.
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(a) Complete suppression

(b) Mitigation: PR

(c) Mitigation: SMR

(d) No suppression

Figure 5: Comparison between time series x1(t∗) and x2(t∗) resulting from the numerical integration of the RHM+NES
(Eqs. (6)) (solid black line) and x1(t∗) and x2(t∗) resulting of the numerical integration of the RPS (Eqs. (7)) (solid gray
line). Set of parameters (10) is used with (a) σ = 0.2, (b) σ = 0.6, (c) σ = 1.3 and (d) σ = 2. On the left, the position
of each simulation in the graph representing the real parts of the eigenvalues with respect to γ is shown.

"slow" component corresponding to the en-
velope of the signal. The term "Strongly
modulated response" has been introduced
by Starosvetsky and Gendelman [2008] for
the study of a harmonically forced linear
system coupled to a NES.

– No mitigation (see. Fig. 5(d)). The NES is
not able to mitigate the instability. Indeed,
a periodic regime is observed with an am-

plitude close to the amplitude of the system
without NES.

These four responses are also observed by Lee et al.
[2007a] and study theoretically by Gendelman et al.
[2010] in the context of the mitigation of aeroelastic
instabilities of a rigid wing in subsonic flow by means
of a NES. Furthermore, Bergeot et al. [2016a] ob-
served these responses studying control of helicopter
ground resonance instability attaching a NES on the
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fuselage of the helicopter.
Using numerical simulations, the capacity of NES

to suppress or mitigate vibrations due dynamic insta-
bility in friction systems has been highlighted in this
section. Nevertheless, numerical simulations are not
sufficient to have a good understanding of the miti-
gation mechanisms. That is why the RHM+NES is
analyzed in the following section.

5 Asymptotic analysis of the Hulten’s
Model including NES (RHM+NES)

The analysis presented in this section is first based
on Complexification-Averaging method (CA-X) intro-
duced by Manevitch [1999] and discussed in detail
by Vakatis et al. [2008]. The CA-X leads to the
determination of the slow-flow of the system. This
slow-flow is then analyzed using Geometric Singular
Perturbation Theory (GSPT) (Fenichel [1979], Jones
[1995], Desroches et al. [2012]).

5.1 The slow-flow

First, to simplify the following calculations, it is con-
venient to introduce barycentric coordinates ui(t) and
vi(t) (with i = 1, 2)

u1 = x1 + εh1, v1 = x1 − h1, (13)
u2 = x2 + εh2, v2 = x2 − h2, (14)

and reciprocally,

x1 = u1 + εv1

ε+ 1 , h1 = u1 − v1

ε+ 1 , (15)

x2 = u2 + εv2

ε+ 1 , h1 = u2 − v2

ε+ 1 . (16)

Using Eqs. (13-16), Eqs. (6) are written as follows

ü1 + η1ε (u̇1 + εv̇1)
ε+ 1 + u1 + εv1

ε+ 1 −

ε(aε− 1)2(γb + σ)(u2 + εv2)
ε+ 1 +

εϕ1(u1 + εv1)3

(ε+ 1)3 − ε2ϕ2(γb + σ)(u2 + εv2)3

(ε+ 1)3 = 0

(17a)

v̈1 + ε2α1 (1 + ε) v1 + η1ε (u̇1 + εv̇1)
ε+ 1 + u1 + εv1

ε+ 1 −

ε(aε− 1)2(γb + σ)(u2 + εv2)
ε+ 1 +

µ (1 + ε) v̇1 + α (1 + ε) v3
1 + εϕ1(u1 + εv1)3

(ε+ 1)3 −

ε2ϕ2(γb + σ)(u2 + εv2)3

(ε+ 1)3 = 0

(17b)

ü2 −
η2ε(aε− 1) (u̇2 + εv̇2)

ε+ 1 +

(aε− 1)2(u2 + εv2)
ε+ 1 + ε(γb + σ)(u1 + εv1)

ε+ 1 +

εϕ2(u2 + εv2)3

(ε+ 1)3 + ε2ϕ1(γb + σ)(u1 + εv1)3

(ε+ 1)3 = 0

(17c)

v̈2 + ε2α1 (1 + ε) v2 −
η2ε(aε− 1) (u̇2 + εv̈2)

ε+ 1 +

(aε− 1)2(u2 + εv2)
ε+ 1 + ε(γb + σ)(u1 + εv1)

ε+ 1 +

µ (1 + ε) v̇2 + α (1 + ε) v3
2+

εϕ2(u2 + εv2)3

(ε+ 1)3 + ε2ϕ1(γb + σ)(u1 + εv1)3

(ε+ 1)3 = 0.

(17d)

Secondly, the complexification consists in introduc-
ing the following change of variable

ψ1 = u̇1 + jωstu1, ψ2 = v̇1 + jωstv1, (18a)
ψ3 = u̇2 + jωstu2, ψ4 = v̇2 + jωstv2. (18b)

where j2 = −1 and ωst is the frequency for which
the observed steady-state responses are assumed to
oscillate. Here, the observation of the responses made
in Sect. 4 lead us to state ωst = 1.

Then, the variable u1, v1, u2, v2 and their first
and second derivatives with respect to time t∗ are ex-
pressed in term of the new variables ψi (with i ∈ [1, 4])
as:

u1 = ψ1 − ψ1
2j , u2 = ψ3 − ψ3

2j , (19a)

u̇1 = ψ1 + ψ1
2 , u̇2 = ψ3 + ψ3

2 , (19b)

ü1 = ψ̇1 −
j

2
(
ψ1 + ψ1

)
, ü2 = ψ̇3 −

j

2
(
ψ3 + ψ3

)
,

(19c)

v1 = ψ2 − ψ2
2j , v2 = ψ4 − ψ4

2j , (19d)
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v̇1 = ψ2 + ψ2
2 , v̇2 = ψ4 + ψ4

2 , (19e)

v̈1 = ψ̇2 −
j

2
(
ψ2 + ψ2

)
, v̈2 = ψ̇4 −

j

2
(
ψ4 + ψ4

)
,

(19f)

where ψi is the complex conjugate of ψi.
Numerical results shown in Sect. 4 motivate us to

assume that the variable u1, v1, u2 and v2 may be
broken down into fast and slow components. For that,
the following representation is introduced

ψ1 = φ1e
jt∗ , ψ2 = φ2e

jt∗ , (20a)

ψ3 = φ3e
jt∗ , ψ4 = φ4e

jt∗ , (20b)

where φi (with i ∈ [1, 4]) is the complex slow modu-
lated amplitude of the fast component ejt∗ .
Substituting Eqs. (19) into Eqs. (17) an equivalent

complex system of differential equations is obtained.
Then, using Eq. (20) in this complex system and per-
forming an averaging over one period equal to 2π yield
to a system of equations describing the behavior of the
slow complex amplitudes φi. Finally, since 0 < ε� 1,
these equations are expanded in a first-order Taylor
series around ε = 0 giving

φ̇1 = −1
2jε
(
φ1

(
−3ϕ1 |φ1|2

4 − jη1 + 1
)

+ φ3 (γb + σ)− φ2

)
(21a)

φ̇2 = 1
2j
(

3αφ2 |φ2|2

4 + φ1 − φ2(1− jµ)
)

+ 1
2ε
(

3jαφ2 |φ2|2 + 3jφ1ϕ1 |φ1|2

4

+ φ1(η1 − j)− φ2(µ− 1)− jφ3(γb + σ)
)

(21b)

φ̇3 = 1
2jε
(
φ3

(
3ϕ2 |φ3|2

4 + jη − 1− 2a
)

+ φ1 (γb + σ) + φ4

)
(21c)

φ̇4 = 1
2j
(

3αφ4 |φ4|2

4 + φ3 − φ4(1− jµ)
)

+ 1
2jε
(

3αφ4 |φ4|2 + 3φ3ϕ2 |φ3|2

4

+ φ1(γb + σ)− φ3(1 + 2a− jη2) + φ4(1 + jµ)
)
.

(21d)

Eqs. (21) describe Complex Form of the Slow-Flow
(CFSF) of the system (17) and it does not depend on
the linear stiffness part of the NES.

The trivial fixed point is common to both the non-
averaged system (6) (or (17)) and the slow-flow (21).
The stability of this trivial fixed point is calculated
in Sect. 3 directly on the RHM+NES. On the other
hand, the nontrivial fixed points of the slow-flow (21)
(defined as φ̇i = 0 for i ∈ [1, 4]) only characterizes
periodic solutions of Eqs. (6) (or (17)) if the frequency
of the periodic solutions is exactly equal to 1, the
frequency used to defined the complex variables (18).
However, computing the real form of the slow-flow
by using the polar coordinates ni(t) and θi(t) (with
i ∈ [1, 4]), defined by

φi(t) = ni(t)ejθi(t), (22)

and considering not the arguments θi(t) directly but
the argument differences δ2i = θ2(t)− θi(t) (the mas-
ter component can be chosen arbitrary, φ2(t) is chosen
for convenience), the periodic solutions of the system
of Eqs. (21) (and consequently of the RHM+NES (6))
may be defined as the nontrivial fixed points of the
system of the Real Form of the Slow-Flow (RFSF)
which may be formally written as follows

Ẋ = F3 (X), with X = [n1 n2 n3 n4 δ21 δ23 δ24]t .
(23)

See Appendix A for more details about the link
between the periodic solutions of the RHM+NES (on
the form (17)) and the fixed points of the RFSF (23).

To summarize, the prediction of a situation in which
a fixed points of the RFSF (23) is reached allows
to predict the existence of stable periodic responses
of RHM+NES. However, the numerical solution of
F3 (X) = 0, i.e. the fixed points, cannot be accessed
with a regular computer. Therefore, in the follow-
ing section, an asymptotic analysis of the slow-flow is
developed which permits to easily compute the fixed
points and to analyze the responses regime when fixed
points are unstable.
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5.2 The Critical Manifold

Slow and Super-slow subsystems. The slow-
flow described by Eqs. (21) can be written as follows:

φ̇1 = εf1 (φ1, φ2, φ3, φ4) (24a)
φ̇2 = f2 (φ1, φ2, φ3, φ4, ε) (24b)
φ̇3 = εf3 (φ1, φ2, φ3, φ4) (24c)
φ̇4 = f4 (φ1, φ2, φ3, φ4, ε) , (24d)

which highlights the "slow/fast" nature of the system.
Here terminology introduced by Gendelman and Bar
[2010] is preferred, i.e. the terms fast and slow are
replaced by slow and super-slow respectively, whereby
the term fast denotes the time scale determined by
fast oscillations of the primary system with frequency
1. Therefore, system (24) consists of two super-slow
complex variables φ1 and φ3 and two slow variables
φ2 and φ4.
Eqs. (24) can be reformulated by switching from the

slow time scale t∗ to the super-slow time scale τ = εt∗

as

Φ′1 = f1 (Φ1,Φ2,Φ3,Φ4) (25a)
εΦ′2 = f2 (Φ1,Φ2,Φ3,Φ4, ε) (25b)
Φ′3 = f3 (Φ1,Φ2,Φ3,Φ4) (25c)
εΦ′4 = f4 (Φ1,Φ2,Φ3,Φ4, ε) , (25d)

where ′ = d
dτ and Φi(τ) = φi

(
t = τ

ε

)
. Solutions of the

super-slow/slow system (24) (or (25)) can exhibit slow
and super-slow epochs characterized by the speed at
which the solution advances.
Stating ε = 0, the following subsystems are derived

from (24) and (25) respectively:

φ̇1 = 0 (26a)
φ̇2 = f2 (φ1, φ2, φ3, φ4, 0) (26b)
φ̇3 = 0 (26c)
φ̇4 = f4 (φ1, φ2, φ3, φ4, 0) , (26d)

which is the slow subsystem, and

Φ′1 = f1 (Φ1,Φ2,Φ3,Φ4) (27a)
0 = f2 (Φ1,Φ2,Φ3,Φ4, 0) (27b)

Φ′3 = f3 (Φ1,Φ2,Φ3,Φ4) (27c)

0 = f4 (Φ1,Φ2,Φ3,Φ4, 0) , (27d)

which is the super-slow subsystem.
In the following sections the Geometric Singular

Perturbation Theory (GSPT) is used to describe the
dynamics of the full system (24) (and (25)) for 0 <

ε � 1 from the analysis of the slow and super-
slow subsystems (26) and (27) (which are defined for
ε = 0). More precisely, the following result of the
GSPT is used: if 0 < ε � 1, the dynamics of the
full system (24) (or (25)) during slow (resp. super-
slow) epoch is given by the dynamic of the slow (resp.
super-slow) subsystem (26) (resp. (27)).

Stability of the Critical Manifold. The alge-
braic equations (27b) and (27d) of the super-slow sub-
system define the so-called Critical Manifold (CM)
(Jones [1995])

CM :={
(z1, z2, z3, z4) ∈ C4 ∣∣ {f2 (z1, z2, z3, z4, 0) = 0,

f4 (z1, z2, z3, z4, 0) = 0
}}

. (28)

Looking at Eqs. (21b) and (21d) one see
that the functions f2 (Φ1,Φ2,Φ3,Φ4, 0) and
f4 (Φ1,Φ2,Φ3,Φ4, 0) have the same form. Therefore,
from Eqs. (27b) and (27d) the CM can take the
following equivalent form

Φ1(τ) = Φ2(τ)F (|Φ2(τ)|) (29a)
Φ3(τ) = Φ4(τ)F (|Φ4(τ)|) , (29b)

where the complex function F is defined by

F (X) = FR(X) + jFI(X) = 1− 3α
4 X2 − jµ. (30)

Eq. (30) shows that the function F , which defines
the CM, depends only on the NES parameters α and
µ. The fact that Eq. (29a) and (29b) are defined with
the same function is the direct consequence of using
two identical NES.

It is convenient to characterize the CM in R. To
achieve this, again polar coordinates are introduced
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Φi(τ) = Ni(τ)ejΘj(τ) for i = 1, 2, 3, 4, (31)

and the module and the argument of (29) are succes-
sively computed, that lies to

N2
1 = N2

2
[
FR(N2)2 + FI(N2)2] = H(N2) (32a)

Θ1 = Θ2 + arg (F (N2)) (32b)
N2

3 = N2
4
[
FR(N4)2 + FI(N4)2] = H(N4) (32c)

Θ3 = Θ4 + arg (F (N4)) . (32d)

The local extrema of the real function H(X) are
given by the positive roots of its derivative H ′(X).
An easy calculus shows that the local extrema occur
at

XM = 2
3

√
2−

√
1− 3µ2

α
(33)

Xm = 2
3

√
2 +

√
1− 3µ2

α
, (34)

if the following relation holds

µ <
1√
3
, (35)

and in this case XM < Xm. The chosen value of µ
(see Eq. (10)) satisfies the previous relation.
Because φ̇2 and φ̇4 in (26) are reduced to zero in the

CM, each point of the CM is a fixed point for the slow
subsystem which consists in two independent systems
of equations

φ̇1 = 0 (36a)

φ̇2 = j

2

[
φ1 − φ2F (|φ2|)

]
, (36b)

and,

φ̇3 = 0 (37a)

φ̇4 = j

2

[
φ3 − φ4F (|φ4|)

]
. (37b)

To determine the stability of the CM, one must
know if the CM attracts or repels the slow dynam-
ics. For that, using the polar coordinates φi = nie

jθi ,
Eqs. (36) and (37) are rewritten as follows

ṅ1 = 0 (38a)

ṅ2 = 1
2 (n1 sin δ21 + n2FI(n2)) (38b)

δ̇21 = 1
2

(
n1

n2
cos δ21 − FR(n2)

)
, (38c)

and,

ṅ3 = 0 (39a)

ṅ4 = 1
2 (n3 sin δ43 + n2FI(n4)) (39b)

δ̇43 = 1
2

(
n3

n4
cos δ43 − FR(n4)

)
(39c)

where the argument differences δ21 = θ2 − θ1 and
δ43 = θ4 − θ3 have been introduced. Stability range
of the CM is then determined by examining the sign
of the eigenvalues real parts of the Jacobian matrix
of the two identical differential systems (38) and (39)
on the CM. It can be shown that the condition of
stability of the CM is equivalent to

H ′ (X) > 0, (40)

and the stability range of the CM is characterized
by the points (Xm, Ym) and (XM , YM ) where Ym =√
H (Xm) and YM =

√
H (XM ). Such points on

which the CM ceases to be hyperbolic3 connecting at-
tractive and repulsive parts of the the CM are called
folded singularities. We point that the folded singu-
larities exist whatever the values of the argument dif-
ferences δ21 = θ2 − θ1 and δ43 = θ4 − θ3.

A typical Critical Manifold and its stability range
are depicted (see Fig. 6) in which Xd and Xu are
solutions of

H (Xm) = H (Xd) ⇒ Xd = 2
√

2
3

√
1−

√
1− 3µ2

α
,

(41)

and,

H (XM ) = H (Xu) ⇒ Xu = 2
√

2
3

√
1 +

√
1− 3µ2

α
,

(42)
3The CM is hyperbolic if all eigenvalues of the Jacobian

matrices of the differential systems (38) and (39) have nonzero
real part.
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Figure 6: Critical Manifold (CM). Following parameters
are used: α = 7 and µ = 0.4.

respectively.

5.3 Fixed points and folded singularities of
the slow-flow

Introducing the CM Eq. (29) in Eqs. (27a) and (27c),
the super-slow subsystem is written only with respect
to the variables Φ2 and Φ4

∂ [Φ2F (|Φ2|)]
∂τ

= f1

(
Φ2F (|Φ2|) ,Φ2,Φ4F (|Φ4|) ,Φ4

)
(43a)

∂ [Φ4F (|Φ4|)]
∂τ

= f3

(
Φ2F (|Φ2|) ,Φ2,Φ4F (|Φ4|) ,Φ4

)
.

(43b)

Using the polar coordinates (31) and separating
real and imaginary parts, Eqs. (43) take the following
forms

FR (N2) ∂N2

∂τ
−N2

∂Θ2

∂τ
FI (N2) +N2

∂N2

∂τ
F ′R (N2)

= f1,R (N2, N4,∆24)
(44a)

N2
∂Θ2

∂τ
FR (N2) + ∂N2

∂τ
FI (N2) +N2

∂N2

∂τ
F ′I (N2)

= f1,I (N2, N4,∆24)
(44b)

FR (N4) ∂N4

∂τ
−N4

∂Θ4

∂τ
FI (N4) +N4

∂N4

∂τ
F ′R (N4)

= f3,R (N2, N4,∆24)
(44c)

N4
∂Θ4

∂τ
FR (N4) + ∂N4

∂τ
FI (N4) +N4

∂N4

∂τ
F ′I (N4)

= f3,I (N2, N4,∆24)
(44d)

where the expressions of the functions f1,R, f1,I , f3,R
and f3,I are respectively given by

f1,R (N2, N4,∆24) = Re
{

f1
(
N2e

jΘ2F (N2) , N2e
jΘ2 , N4e

jΘ4F (N4) , N4e
jΘ4
)

× e−jΘ2
}
, (45)

f1,I (N2, N4,∆24) = Im
{

f1
(
N2e

jΘ2F (N2) , N2e
jΘ2 , N4e

jΘ4F (N4) , N4e
jΘ4
)

× e−jΘ2
}
, (46)

f3,R (N2, N4,∆24) = Re
{

f3
(
N2e

jΘ2F (N2) , N2e
jΘ2 , N4e

jΘ4F (N4) , N4e
jΘ4
)

× e−jΘ4
}
, (47)

f3,I (N2, N4,∆24) = Im
{

f3
(
N2e

jΘ2F (N2) , N2e
jΘ2 , N4e

jΘ4F (N4) , N4e
jΘ4
)

× e−jΘ4
}
, (48)

involving the argument difference ∆24 = Θ2 − Θ4.
Combining Eqs. (44a-44d), system of Eqs. (44) can
be reduced to the following forms

g(N2)∂N2

∂τ
= fN2 (N2, N4,∆24) (49a)

g(N2)∂Θ2

∂τ
= fΘ2 (N2, N4,∆24) (49b)

g(N4)∂N4

∂τ
= fN4 (N2, N4,∆24) (49c)

g(N4)∂Θ4

∂τ
= fΘ4 (N2, N4,∆24) , (49d)

and finally

g(N2)∂N2

∂τ
= fN2 (N2, N4,∆24) (50a)
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g(N4)∂N4

∂τ
= fN4 (N2, N4,∆24) (50b)

g(N2)g(N4)∂∆24

∂τ
= f∆24 (N2, N4,∆24) , (50c)

where

f∆24 (N2, N4,∆24) =
g(N4)fΘ2 (N2, N4,∆24)− g(N2)fΘ4 (N2, N4,∆24) ,

(51)

and
g(X) = H ′(X)

2 . (52)

From Eqs. (50), it is possible to detect fixed points
and folded singularities.

Fixed points. The (regular) fixed points of
Eqs. (50), {Ne

2 , N
e
4 ,∆e

24}, are defined by

fN2 (Ne
2 , N

e
4 ,∆e

24) = 0 (53a)
fN4 (Ne

2 , N
e
4 ,∆e

24) = 0 (53b)
f∆24 (Ne

2 , N
e
4 ,∆e

24) = 0 (53c)
g(Ne

2 ) 6= 0 (53d)
g(Ne

4 ) 6= 0. (53e)

Since 0 < ε � 1, fixed points computed from
Eqs. (53) corresponds to fixed points of the real
RFSF (23). The expression of these fixed points are
obtained from Eq. (32)

ne1 =
√
H(Ne

2 ) (54a)

ne2 = Ne
2 (54b)

ne3 =
√
H(Ne

4 ) (54c)

ne4 = Ne
4 (54d)

δe21 = − arg (F (N2)) (54e)
δe23 = ∆e

24 − arg (F (N4)) (54f)
δe24 = ∆e

24. (54g)

Stability of the fixed points can now be found by
looking the sign of the eigenvalues real parts of the Ja-
cobian matrix of the vector function F3 (see Eq. (23))
evaluated at

Xe = [ne1 ne2 ne3 ne4 δe21 δ
e
23 δ

e
24]t . (55)

Folded singularities. The system of Eqs. (50) is
not defined on the folded singularities defined in
Sect. 5.2 because the system is singular on these
points. Introducing, the desingularized super-slow
subsystem, which is obtained using the time rescal-
ing τ → τ ′g(N2)g(N4)

∂N2

∂τ ′
= g(N4)fN2 (N2, N4,∆24) (56a)

∂N4

∂τ ′
= g(N2)fN4 (N2, N4,∆24) (56b)

∂∆24

∂τ ′
= f∆24 (N2, N4,∆24) , (56c)

one can notice that the folded singularities (here
denoted {Ns

2 , N
s
4 ,∆s

24}) can be also defined as the
fixed points of the desingularized super-slow subsys-
tem (56) (see for example Desroches et al. [2012]).
Since g

(
Xm/M

)
= 0 (where Xm/M denotes indis-

tinctly XM or Xm) and looking at the definition of
the function f∆24 (see Eq. 51), folded singularities are
defined from (56) by

{Ns
2 , N

s
4 ,∆s

24} =
{
Xm/M , Xm/M

}
, ∀∆24. (57)

6 Exploitation of theoretical results
and discussion

6.1 Explanation of the observed responses

The existence of an S-shaped CM (i.e. the presence
of folded singularities on which the stability of the
CM changes) allows to explain the three steady-state
regimes of the RHM+NES (6) observed when its triv-
ial solution is unstable, namely: Mitigation through
Periodic Response, Mitigation through Strongly Mod-
ulated Response (SMR) and No mitigation.

A fixed point of the RedM is reached. These
situations corresponds to a periodic solutions of the
RHM+NES which may correspond to either mitiga-
tion through Periodic Response or No mitigation of
the instability (see Sect. 4). Indeed, the bifurcation
diagram of the super-slow subsystem (50) with respect
the variables N1 (see Fig. 7(a)) and N3 (see Fig. 7(b))
highlights two ranges of σ in which stable fixed points
are encountered (see Fig. 7(a)):

• Domain 1: 0.31 . σ . 0.72,

• Domain 2: σ & 0.93.
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(a) (b)

Figure 7: Comparison between the bifurcation diagrams of the slow-flow of the system without NES (RPS (7)) and
with NES which is obtained from the analysis of the super-slow subsystem (50); with respect to the variable N1 (a) and
to the variable N3 (b). Set of parameters (10) is used.

The comparison with the bifurcation diagram of the
RPS (7)4 (see also Fig. 7) allows to obtain to following
conclusion: if a stable fixed point is reached in the
domain 1, mitigation through Periodic Response are
observed and if a stable fixed point is reached in the
domain 2, this time, no suppression of the instability
is observed.

Relaxation oscillations. The S-shape of the CM
suggests also the possible existence of relaxation os-
cillations (Grasman [1987]): after reaching of fold
singularity (XM , YM ) (in the (N2, N1)-plane or in
the (N4, N3)-plane), the system jumps to (Xu, YM ) ,
which is followed by a super-slow evolution of the tra-
jectory of the system (in the stable domain of the CM)
until it reaches (Xm, Ym). After another jump and a
super-slow evolution (the stable domain of the CM),
the trajectory returns to (XM , YM ) (see Fig. 6). Such
scenario of relaxation oscillations for the slow-flow can
explain the existence of Strongly Modulated Responses

4The bifurcation diagram of the RPS (7) is also obtained
computing the stability of the non trivial fixed points of its
slow-flow expanded in fist-order Taylor series around ε = 0.

Figure 8: Outline schematic showing the definition of the
boundary values σ1, σ2 and σ3 which separate the regions
of existence of the four steady-state response regimes.

(Gendelman et al. [2010], Gendelman and Bar [2010],
Starosvetsky and Gendelman [2008]) (SMR) for the
RefM. Note that if µ > 1/

√
3, the S-shape nature of

the CM is lost and therefore relaxation oscillations are
not possible.

6.2 Prediction of the steady-state response
regimes and limitation of the local linear
stability analysis of the slow-flow

The aim of this section is to predict, for a given set of
parameters, the nature of the resulting steady-state
response regimes of the RHM+NES (6). The pre-
diction is performed checking first the local stability
property of the trivial equilibrium point (see Sect. 3),
this allowed to predict the appearance of Complete
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(a) (b)

Figure 9: Bifurcation diagram of the slow-flow of the system with NES obtained from the analysis of the super-slow
subsystem (50); with respect to the variable N2 and N4 (a) and to the variable ∆24 (b). Set of parameters (10) is used.

suppression of the instability. Then, if the trivial so-
lution is unstable, we intent to discriminate the three
other steady-state response regimes analyzing the lo-
cal stability of the fixed points of the slow-flow (see
Sect. 5).
To illustrate the prediction method and highlight

its limitation, the study is restricted to a one param-
eter dependent system, namely the detuning param-
eter σ. To simplify the presentation of the method
(but without limiting its generality), the set of pa-
rameters (10) has been chosen to allow a continuous
evolution of the nature of the steady-state response
regimes when the parameter σ increases (see Fig. 8).
In this case, the goal is to find the values σ1, σ2 and
σ3 which separate the regions of existence of the four
steady-state response regimes.
From the simple local stability analysis of the triv-

ial equilibrium performed in Sect. 3, it is possible to
obtain a theoretical value of σ1 (denoted σth1 ), this
is the difference between the Hopf bifurcation point
of the system without and with NES (see Eq. (12)):
σth1 = 0.31.
Fig. 9 shows the bifurcation diagram deduced

from local stability analysis of the super-slow subsys-
tem (50) performed in Sect. 5 (Fig. 9(a) with respect
to the variables N2 et N4 and Fig. 9(b) with respect
to the argument difference ∆24). From this analysis,
a theoretical value σth2 of σ2 and a lower σth3,l theo-
retical values of σ3 can be deduced. Here, lower val-
ues mean that it is sure to obtain SMR mechanism
if σ < σth3,l. However, if σ > σth3,l, it is not possible
to conclude if SMR or no mitigation mechanisms are
encountered. The theoretical value σth2 is obtained
as the first intersection between the bifurcation dia-
gram of the super-slow subsystem (50) with respect
the variables N2 or N4 and the line N2 = N4 = XM .
In Fig. 9(a), one can notice that the bifurcation dia-
gram with respect to the variables N2 is the first to
cross the line N2 = N4 = XM at σ = 0.73 which is
the theoretical value of σth2 . At this point, relaxation
oscillations of the slow-flow are observed. Before the
appearance of the second branch of stable fixed points
at σ ≈ 0.93, relaxation oscillations phenomenon is the
only possible regime, this defines the lower theoretical
value σth3,l.

The fact that only a lower theoretical value of
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the σ3 can be obtained highlights the limitation of
the method to predict unequivocally all the steady-
state response regimes, this is due to the dimension-
ality of the super-slow flow subsystem. Indeed, in
works in which the super-slow flow subsystem can be
reduced to a one-dimensional system (Domany and
Gendelman [2013], Gendelman et al. [2010], Gendel-
man and Bar [2010]), global structure of possible re-
sponse regimes can be deduced directly from the local
stability analysis of the slow-flow. Here the super-slow
subsystem is a three-dimensional system. In this case,
determination of the basin of attraction of each solu-
tion (fixed points and relaxation oscillations) would
be needed to conclude about the nature of the steady-
state regimes, this may be subject of future work.

7 Additional analysis using numerical
simulations and benchmark of theo-
retical results

In this section numerical simulations are first per-
formed in order to explore more accurately the pos-
sible steady-state response regimes. Secondly, these
numerical simulations allow to study the validity of
the theoretical results presented in Sect. 6.2.

Figs. 10 to 14 present the same type of numerical
simulations obtained using the set of parameters (10)
and for five different values of σ. In each figure, it is
depicted:

• Figs. (a), (b), (c) and (d) compare numeri-
cal simulations of the RHM+NES written using
barycentric coordinates (see Eq. (17)) and nu-
merical simulations of the slow-flow (21).

• Figs. (e) and (f) compare the Critical Mani-
fold (N1 =

√
H(N2) and (N3 =

√
H(N4), see

Eq. (32)) with numerical simulations of the slow-
flow.

• Figs. (g) and (h) compare the bifurcation dia-
gram obtained from Eq. (53) with the trajec-
tory of the slow-flow in the 3D N2, N4,∆24-space.
Two views are used to make the reading of the
3D graph easier.

In Fig. 10 the chosen value of σ = 0.2 is smaller
than σth1 = 0.31 and Complete suppression is actually
observed. In Fig. 11 the chosen value of σ = 0.6 is
between σth1 = 0.31 and σth2 = 0.73 and Mitigation
through Periodic Response is actually observed. In

Fig. 12 the chosen value of σ = 0.9 is between σth2 =
0.73 and σth3,l = 0.93 and Mitigation through Strongly
modulated Modulated Response is actually observed.
We can notice in this example that relaxation oscilla-
tions of the slow-flow which explain the strongly mod-
ulated response of the RHM+NES are observed only
in the N1, N2-plane and only small oscillation are ob-
served in the N3, N4-plane (see Figs. 12(e) and 12(f)).
We call this SMR regime: semi-SMR regime. The
value of σ must be larger to observe relaxation os-
cillations in both N1, N2-plane and N3, N4-plane (see
Fig. 13 obtained using σ = 1.3). We call this SMR
regime: full-SMR regime. Finally, in Fig. 14, the re-
sults are obtained with σ = 2 and No mitigation is
observed.

To observe more precisely the boundaries between
the different observed regimes, the amplitudes of the
steady-state responses of the numerical simulations of
the RHM+NES written using barycentric coordinates
(see Eq. (17)) and numerical simulations of the slow-
flow (21) are plotted and compared to the theoretical
bifurcation diagram in Fig. 15. Following conclusion
can be made from the observation of these figures:

Comparison between theoretical and numeri-
cal boundaries values of σ. The better figure to
perform this comparison is Fig. 15(b). We can observe
that the transition from Complete suppression to Mit-
igation through Periodic Response and the transition
from Mitigation through Periodic Response to Mitiga-
tion through Strongly Modulated Response is well pre-
dicted by σth1 = 0.31 and σth2 = 0.73 respectively. In-
deed, one can see that the steady-state amplitudes of
the numerical simulations (for both RHM+NES and
the slow-flow) follow the amplitudes predicted by the
bifurcation diagram until σ = σth2 . At this value a
jump of the steady-state amplitudes of the numerical
simulations is observed corresponding to the transi-
tion from periodic regimes to SMR.

Not predicted boundaries values of σ. The
transition from Mitigation through Strongly Modu-
lated Response to No mitigation and from semi-SMR
regime to full-SMR regime have not theoretical val-
ues. However, they can be found on numerical simu-
lations. Observing for example Fig. 15(b), one can see
that the transition from Mitigation through Strongly
Modulated Response to No mitigation of the dynamic
instability appears at σ = 1.63 (denoted σnum3 on the
graph). The transition from semi-SMR regime to full-
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SMR regime is observed on Fig. 15(d), it appears at
σ = 1.08.

Prediction of the steady-state amplitudes The
theoretical bifurcation diagram is obtained from the
super-slow subsystem (see Eq.(53)). We can first see
the good agreement between the theoretical bifurca-
tion diagram and the steady-state amplitudes mea-
sures on numerical simulation of the slow-slow when
the steady-state regime is a periodic regime, i.e. when
σ < σth2 and σ > σnum3 . Moreover the theoretical val-
ues

√
H(Xu) = YM and Xu (see Fig. 6) give an ap-

proximated prediction of maximum amplitudes when
full-SMR occurs, i.e. for 1.08 < σ < σnum3 .

Comparison between RHM+NES and the
slow-flow. The comparison between numerical sim-
ulations of RHM+NES and the slow-flow is important
because the capacity of the slow-flow to reproduce the
behavior of the RHM+NES reflect the quality of all
mathematical developments which derive from (even
those not presented in this paper). Observing Fig. 15,
the comparison shows that the slow-flow well predicts
the boundary values of σ. The slow-flow well predicts
also the steady-state amplitudes except for periodic
regimes in domain 2 (see Fig. 7) corresponding to No
mitigation of the dynamic instability. Indeed, one can
observe a significant underestimation of the steady-
state amplitude (here especially for the variable N2,
see Fig. 15(b)). However, in the context of the control
of the instability the most pertinent values to predict
are the boundaries, in particular the boundary σ3 cor-
responding to the transition from Mitigation through
Strongly Modulated Response to No mitigation of the
instability. The fact that the slow-slow can describe
this transition motive us to continue this research in
order to find a theoretical value of σ3.

8 Conclusion

We studied the capacity of Nonlinear Energy Sinks
(NES) to mitigate vibrations due to mode-coupling
instability in braking systems. To achieve that, a
simple two degree of freedom model which can repro-
duce mode-coupling instability (i.e. the well-known
Hultèn’s model) was coupled to two ungrounded NES.
To analyze the steady-state response regimes, the

system is partitioned in slow-fast dynamics using
complexification-averaging approach. The presence a
small dimensionless parameter related to the mass of

the NES in the slow-flow system implies that it in-
volves two "slow" complex variables and two ”super-
slow” complex variables. The "super-slow/slow" na-
ture of the system allowed us to use multiple scale ap-
proach to analyze it. In particular, the Critical Mani-
fold of the slow-flow was determined. Its S-shape (i.e.
involving two folded singularities) and the associated
stability properties provide an analytical tool to ex-
plain the existence of three regimes: periodic response
regimes, strongly modulated responses regimes and no
mitigation regimes that appear when the trivial solu-
tion is unstable. A complete suppression regimes is
also observed and it is studied directly on the full sys-
tem.

The boundary values of the friction coefficient cor-
responding to the transition from complete suppres-
sion regime to periodic response regimes and from
periodic response regimes to strongly modulated re-
sponses are predicted analytically. However the pre-
diction of the boundary value between strongly modu-
lated responses and no mitigation responses is not per-
formed, this highlights that global structure of possi-
ble response regimes can not be deduced from local
stability analysis of a super-slow flow subsystem with
dimension larger than one. The prediction of this
boundary value could be important in the context
of engineering applications. That is why advanced
mathematical procedure will be developed to predict
this boundary.

A Link between the periodic solutions
of the RHM+NES and the fixed
points of the RFSF

To explain the link between the periodic solutions of
the RHM+NES (on the form of (17)) and the fixed
points of the RFSF (23), let’s consider a periodic
steady-state regime of the system (17) defined by

u1(t) = U1 sin ((1 + e)t+ θu1) (58a)
v1(t) = V1 sin ((1 + e)t+ θv1) (58b)
u2(t) = U2 sin ((1 + e)t+ θu2) (58c)
v2(t) = V2 sin ((1 + e)t+ θv2) (58d)

where U1, V1, U2, V2, θu1 , θv1 , θu2 , θv2 and e are
real constant. e characterizes the error made using 1
as fast component frequency in the complexification-
averaging method with the assumption that e� 1.
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Using Eqs. (18) and (20), the steady-state regime
described by (58) is written in terms of complex slow
modulated amplitude φi (with i ∈ [1, 4])

φ1 = (u̇1 + ju1) e−jt

= U1

(
1 + e

2

)
ej(et+θu1) + t.h.f, (59a)

φ2 = (v̇1 + jv1) e−jt

= V1

(
1 + e

2

)
ej(et+θv1) + t.h.f, (59b)

φ3 = (u̇2 + ju2) e−jt

= U2

(
1 + e

2

)
ej(et+θu2) + t.h.f, (59c)

φ4 = (v̇2 + jv2) e−jt

= V2

(
1 + e

2

)
ej(et+θv2) + t.h.f, (59d)

where "t.h.f" means term of higher frequency.
Using the polar coordinates ni(t) and θi(t) (with

i ∈ [1, 4]) defined by Eq. (22), Eqs. (59) become

n1 = U1

(
1 + e

2

)
≈ U1 (60a)

n2 = V1

(
1 + e

2

)
≈ V1 (60b)

n3 = U2

(
1 + e

2

)
≈ U2 (60c)

n4 = V2

(
1 + e

2

)
≈ V2 (60d)

δ21 = θ2 − θ1 = θv1 − θu1 (60e)
δ23 = θ2 − θ3 = θv1 − θu2 (60f)
δ24 = θ2 − θ4 = θv1 − θv2 . (60g)

Comparing Eqs. (59) and (60) we understand why
the argument differences must be used. Indeed, even
if e � 1, the error e caused a linear growth of the
arguments of the complex amplitude φi, which are
therefore not stationary.
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Figure 10: (a), (b), (c) and (d) compare numerical simulations of the RHM+NES written using barycentric coordinates
(see Eq. (17)) (solid grey line) and numerical simulations of the slow-flow (21) (solid black line). (e) and (f) compare
the Critical Manifold N1 =

√
H(N2) and N3 =

√
H(N4) (dashed grey line) (see Eq. (32)) with numerical simulations

of the slow-flow (solid black line). (g) and (h) compare the bifurcation diagram obtained from Eq. (53) (black and
grey points for stable and unstable branches respectively) with the trajectory of the slow-flow (solid red line) in the 3D
N2, N4,∆25-space, The blue point shows the initial condition and two views are used to make the reading of the 3D
graph easier. Set of parameters (10) is used and σ = 0.2.
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Figure 11: Same caption as for Fig. 10. Set of parameters (10) is used and σ = 0.6.
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Figure 12: Same caption as for Fig. 10. Set of parameters (10) is used and σ = 0.9.

25



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13: Same caption as for Fig. 10. Set of parameters (10) is used and σ = 1.3.
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Figure 14: Same caption as for Fig. 10. Set of parameters (10) is used and σ = 2.
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(a) (b)

(c) (d)

Figure 15: Comparison between steady-state amplitudes obtained from numerical simulations of the RHM+NES written
using barycentric coordinates (see Eq. (17)) (blue squares) and from numerical simulations of the slow-flow (21) (red
circles). Set of parameters (10) is used.
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