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Abstract

In this paper, we study a problem of passive control of friction-induced vibrations due to mode coupling instability in breaking
systems. To achieve that, the well-known two degrees of freedom Hultèn’s model, which reproduces the typical dynamic behavior
of friction systems, is coupled to two ungrounded Nonlinear Energy Sinks (NES). The NES involves an essential cubic restoring
force and a linear damping force. First, using numerical simulations it is shown that the suppression or the mitigation of the
instability is possible and four steady-state responses are highlighted: complete suppression, mitigation through periodic response,
mitigation through strongly modulated response and no suppression of the mode coupling instability. Then the system is analyzed
applying complexification-averaging method, the resulting slow-flow is finally analyzed using geometric singular perturbation
theory. This analysis allows to explain the observed steady state response regimes and predict some of them. The boundary
values of the friction coefficient for some of the transitions between these regimes are predicted. However, the appearance of
a three-dimensional super-slow flow subsystem highlights the limitation of the local linear stability analysis of the slow-flow to
predict all these boundaries.

Keywords: Friction-induced vibration, Passive control, Non linear energy sink, Relaxation oscillations, Strongly modulated
response.

1 Introduction

Self-excited systems play a key role in numerous industrial
applications related to the fields of aeronautics, railways,
and cars. Dry friction systems are good examples of
these systems ([Sinou et al., 2006a, Sinou et al., 2006b,
Chevennement-Roux et al., 2007, Sinou and Jézéquel, 2007,
Hervé et al., 2008]). They develop dynamic instabili-
ties related to the friction which are explained in major
cases by two main families of mechanisms. The first
family explains the instabilities by the variation of the
friction coefficient with respect to the relative speed
or by a higher static friction coefficient than the dy-
namic one. The stick-slip is a well-known phenomenon
in this context ([Van De Velde and De Baets, 1998a,
Van De Velde and De Baets, 1998b]). The second family
attributes the appearance of instabilities to the sprag-slip
mechanism and more generally to the mode-coupling
phenomenon. In this case, self-excited oscillations may
occur even with a constant friction coefficient. In most
brake models the instability is due to mode-coupling phe-
nomenon ([Fritz et al., 2007, Oden and Martins, 1985])
which is studied in this paper. Moreover, it has
been shown that the well-known two degrees of free-
dom Hultèn’s model ([Hultén, 1997, Hultén, 1993]) is
sufficient to investigate the mode-coupling instability
([D’Souza and Dweib, 1990, Eriksson and Jacobson, 2001,

Hoffmann and Gaul, 2003, Nechak et al., 2013]). In a
nutshell, friction systems and especially the braking systems
are subject to dynamic instabilities leading to limit cycle
oscillations that may affect their efficiency and the user
comfort. Moreover, it is very difficult to design completely
stable systems, particularly because of the dispersion of
friction laws. It is therefore necessary to attenuate these
vibrations.

The concept Targeted Energy Transfer (TET) is a rela-
tively new passive control method which consists in cou-
pling an essentially nonlinear attachment also named Nonlin-
ear Energy Sink (NES) to an existing primary system prone
to unwanted vibrations. TET has been extensively studied
numerically, theoretically and more rarely experimentally.
The results prove that the NES is very efficient for vibra-
tion mitigation ([Vakatis et al., 2008]) and noise reduction
([Bellet et al., 2010]). Impulsive loading was theoretically
analyzed for example by [Vakakis and Gendelman, 2001]
where TET is investigated in terms of resonance cap-
ture. [Starosvetsky and Gendelman, 2008] investigate har-
monic forcing where response regimes are characterized in
terms of periodic and strongly modulated responses using an
asymptotic analysis (multi scale approach) of the averaged
flow obtained using the complexification-averaging method
([Manevitch, 1999]). [Ahmadabadi and Khadem, 2013] in-
vestigate the role of a single degree of freedom NES with
nonlinear damping characteristics in annihilating undesired

1

mailto:baptiste.bergeot@insa-cvl.fr


periodic response regimes and simultaneously preserving
strongly modulated responses (SMR). The studied system
consists in a harmonically excited three degrees of freedom
system consisting of two linear coupled oscillators and an
NES attached to it. [Gourc et al., 2013] use a NES to reduce
chatter vibration in turning process. An application of NES
as a nonlinear vibration absorber in rotor dynamics can be
found in [Bab et al., 2014] where the efficiency of a collec-
tion of NES is analyzed for vibration mitigation of a rotating
system under mass eccentricity force. [Bab et al., 2015] in-
vestigated the performance of a NES to mitigate vibration
of a rotating beam under an external forced. We can also
cite [Farid and Gendelman, 2015] which study the applica-
bility of common pendulum as the NES for mitigation of
impulsive excitations. The authors present a theoretical anal-
ysis of the damped targeted energy transfer into the pendulum
NES from the primary mass with an account of corrections
caused by the effect of gravity.

NES are also used to control dynamic instabilities. The
possible suppression of the limit cycle oscillations of a Van
der Pol oscillator utilizing a NES is demonstrated numer-
ically in [Lee et al., 2006]. In [Gendelman and Bar, 2010]
(resp. [Domany and Gendelman, 2013]), the self-excitation
response regimes of a Van der Pol (resp. Van der Pol-
Duffing) oscillator with a NES are investigated. An
asymptotic analysis of the system related to slow/super-
slow decomposition of the averaged flow reveals peri-
odic responses, global bifurcations of different types and
basins of attraction of various self-excitation regimes. A
series of papers by [Lee et al., 2007a, Lee et al., 2007b,
Gendelman et al., 2010] demonstrated that a NES coupled to
a rigid wing in subsonic flow can partially or even completely
suppress aeroelastic instability. In [Lee et al., 2007a], the
suppression mechanisms are investigated numerically. Sev-
eral aspects of the suppression mechanisms are validated ex-
perimentally in [Lee et al., 2007b]. Moreover, an asymptotic
analysis is reported in [Gendelman et al., 2010] demonstrat-
ing the existence of the three passive suppressionmechanisms
based on TET. Suppression of aeroelastic instability of a gen-
eral nonlinearmulti degree of freedom systemhas also be con-
sidered in [Luongo and Zulli, 2013]. A theoretical/numerical
analysis of the capacity of a NES to control helicopter
ground resonance instability (which is a mode-coupling
instability) has been performed by [Bergeot et al., 2016a,
Bergeot et al., 2016b]. More generally, the discussion on re-
lationship between dimensionality of the super-slow mani-
fold, structure of the fixed points and the observed response
regimes is explored in review paper by [Gendelman, 2011].

In this context, the use of NES appears to be an interesting
way to control mode-coupling instability in braking systems.
The goal of the paper is therefore to study the effect of cou-
pling two NES to the two degree of freedommodel defined by
Hultèn. The originality of this paper focuses on two things:
(1) to our knowledge, there are no previous studies on this
subject for the dry friction system and (2) in the context of
the analysis of this kind of systems, the appearance of a three-
dimensional super-slow flow subsystem (the vocabulary will
be clarified in the paper) highlights the limitation of the lo-
cal linear stability analysis of the slow-flow to predict all the

Figure 1: Mechanical system without NES.

steady-state response regimes of the system.
The paper is organized as follows. In Sect. 2, the system

under study is presented. It consists in a Hultén’s model cou-
pled to two ungrounded NES. In Sect. 3, the local stability
analysis of the trivial solution for the with-NES and without-
NES systems is presented. Using numerical simulations, the
Sect. 4 presents some steady-state response regimes which
result from the NES attachments. We count four regimes
classified into two categories depending on the fact that the
trivial solution of the coupled system is stable or not. The
simple local stability analysis performed in Sect. 3 is suffi-
cient to find if the NES are able to to suppress completely the
dynamic instability. By contrast, trying to describe and pre-
dict the other mechanisms (i.e. when the trivial equilibrium
remains unstable despite the presence of the NES), a more
technical mathematical development is required. It is per-
formed in Sect. 5 following an analytical procedure based on
complexification-averaging method together with geometric
singular perturbation theory. Positive results and limitations
of this analytical work are discussed in Sect. 6. Finally, addi-
tional analysis using numerical simulations and a benchmark
of the theoretical results obtained in Sect. 6 are performed in
Sect. 7.

2 System under study

2.1 The primary system

In this paper a simple self-excited system proposed
by [Hultén, 1997, Hultén, 1993] is used. Hultèn’s model re-
produces the typical dynamic behavior of friction systems.
Therefore, it is sufficient to investigate how passive con-
trol of friction-induced vibration due to mode-coupling phe-
nomenon by means of NES can be performed. The simplicity
of this model allows to develop analytical expressions in order
to better understand the role of the NES attachment.

This model is composed of a mass m held against a moving
band; the contact between the mass and the band is mod-
eled by two plates supported by two different springs (see
Fig. 1). For the sake of simplicity, it is usually assumed
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that the mass and band surfaces are always in contact. This
assumption may be due to a preload applied to the system.
The contact can be expressed by two cubic stiffnesses, see for
example [Sinou and Jézéquel, 2007]. Damping is integrated
as shown in Fig. 1. The friction coefficient at contact is
assumed to be constant and the band moves at a constant ve-
locity. Then it is assumed that the direction of friction force
does not change because the relative velocity between the
band speed and dx1/dt or dx2/dt is assumed to be positive.
All these assumptions are taken into account in order to study
a simple non-linear theoretical 2 degrees-of-freedom system
with friction such that the effects of damping on mode cou-
pling instability and the associated analytical developments
may be easily investigated. The tangential force FT due to
friction contact is assumed to be proportional to the normal
force FN as given by Coulomb’s law: FT = γ̃FN , where γ̃
is the friction coefficient. Assuming the normal force FN

is linearly related to the displacement of the mass normal to
the contact surface, the resulting equations of motion can be
expressed as

m
d2x1
dt2
+ c1

dx1
dt
+ k1x1 − γ̃k2x2+

kNL
1 x31 − γ̃kNL

2 x32 = 0 (1a)

m
d2x2
dt2
+ c2

dx2
dt
+ k2x2 + γ̃k1x1+

γ̃kNL
1 x31 + kNL

2 x32 = 0. (1b)

2.2 Mechanical model with Nonlinear Energy Sinks

Two identical NES with masses mh , linear stiffnesses kh ,
damping coefficients ch and a cubic stiffnesses kNL

h
, are at-

tached on the system in an ungrounded configuration (see
Fig. 2). Because a NES is an essentially nonlinear oscil-
lator the linear stiffness kh is assumed to be very smaller
than cubic stiffness kNL

h
. This assumption is in agreement

with experimental data (see for example [Bellet et al., 2010,
Gourdon et al., 2007, Kerschen et al., 2007]).
Taking into account the NES displacements h1(t) and

h2(t), the equations of motion (1) become

m
d2x1
dt2
+ c1

dx1
dt
+ k1x1 − γ̃k2x2+

kNL
1 x31 − γ̃kNL

2 x32+

ch

(
dx1
dt
−

dh1
dt

)
+ kh (x1 − h1) + kNL

h (x1 − h1)3 = 0

(2a)

mh
d2h1
dt2
+ ch

(
dh1
dt
−

dx1
dt

)
+

kh (h1 − x1) + kNL
h (h1 − x1)3 = 0

(2b)

m
d2x2
dt2
+ c2

dx2
dt
+ k2x2 + γ̃k1x1+

γ̃kNL
1 x31 + kNL

2 x32+

(a)

(b) (c)

Figure 2: (a) Mechanical system with NES. (b) Zoom on the NES1.
(c) Zoom on the NES2.
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ch

(
dx2
dt
−

dh2
dt

)
+ kh (x2 − h2) + kNL

h (x2 − h2)3 = 0

(2c)

mh
d2h2
dt2
+ ch

(
dh2
dt
−

dx2
dt

)
+

kh (h2 − x2) + kNL
h (h2 − x2)3 = 0.

(2d)

Introducing the following notation η̃i = ci/
√

mki , ωi =√
ki/m, ϕi = kNL

i /m (with i = 1, 2), ε = mh/m, ξh = kh/m,
µ̃ = ch/

√
mk1 and ϕh = kNL

h
/m, Eqs. (2) become

d2x1
dt2
+ η̃1ω1

dx1
dt
+ ω2

1x1 − γ̃ω2
2x2+

ϕ1x31 − γ̃ϕ2x32+

µ̃ω1

(
dx1
dt
−

dh1
dt

)
+ ξh (x1 − h1) + ϕh (x1 − h1)3 = 0

(3a)

ε
d2h1
dt2
+ µ̃ω1

(
dh1
dt
−

dx1
dt

)
+

ξh (h1 − x1) + ϕh (h1 − x1)3 = 0
(3b)

d2x2
dt2
+ η̃2ω2

dx2
dt
+ ω2

2x2 + γ̃ω2
1x1+

γ̃ϕ1x31 + ϕ2x32+

µ̃ω1

(
dx2
dt
−

dh2
dt

)
+ ξh (x2 − h2) + ϕh (x2 − h2)3 = 0

(3c)

ε
d2h2
dt2
+ µ̃ω1

(
dh2
dt
−

dx2
dt

)
+

ξh (h2 − x2) + ϕh (h2 − x2)3 = 0,
(3d)

with 0 < ε � 1, assuming that the mass of the NES is small
with respect to the mass of the primary system. In theoretical
and experimental works devoted to the systems with NES, the
mass ratio ε is adopted to stay in a range 0.01-0.1 and this
convention will be followed in current work. As it will be
demonstrated below, relative smallness of ε is crucial, if one
develops the analytic approach to the problem.
In the remaining of this section fewnotations are introduced

in order to obtain a systemwritten into a form which facilitate
the theoretical study performed in Sect. 5.
First, changing the time scale from t to t∗ = ω1t and noting

" · " the derivative with respect to time t∗, Eqs. (3) take the
following form

ẍ1 + η̃1 ẋ1 + x1 − γ̃(1 − ã)2x2+

ϕ̃1x31 − γ̃ϕ̃2x32 + µ̃( ẋ1 − ḣ1)+

α̃1 (x1 − h1) + α̃ (x1 − h1)3 = 0 (4a)
ε ḧ1 + µ̃(ḣ1 − ẋ1) + α̃1 (h1 − x1) + α̃ (h1 − x1)3 = 0 (4b)

ẍ2 + η̃2(1 − ã) ẋ2 + (1 − ã)2x2 + γ̃x1+

γ̃ϕ̃1x31 + ϕ̃2x32 + µ̃( ẋ2 − ḣ2)+

+α̃1 (x2 − h2) + α̃ (x2 − h2)3 = 0 (4c)
ε ḧ2 + µ̃(ḣ2 − ẋ2) + α̃1 (h2 − x2) + α̃ (h2 − x2)3 = 0,

(4d)

with ω2/ω1 = 1 − ã, ϕ̃2 = ϕ2/ω2
1, ϕ̃2 = ϕ2/ω

2
1, α̃1 = ξh/ω

2
1

and α̃ = ϕh/ω2
1.

We assume that the parameters η̃1, η̃2, γ̃, ϕ̃1, ϕ̃2, µ̃, α̃ and
ã are of order ε (i.e η̃1, η̃2, γ̃, ϕ̃1, ϕ̃2, µ̃, α̃, ã ∼ O(ε ), with
0 < ε � 1). Moreover, because the linear stiffness of the
NES is supposed to be very smaller than the cubic stiffness,
it is stated that α1/α ∼ O(ε2).

In order to perform asymptotic analysis in next sections
the parameters of the system are rescaled taking into account
previous assumptions

η1 =
η̃1
ε
; ϕ1 =

ϕ̃1
ε
; γ =

γ̃

ε
; (5a)

µ =
µ̃

ε
; η2 =

η̃2
ε
; ϕ2 =

ϕ̃2
ε
; (5b)

a =
ã
ε
; α =

α̃

ε
; α1 =

α̃1

ε3
, (5c)

with η1, η2, γ, ϕ1, ϕ2, µ, a, α, α1 ∼ O(1).
Using rescaled parameters (5), Eqs. (4) become

ẍ1 + εη1 ẋ1 + x1 − εγ(1 − εa)2x2+

εϕ1x31 − ε
2γϕ2x32 + ε µ( ẋ1 − ḣ1)+

ε3α1 (x1 − h1) + εα (x1 − h1)3 = 0
(6a)

ḧ1 + µ(ḣ1 − ẋ1) + ε2α1 (h1 − x1) + α (h1 − x1)3 = 0
(6b)

ẍ2 + εη2(1 − εa) ẋ2 + (1 − εa)2x2 + εγx1+

ε2γϕ1x31 + εϕ2x32 + ε µ( ẋ2 − ḣ2)+

ε3α1 (x2 − h2) + εα (x2 − h2)3 = 0
(6c)

ḧ2 + µ(ḣ2 − ẋ2) + ε2α1 (h2 − x2) + α (h2 − x2)3 = 0.
(6d)

System of Eqs. (6) is the Rescaled Hulten’s Model includ-
ing NES (RHM+NES). The remaining of the paper is devoted
to the analysis of its steady-state regimes.

3 Linear stability of the trivial solution

Using the notation introduced in Sect. 2.2, Eq. (1) reduces to
the Rescaled Primary System (RPS)

ẍ1 + εη1 ẋ1 + x1 − εγ(1 − εa)2x2+

εϕ1x31 − ε
2γϕ2x32 = 0 (7a)

ẍ2 + εη2(1 − εa) ẋ2 + (1 − εa)2x2 + εγx1+

ε2γϕ1x31 + εϕ2x32 = 0. (7b)
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We focus the analysis on the capacity of the NES attach-
ments to suppress or mitigate vibrations when the primary
system is unstable. That is why in this section the local sta-
bility of the trivial equilibrium of the RPS (7) is computed
and compared to the local stability of the trivial equilibrium
of the RHM+NES (6).

Local stability of the trivial equilibrium is found by looking
the sign of the eigenvalues real parts of the Jacobian matrices
of the vector functions F1 and F2 evaluated at the trivial equi-
librium, denoted respectively DF1(0) and DF2(0). The vec-
tor functions F1 and F2 characterize respectively the RPS (7)
and the RHM+NES (6) when they are formally written in
state-space form

Ẋ = F1 (X), with X = [x1 x2 ẋ1 ẋ2]t , (8)

and

Ẋ = F2 (X), with X =
[
x1 x2 h1 h2 ẋ1 ẋ2 ḣ1 ḣ2

] t
. (9)

The evolution of the real and imaginary parts of the result-
ing eigenvalues of the Jacobian DF1(0) with respect to the
rescaled friction coefficient γ is plotted in Fig. 3 and com-
pared to that of the Jacobian matrix DF2(0) in Fig. 4 for the
following values of the parameters

a = 1, η1 = 0.4, η2 = 1.2, (10a)
ε = 0.01, ϕ1 = 5, ϕ2 = 0, (10b)
µ = 0.4, α = 7, α1 = 7. (10c)

For the RPS, there are four eigenvalues (two pair of com-
plex conjugate) denoted λwo

i (with i ∈ [1, 4]), they are rep-
resented in Fig. 3, only two of these eigenvalues (λ1 and
λ3) are plotted in Fig. 4. Due to the presence of the NES,
four additional eigenvalues are observed compared to the sys-
tem without NES. Because of the weak coupling between the
NES and the primary system, these additional eigenvalues
are close to the eigenvalues of the uncoupled linearized equa-
tion of motion of the NES. Each linearized equation of mo-
tion has two eigenvalues given by the following expression:
1
2

(
−µ ±

√
µ2 − 4α1ε2

)
. TheRHM+NEShave therefore eight

eigenvalues denoted λwi (with i ∈ [1, 8]).
We can notice that the trivial equilibrium is hyperbolic for

both the RPS (7) and the RHM+NES (6) regardless the value
of γ, i.e. all the eigenvalues of DF1(0) and DF2(0) have non
zero real parts (except at the Hopf bifurcation points hereafter
defined). In this case, The Hartman-Grobman theorem (e.g.,
[Wiggins, 1990], Chap. 3) states that in the vicinity of such a
hyperbolic equilibrium point, the nonlinear systems (8) and
(9) have the same qualitative stability as does the correspond-
ing linear systems. This guarantees the validity of the present
local stability analysis1.
For both RPS and RHM+NES, as usual the Hopf bifurca-

tion points is defined as the particular value of γ for which
at least the real part of one of the eigenvalues switches from
negative to positivewhile the real part of the other eigenvalues

1In the present paper all fixed points of all system of differential equations
are checked to be hyperbolic.

remains negative. At the Hopf bifurcation points the trivial
equilibrium switches from stable to unstable. We notice in
Fig. 4 that the presence of the NES shifts the bifurcation to a
larger value of γ. This is the linear effect of the NES due the
additional damping µ.

For the RPS the bifurcation point is denoted γb and it is
used as the origin for following theoretical study. Therefore,
in the remaining of the paper the bifurcation parameter under
consideration is the detuning term σ defined as follows

γ = γb + σ (11)

The other parameters are fixed (see Eq. (10)).
For the set of parameters (10), γb = 1.12 and the bifur-

cation point of the RHM+NES is equal to γ = 1.43, corre-
sponding to

σ = 0.31. (12)

The parameters (10) are chosen to illustrate with only one
set of parameters the potential of the NES to modify the
response regimes after the bifurcation point. These modified
steady-state regimes are presented in the following section.

4 Possible steady-state response regimes

The aim of this section is first to present the main steady-state
response regimeswhichmay result from theNES attachments
and their relevance. For that, the time series x1(t∗) and x2(t∗),
resulting from the numerical integration of the RHM+NES,
Eqs. (6) and of the RPS, Eqs. (7), are compared in Fig. 5. In
both cases, same initial conditions are used, chosen as small
perturbation of the trivial solution: x1(0) = 0.05, x2(0) =
h1(0) = h2(0) = ẋ1(0) = ẋ2(0) = ḣ1(0) = ḣ2(0) = 0.
Observing the displacements x1(t∗) and x2(t∗) (solid red

line in Fig. 5) of the RHM+NES, four main types of response
regimes which may be generated when a NES is attached on
the system are highlighted selecting different values of the
parameter σ. They are classified into two categories depend-
ing on the fact that the trivial solution of the RHM+NES is
stable or not:

• The trivial solution of the RHM+NES is stable:

– Complete suppression (see. Fig. 5(a)). In this case,
the additional damping due to the NES attachment
stabilizes the system and the mode-coupling insta-
bility is completely suppressed.

• The trivial solution of the RHM+NES is unstable:

– Mitigation through Periodic Response (PR) (see.
Fig. 5(b)). In this case, the steady-state response
regime is periodic with frequency close to 12.

– Mitigation through Strongly Modulated Response
(SMR) (see. Fig. 5(c)). In this case, the steady-
state response regime is a quasiperiodic regime
which exhibits a "fast" component with frequency

2This can be shown for example by computing the power spectrum of the
steady part of the signal.
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(a) Real parts

(b) Imaginary parts

Figure 3: Evolution of real and imaginary parts of the eigenvalues
of the Jacobian matrix of the vector function F1 evaluated at the
trivial equilibrium. Parameters used: a = 1, η1 = 0.4, η2 = 1.2 and
ε = 0.01. γb is the Hopf bifurcation point.

close to 1 and a "slow" component correspond-
ing to the envelope of the signal. The term
"Strongly modulated response" has been intro-
duced by [Starosvetsky and Gendelman, 2008] for
the study of a harmonically forced linear system
coupled to a NES.

– No mitigation (see. Fig. 5(d)). The NES is not
able to mitigate the instability. Indeed, a periodic
regime is observed with an amplitude close to the
amplitude of the system without NES.

These four responses are also observed
by [Lee et al., 2007a] and study theoretically
by [Gendelman et al., 2010] in the context of the miti-
gation of aeroelastic instabilities of a rigid wing in subsonic
flow bymeans of a NES. Furthermore, [Bergeot et al., 2016a]

observed these responses studying control of helicopter
ground resonance instability attaching a NES on the fuselage
of the helicopter.

Using numerical simulations, the capacity of NES to sup-
press or mitigate vibrations due dynamic instability in friction
systems has been highlighted in this section. Nevertheless,
numerical simulations are not sufficient to have a good un-
derstanding of the mitigation mechanisms. That is why the
RHM+NES is analyzed in the following section.

5 Asymptotic analysis of the Hulten’s Model
including NES (RHM+NES)

The analysis presented in this section is first based
on Complexification-Averaging method (CA-X) intro-
duced by [Manevitch, 1999] and discussed in detail
by [Vakatis et al., 2008]. The CA-X leads to the determina-
tion of the slow-flowof the system. This slow-flow is then ana-
lyzed usingGeometric Singular Perturbation Theory (GSPT)
([Fenichel, 1979, Jones, 1995, Desroches et al., 2012]).

5.1 The slow-flow

First, to simplify the following calculations, it is convenient
to introduce barycentric coordinates ui (t) and vi (t) (with
i = 1, 2)

u1 = x1 + εh1, v1 = x1 − h1, (13)
u2 = x2 + εh2, v2 = x2 − h2, (14)

and reciprocally,

x1 =
u1 + εv1
ε + 1

, h1 =
u1 − v1
ε + 1

, (15)

x2 =
u2 + εv2
ε + 1

, h1 =
u2 − v2
ε + 1

. (16)

Using Eqs. (13-16), Eqs. (6) are written as follows

ü1 +
η1ε (u̇1 + ε v̇1)

ε + 1
+

u1 + εv1
ε + 1

−

ε (aε − 1)2(γb + σ)(u2 + εv2)
ε + 1

+

εϕ1(u1 + εv1)3

(ε + 1)3
−
ε2ϕ2(γb + σ)(u2 + εv2)3

(ε + 1)3
= 0

(17a)

v̈1 + ε
2α1 (1 + ε ) v1 +

η1ε (u̇1 + ε v̇1)
ε + 1

+
u1 + εv1
ε + 1

−

ε (aε − 1)2(γb + σ)(u2 + εv2)
ε + 1

+

µ (1 + ε ) v̇1 + α (1 + ε ) v31 +
εϕ1(u1 + εv1)3

(ε + 1)3
−

ε2ϕ2(γb + σ)(u2 + εv2)3

(ε + 1)3
= 0

(17b)

ü2 −
η2ε (aε − 1) (u̇2 + ε v̇2)

ε + 1
+
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(a) Real parts (b) Imaginary parts

(c) Real parts (zoom) (d) Imaginary parts (zoom)

Figure 4: Evolution of real and imaginary parts of the eigenvalues of the Jacobian matrices of the vector functions F1 (solid black lines) and
F2 (dashed gray lines) evaluated at the trivial equilibrium. Parameters used: a = 1, η1 = 0.4, η2 = 1.2, ε = 0.01, α1 = 7 and µ = 0.03.

(aε − 1)2(u2 + εv2)
ε + 1

+
ε (γb + σ)(u1 + εv1)

ε + 1
+

εϕ2(u2 + εv2)3

(ε + 1)3
+
ε2ϕ1(γb + σ)(u1 + εv1)3

(ε + 1)3
= 0

(17c)

v̈2 + ε
2α1 (1 + ε ) v2 −

η2ε (aε − 1) (u̇2 + ε v̈2)
ε + 1

+

(aε − 1)2(u2 + εv2)
ε + 1

+
ε (γb + σ)(u1 + εv1)

ε + 1
+

µ (1 + ε ) v̇2 + α (1 + ε ) v32+

εϕ2(u2 + εv2)3

(ε + 1)3
+
ε2ϕ1(γb + σ)(u1 + εv1)3

(ε + 1)3
= 0.

(17d)

Secondly, the complexification consists in introducing the
following change of variable

ψ1 = u̇1 + jωstu1, ψ2 = v̇1 + jωstv1, (18a)
ψ3 = u̇2 + jωstu2, ψ4 = v̇2 + jωstv2. (18b)

where j2 = −1 and ωst is the frequency for which the ob-
served steady-state responses are assumed to oscillate. Here,
the observation of the responses made in Sect. 4 lead us to
state ωst = 1.

Then, the variable u1, v1, u2, v2 and their first and second
derivatives with respect to time t∗ are expressed in term of
the new variables ψi (with i ∈ [1, 4]) as:

u1 =
ψ1 − ψ1

2 j
, u2 =

ψ3 − ψ3
2 j

, (19a)
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u̇1 =
ψ1 + ψ1

2
, u̇2 =

ψ3 + ψ3
2

, (19b)

ü1 = ψ̇1 −
j
2

(
ψ1 + ψ1

)
, ü2 = ψ̇3 −

j
2

(
ψ3 + ψ3

)
, (19c)

v1 =
ψ2 − ψ2

2 j
, v2 =

ψ4 − ψ4
2 j

, (19d)

v̇1 =
ψ2 + ψ2

2
, v̇2 =

ψ4 + ψ4
2

, (19e)

v̈1 = ψ̇2 −
j
2

(
ψ2 + ψ2

)
, v̈2 = ψ̇4 −

j
2

(
ψ4 + ψ4

)
, (19f)

where ψi is the complex conjugate of ψi .
Numerical results shown in Sect. 4 motivate us to assume

that the variable u1, v1, u2 and v2 may be broken down into fast
and slow components. For that, the following representation
is introduced

ψ1 = φ1e j t∗, ψ2 = φ2e j t∗, (20a)

ψ3 = φ3e j t∗, ψ4 = φ4e j t∗, (20b)

where φi (with i ∈ [1, 4]) is the complex slow modulated
amplitude of the fast component e j t∗ .
Substituting Eqs. (19) into Eqs. (17) an equivalent complex

system of differential equations is obtained. Then, using
Eq. (20) in this complex system and performing an averaging
over one period equal to 2π yield to a system of equations
describing the behavior of the slow complex amplitudes φi .
Finally, since 0 < ε � 1, these equations are expanded in a
first-order Taylor series around ε = 0 giving

φ̇1 = −
1
2

jε
(
φ1

(
−3ϕ1 |φ1 |2

4
− jη1 + 1

)
+ φ3 (γb + σ) − φ2

)
(21a)

φ̇2 =
1
2

j
(
3αφ2 |φ2 |2

4
+ φ1 − φ2(1 − jµ)

)
+
1
2
ε

(
3 jαφ2 |φ2 |2 + 3 jφ1ϕ1 |φ1 |2

4

+ φ1(η1 − j) − φ2(µ − 1) − jφ3(γb + σ)
)

(21b)

φ̇3 =
1
2

jε
(
φ3

(
3ϕ2 |φ3 |2

4
+ jη − 1 − 2a

)
+ φ1 (γb + σ) + φ4

)
(21c)

φ̇4 =
1
2

j
(
3αφ4 |φ4 |2

4
+ φ3 − φ4(1 − jµ)

)
+
1
2

jε
(
3αφ4 |φ4 |2 + 3φ3ϕ2 |φ3 |2

4

+ φ1(γb + σ) − φ3(1 + 2a − jη2) + φ4(1 + jµ)
)
. (21d)

Eqs. (21) describeComplexFormof the Slow-Flow (CFSF)
of the system (17) and it does not depend on the linear stiffness

part of the NES.
The trivial fixed point is common to both the non-averaged

system (6) (or (17)) and the slow-flow (21). The stability
of this trivial fixed point is calculated in Sect. 3 directly
on the RHM+NES. On the other hand, the nontrivial fixed
points of the slow-flow (21) (defined as φ̇i = 0 for i ∈ [1, 4])
only characterizes periodic solutions of Eqs. (6) (or (17)) if
the frequency of the periodic solutions is exactly equal to
1, the frequency used to defined the complex variables (18).
However, computing the real form of the slow-flow by using
the polar coordinates ni (t) and θi (t) (with i ∈ [1, 4]), defined
by

φi (t) = ni (t)e jθi (t ), (22)

and considering not the arguments θi (t) directly but the argu-
ment differences δ2i = θ2(t) − θi (t) (the master component
can be chosen arbitrary, φ2(t) is chosen for convenience),
the periodic solutions of the system of Eqs. (21) (and conse-
quently of the RHM+NES (6)) may be defined as the non-
trivial fixed points of the system of the Real Form of the
Slow-Flow (RFSF) which may be formally written as follows

Ẋ = F3 (X), with X = [n1 n2 n3 n4 δ21 δ23 δ24]t . (23)

See Appendix A for more details about the link between
the periodic solutions of the RHM+NES (on the form (17))
and the fixed points of the RFSF (23).

To summarize, the prediction of a situation in which a
fixed points of the RFSF (23) is reached allows to predict
the existence of stable periodic responses of RHM+NES.
However, the numerical solution of F3 (X) = 0, i.e. the
fixed points, cannot be accessed with a regular computer.
Therefore, in the following section, an asymptotic analysis of
the slow-flow is developed which permits to easily compute
the fixed points and to analyze the responses regime when
fixed points are unstable.

5.2 The Critical Manifold

Slow and Super-slow subsystems. The slow-flow de-
scribed by Eqs. (21) can be written as follows:

φ̇1 = ε f1 (φ1, φ2, φ3, φ4) (24a)
φ̇2 = f2 (φ1, φ2, φ3, φ4, ε ) (24b)
φ̇3 = ε f3 (φ1, φ2, φ3, φ4) (24c)
φ̇4 = f4 (φ1, φ2, φ3, φ4, ε ) , (24d)

which highlights the "slow/fast" nature of the system. Here
terminology introduced by [Gendelman and Bar, 2010] is
preferred, i.e. the terms fast and slow are replaced by slow
and super-slow respectively, whereby the term fast denotes
the time scale determined by fast oscillations of the primary
system with frequency 1. Therefore, system (24) consists of
two super-slow complex variables φ1 and φ3 and two slow
variables φ2 and φ4.

Eqs. (24) can be reformulated by switching from the slow
time scale t∗ to the super-slow time scale τ = εt∗ as
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Φ
′
1 = f1 (Φ1,Φ2,Φ3,Φ4) (25a)

εΦ′2 = f2 (Φ1,Φ2,Φ3,Φ4, ε ) (25b)
Φ
′
3 = f3 (Φ1,Φ2,Φ3,Φ4) (25c)

εΦ′4 = f4 (Φ1,Φ2,Φ3,Φ4, ε ) , (25d)

where ′ = d
dτ and Φi (τ) = φi

(
t = τ

ε

)
. Solutions of the

super-slow/slow system (24) (or (25)) can exhibit slow and
super-slow epochs characterized by the speed at which the
solution advances.

Stating ε = 0, the following subsystems are derived from
(24) and (25) respectively:

φ̇1 = 0 (26a)
φ̇2 = f2 (φ1, φ2, φ3, φ4, 0) (26b)
φ̇3 = 0 (26c)
φ̇4 = f4 (φ1, φ2, φ3, φ4, 0) , (26d)

which is the slow subsystem, and

Φ
′
1 = f1 (Φ1,Φ2,Φ3,Φ4) (27a)
0 = f2 (Φ1,Φ2,Φ3,Φ4, 0) (27b)
Φ
′
3 = f3 (Φ1,Φ2,Φ3,Φ4) (27c)
0 = f4 (Φ1,Φ2,Φ3,Φ4, 0) , (27d)

which is the super-slow subsystem.
In the following sections theGeometric Singular Perturba-

tion Theory (GSPT) is used to describe the dynamics of the
full system (24) (and (25)) for 0 < ε � 1 from the analysis
of the slow and super-slow subsystems (26) and (27) (which
are defined for ε = 0). More precisely, the following re-
sult of the GSPT is used: if 0 < ε � 1, the dynamics of
the full system (24) (or (25)) during slow (resp. super-slow)
epoch is given by the dynamic of the slow (resp. super-slow)
subsystem (26) (resp. (27)).

Stability of the Critical Manifold. The algebraic equa-
tions (27b) and (27d) of the super-slow subsystem define the
so-called Critical Manifold (CM) ([Jones, 1995])

CM :={
(z1, z2, z3, z4) ∈ C4 ��

{
f2 (z1, z2, z3, z4, 0) = 0,

f4 (z1, z2, z3, z4, 0) = 0
}}
. (28)

Looking at Eqs. (21b) and (21d) one see that the functions
f2 (Φ1,Φ2,Φ3,Φ4, 0) and f4 (Φ1,Φ2,Φ3,Φ4, 0) have the same
form. Therefore, from Eqs. (27b) and (27d) the CM can take
the following equivalent form

Φ1(τ) = Φ2(τ)F (|Φ2(τ) |) (29a)

Φ3(τ) = Φ4(τ)F (|Φ4(τ) |) , (29b)

where the complex function F is defined by

F (X ) = FR (X ) + jFI (X ) = 1 −
3α
4

X2 − jµ. (30)

Eq. (30) shows that the function F, which defines the CM,
depends only on the NES parameters α and µ. The fact that
Eq. (29a) and (29b) are defined with the same function is the
direct consequence of using two identical NES.

It is convenient to characterize the CM in R. To achieve
this, again polar coordinates are introduced

Φi (τ) = Ni (τ)e jΘ j (τ) for i = 1, 2, 3, 4, (31)

and the module and the argument of (29) are successively
computed, that lies to

N2
1 = N2

2

[
FR (N2)2 + FI (N2)2

]
= H (N2) (32a)

Θ1 = Θ2 + arg (F (N2)) (32b)

N2
3 = N2

4

[
FR (N4)2 + FI (N4)2

]
= H (N4) (32c)

Θ3 = Θ4 + arg (F (N4)) . (32d)

The local extrema of the real function H (X ) are given by
the positive roots of its derivative H ′(X ). An easy calculus
shows that the local extrema occur at

XM =
2
3

√
2 −

√
1 − 3µ2
α

(33)

Xm =
2
3

√
2 +

√
1 − 3µ2
α

, (34)

if the following relation holds

µ <
1
√
3
, (35)

and in this case XM < Xm . The chosen value of µ (see
Eq. (10)) satisfies the previous relation.

Because φ̇2 and φ̇4 in (26) are reduced to zero in the CM,
each point of the CM is a fixed point for the slow subsystem
which consists in two independent systems of equations

φ̇1 = 0 (36a)

φ̇2 =
j
2

[
φ1 − φ2F ( |φ2 |)

]
, (36b)

and,

φ̇3 = 0 (37a)

φ̇4 =
j
2

[
φ3 − φ4F (|φ4 |)

]
. (37b)

To determine the stability of the CM, one must know if
the CM attracts or repels the slow dynamics. For that, using
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the polar coordinates φi = nie jθi , Eqs. (36) and (37) are
rewritten as follows

ṅ1 = 0 (38a)

ṅ2 =
1
2

(n1 sin δ21 + n2FI (n2)) (38b)

δ̇21 =
1
2

(
n1
n2

cos δ21 − FR (n2)
)
, (38c)

and,

ṅ3 = 0 (39a)

ṅ4 =
1
2

(n3 sin δ43 + n2FI (n4)) (39b)

δ̇43 =
1
2

(
n3
n4

cos δ43 − FR (n4)
)

(39c)

where the argument differences δ21 = θ2−θ1 and δ43 = θ4−θ3
have been introduced. Stability range of the CM is then
determined by examining the sign of the eigenvalues real
parts of the Jacobian matrix of the two identical differential
systems (38) and (39) on the CM. It can be shown that the
condition of stability of the CM is equivalent to

H ′ (X ) > 0, (40)

and the stability range of the CM is characterized by the
points (Xm,Ym ) and (XM,YM ) where Ym =

√
H (Xm ) and

YM =
√

H (XM ). Such points on which the CM ceases to
be hyperbolic3 connecting attractive and repulsive parts of
the the CM are called folded singularities. We point that the
folded singularities exist whatever the values of the argument
differences δ21 = θ2 − θ1 and δ43 = θ4 − θ3.
A typical Critical Manifold and its stability range are de-

picted (see Fig. 6) in which Xd and Xu are solutions of

H (Xm ) = H (Xd ) ⇒ Xd =
2
√
2

3

√
1 −

√
1 − 3µ2
α

, (41)

and,

H (XM ) = H (Xu ) ⇒ Xu =
2
√
2

3

√
1 +

√
1 − 3µ2
α

,

(42)

respectively.

5.3 Fixed points and folded singularities of the slow-flow

Introducing the CM Eq. (29) in Eqs. (27a) and (27c), the
super-slow subsystem is written only with respect to the vari-
ables Φ2 and Φ4

3The CM is hyperbolic if all eigenvalues of the Jacobian matrices of the
differential systems (38) and (39) have nonzero real part.

∂ [Φ2F (|Φ2 |)]
∂τ

= f1
(
Φ2F (|Φ2 |) ,Φ2,Φ4F ( |Φ4 |) ,Φ4

)
(43a)

∂ [Φ4F (|Φ4 |)]
∂τ

= f3
(
Φ2F (|Φ2 |) ,Φ2,Φ4F ( |Φ4 |) ,Φ4

)
.

(43b)

Using the polar coordinates (31) and separating real and
imaginary parts, Eqs. (43) take the following forms

FR (N2)
∂N2
∂τ
− N2

∂Θ2
∂τ

FI (N2) + N2
∂N2
∂τ

F ′R (N2)

= f1,R (N2, N4,∆24) (44a)

N2
∂Θ2
∂τ

FR (N2) +
∂N2
∂τ

FI (N2) + N2
∂N2
∂τ

F ′I (N2)

= f1, I (N2, N4,∆24) (44b)

FR (N4)
∂N4
∂τ
− N4

∂Θ4
∂τ

FI (N4) + N4
∂N4
∂τ

F ′R (N4)

= f3,R (N2, N4,∆24) (44c)

N4
∂Θ4
∂τ

FR (N4) +
∂N4
∂τ

FI (N4) + N4
∂N4
∂τ

F ′I (N4)

= f3, I (N2, N4,∆24) (44d)

where the expressions of the functions f1,R , f1, I , f3,R and
f3, I are respectively given by

f1,R (N2, N4,∆24) = Re
{

f1
(
N2e jΘ2F (N2) , N2e jΘ2, N4e jΘ4F (N4) , N4e jΘ4

)
× e− jΘ2

}
, (45)

f1, I (N2, N4,∆24) = Im
{

f1
(
N2e jΘ2F (N2) , N2e jΘ2, N4e jΘ4F (N4) , N4e jΘ4

)
× e− jΘ2

}
, (46)

f3,R (N2, N4,∆24) = Re
{

f3
(
N2e jΘ2F (N2) , N2e jΘ2, N4e jΘ4F (N4) , N4e jΘ4

)
× e− jΘ4

}
, (47)

f3, I (N2, N4,∆24) = Im
{

f3
(
N2e jΘ2F (N2) , N2e jΘ2, N4e jΘ4F (N4) , N4e jΘ4

)
× e− jΘ4

}
, (48)

involving the argument difference∆24 = Θ2−Θ4. Combining
Eqs. (44a-44d), system of Eqs. (44) can be reduced to the
following forms

g(N2)
∂N2
∂τ
= fN2 (N2, N4,∆24) (49a)
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g(N2)
∂Θ2
∂τ
= fΘ2 (N2, N4,∆24) (49b)

g(N4)
∂N4
∂τ
= fN4 (N2, N4,∆24) (49c)

g(N4)
∂Θ4
∂τ
= fΘ4 (N2, N4,∆24) , (49d)

and finally

g(N2)
∂N2
∂τ
= fN2 (N2, N4,∆24) (50a)

g(N4)
∂N4
∂τ
= fN4 (N2, N4,∆24) (50b)

g(N2)g(N4)
∂∆24
∂τ
= f∆24 (N2, N4,∆24) , (50c)

where

f∆24 (N2, N4,∆24) =
g(N4) fΘ2 (N2, N4,∆24) − g(N2) fΘ4 (N2, N4,∆24) , (51)

and
g(X ) =

H ′(X )
2

. (52)

From Eqs. (50), it is possible to detect fixed points and
folded singularities.

Fixed points. The (regular) fixed points of Eqs. (50),{
Ne
2 , Ne

4 ,∆
e
24

}
, are defined by

fN2

(
Ne
2 , Ne

4 ,∆
e
24

)
= 0 (53a)

fN4

(
Ne
2 , Ne

4 ,∆
e
24

)
= 0 (53b)

f∆24
(
Ne
2 , Ne

4 ,∆
e
24

)
= 0 (53c)

g(Ne
2 ) , 0 (53d)

g(Ne
4 ) , 0. (53e)

Since 0 < ε � 1, fixed points computed from Eqs. (53)
corresponds to fixed points of the real RFSF (23). The ex-
pression of these fixed points are obtained from Eq. (32)

ne
1 =

√
H (Ne

2 ) (54a)

ne
2 = Ne

2 (54b)

ne
3 =

√
H (Ne

4 ) (54c)

ne
4 = Ne

4 (54d)
δe21 = − arg (F (N2)) (54e)
δe23 = ∆

e
24 − arg (F (N4)) (54f)

δe24 = ∆
e
24. (54g)

Stability of the fixed points can now be found by looking
the sign of the eigenvalues real parts of the Jacobian matrix
of the vector function F3 (see Eq. (23)) evaluated at

Xe =
[
ne
1 ne

2 ne
3 ne

4 δ
e
21 δ

e
23 δ

e
24

] t
. (55)

Folded singularities. The system of Eqs. (50) is not de-
fined on the folded singularities defined in Sect. 5.2 because
the system is singular on these points. Introducing, the desin-
gularized super-slow subsystem, which is obtained using the
time rescaling τ → τ′g(N2)g(N4)

∂N2
∂τ′
= g(N4) fN2 (N2, N4,∆24) (56a)

∂N4
∂τ′
= g(N2) fN4 (N2, N4,∆24) (56b)

∂∆24
∂τ′

= f∆24 (N2, N4,∆24) , (56c)

one can notice that the folded singularities (here denoted{
N s
2 , N s

4 ,∆
s
24

}
) can be also defined as the fixed points of

the desingularized super-slow subsystem (56) (see for exam-
ple [Desroches et al., 2012]). Since g

(
Xm/M

)
= 0 (where

Xm/M denotes indistinctly XM or Xm) and looking at the
definition of the function f∆24 (see Eq. 51), folded singulari-
ties are defined from (56) by

{
N s
2 , N s

4 ,∆
s
24

}
=

{
Xm/M, Xm/M

}
, ∀∆24. (57)

6 Exploitation of theoretical results and dis-
cussion

6.1 Explanation of the observed responses

The existence of an S-shaped CM (i.e. the presence of folded
singularities on which the stability of the CM changes) allows
to explain the three steady-state regimes of the RHM+NES (6)
observedwhen its trivial solution is unstable, namely: Mitiga-
tion through Periodic Response, Mitigation through Strongly
Modulated Response (SMR) and No mitigation.

A fixed point of the RedM is reached. These situations
corresponds to a periodic solutions of the RHM+NES which
may correspond to either mitigation through Periodic Re-
sponse or No mitigation of the instability (see Sect. 4).
Indeed, the bifurcation diagram of the super-slow subsys-
tem (50) with respect the variables N1 (see Fig. 7(a)) and N3
(see Fig. 7(b)) highlights two ranges of σ in which stable
fixed points are encountered (see Fig. 7(a)):

• Domain 1: 0.31 . σ . 0.72,

• Domain 2: σ & 0.93.

The comparison with the bifurcation diagram of the
RPS (7)4 (see also Fig. 7) allows to obtain to following con-
clusion: if a stable fixed point is reached in the domain 1,
mitigation through Periodic Response are observed and if a
stable fixed point is reached in the domain 2, this time, no
suppression of the instability is observed.

4The bifurcation diagram of the RPS (7) is also obtained computing the
stability of the non trivial fixed points of its slow-flow expanded in fist-order
Taylor series around ε = 0.
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Relaxation oscillations. The S-shape of the CM sug-
gests also the possible existence of relaxation oscillations
([Grasman, 1987]): after reaching of fold singularity
(XM,YM ) (in the (N2, N1)-plane or in the (N4, N3)-plane),
the system jumps to (Xu,YM ) , which is followed by a
super-slow evolution of the trajectory of the system (in the
stable domain of the CM) until it reaches (Xm,Ym ). After
another jump and a super-slow evolution (the stable domain
of the CM), the trajectory returns to (XM,YM ) (see Fig. 6).
Such scenario of relaxation oscillations for the slow-flow
can explain the existence of Strongly Modulated Responses
([Gendelman et al., 2010, Gendelman and Bar, 2010,
Starosvetsky and Gendelman, 2008]) (SMR) for the RefM.
Note that if µ > 1/

√
3, the S-shape nature of the CM is lost

and therefore relaxation oscillations are not possible.

6.2 Prediction of the steady-state response regimes and
limitation of the local linear stability analysis of the
slow-flow

The aim of this section is to predict, for a given set of parame-
ters, the nature of the resulting steady-state response regimes
of the RHM+NES (6). The prediction is performed check-
ing first the local stability property of the trivial equilibrium
point (see Sect. 3), this allowed to predict the appearance of
Complete suppression of the instability. Then, if the trivial
solution is unstable, we intent to discriminate the three other
steady-state response regimes analyzing the local stability of
the fixed points of the slow-flow (see Sect. 5).

To illustrate the prediction method and highlight its limi-
tation, the study is restricted to a one parameter dependent
system, namely the detuning parameter σ. To simplify the
presentation of the method (but without limiting its gener-
ality), the set of parameters (10) has been chosen to allow a
continuous evolution of the nature of the steady-state response
regimes when the parameter σ increases (see Fig. 8). In this
case, the goal is to find the values σ1, σ2 and σ3 which sepa-
rate the regions of existence of the four steady-state response
regimes.

From the simple local stability analysis of the trivial equi-
librium performed in Sect. 3, it is possible to obtain a theoret-
ical value of σ1 (denoted σth

1 ), this is the difference between
the Hopf bifurcation point of the system without and with
NES (see Eq. (12)): σth

1 = 0.31.
Fig. 9 shows the bifurcation diagram deduced from local

stability analysis of the super-slow subsystem (50) performed
in Sect. 5 (Fig. 9(a) with respect to the variables N2 et N4 and
Fig. 9(b) with respect to the argument difference ∆24). From
this analysis, a theoretical value σth

2 of σ2 and a lower σth
3,l

theoretical values of σ3 can be deduced. Here, lower values
mean that it is sure to obtain SMR mechanism if σ < σth

3,l .
However, if σ > σth

3,l , it is not possible to conclude if SMR or
no mitigation mechanisms are encountered. The theoretical
value σth

2 is obtained as the first intersection between the
bifurcation diagram of the super-slow subsystem (50) with
respect the variables N2 or N4 and the line N2 = N4 = XM .
In Fig. 9(a), one can notice that the bifurcation diagram with
respect to the variables N2 is the first to cross the line N2 =
N4 = XM at σ = 0.73 which is the theoretical value of
σth
2 . At this point, relaxation oscillations of the slow-flow

are observed. Before the appearance of the second branch
of stable fixed points at σ ≈ 0.93, relaxation oscillations
phenomenon is the only possible regime, this defines the
lower theoretical value σth

3,l .
The fact that only a lower theoretical value of the

σ3 can be obtained highlights the limitation of the
method to predict unequivocally all the steady-state re-
sponse regimes, this is due to the dimensionality of
the super-slow flow subsystem. Indeed, in works in
which the super-slow flow subsystem can be reduced to
a one-dimensional system ([Domany and Gendelman, 2013,
Gendelman et al., 2010, Gendelman and Bar, 2010]), global
structure of possible response regimes can be deduced di-
rectly from the local stability analysis of the slow-flow. Here
the super-slow subsystem is a three-dimensional system. In
this case, determination of the basin of attraction of each solu-
tion (fixed points and relaxation oscillations)would be needed
to conclude about the nature of the steady-state regimes, this
may be subject of future work.

7 Additional analysis using numerical simula-
tions and benchmark of theoretical results

In this section numerical simulations are first performed in
order to explore more accurately the possible steady-state
response regimes. Secondly, these numerical simulations
allow to study the validity of the theoretical results presented
in Sect. 6.2.

Figs. 10 to 14 present the same type of numerical simula-
tions obtained using the set of parameters (10) and for five
different values of σ. In each figure, it is depicted:

• Figs. (a), (b), (c) and (d) compare numerical simulations
of the RHM+NES written using barycentric coordinates
(see Eq. (17)) and numerical simulations of the slow-
flow (21).

• Figs. (e) and (f) compare the Critical Manifold (N1 =√
H (N2) and (N3 =

√
H (N4), see Eq. (32)) with numer-

ical simulations of the slow-flow.

• Figs. (g) and (h) compare the bifurcation diagram ob-
tained from Eq. (53) with the trajectory of the slow-flow
in the 3D N2, N4,∆24-space. Two views are used to make
the reading of the 3D graph easier.

In Fig. 10 the chosen value of σ = 0.2 is smaller than
σth
1 = 0.31 and Complete suppression is actually observed.

In Fig. 11 the chosen value of σ = 0.6 is between σth
1 = 0.31

and σth
2 = 0.73 andMitigation through Periodic Response is

actually observed. In Fig. 12 the chosen value of σ = 0.9 is
between σth

2 = 0.73 and σth
3,l = 0.93 and Mitigation through

StronglymodulatedModulatedResponse is actually observed.
We can notice in this example that relaxation oscillations of
the slow-flow which explain the strongly modulated response
of the RHM+NES are observed only in the N1, N2-plane and
only small oscillation are observed in the N3, N4-plane (see
Figs. 12(e) and 12(f)). We call this SMR regime: semi-SMR
regime. The value of σ must be larger to observe relaxation
oscillations in both N1, N2-plane and N3, N4-plane (see Fig. 13
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obtained usingσ = 1.3). We call this SMR regime: full-SMR
regime. Finally, in Fig. 14, the results are obtainedwithσ = 2
and No mitigation is observed.

To observe more precisely the boundaries between the dif-
ferent observed regimes, the amplitudes of the steady-state
responses of the numerical simulations of the RHM+NES
written using barycentric coordinates (see Eq. (17)) and nu-
merical simulations of the slow-flow (21) are plotted and
compared to the theoretical bifurcation diagram in Fig. 15.
Following conclusion can be made from the observation of
these figures:

Comparison between theoretical and numerical bound-
aries values of σ. The better figure to perform this com-
parison is Fig. 15(b). We can observe that the transition
from Complete suppression to Mitigation through Periodic
Response and the transition fromMitigation through Periodic
Response toMitigation through StronglyModulatedResponse
is well predicted by σth

1 = 0.31 and σth
2 = 0.73 respectively.

Indeed, one can see that the steady-state amplitudes of the nu-
merical simulations (for both RHM+NES and the slow-flow)
follow the amplitudes predicted by the bifurcation diagram
until σ = σth

2 . At this value a jump of the steady-state ampli-
tudes of the numerical simulations is observed corresponding
to the transition from periodic regimes to SMR.

Not predicted boundaries values ofσ. The transition from
Mitigation through Strongly Modulated Response to No mit-
igation and from semi-SMR regime to full-SMR regime have
not theoretical values. However, they can be found on numer-
ical simulations. Observing for example Fig. 15(b), one can
see that the transition fromMitigation through Strongly Mod-
ulated Response to No mitigation of the dynamic instability
appears at σ = 1.63 (denoted σnum

3 on the graph). The tran-
sition from semi-SMR regime to full-SMR regime is observed
on Fig. 15(d), it appears at σ = 1.08.

Prediction of the steady-state amplitudes The theoretical
bifurcation diagram is obtained from the super-slow subsys-
tem (see Eq.(53)). We can first see the good agreement
between the theoretical bifurcation diagram and the steady-
state amplitudes measures on numerical simulation of the
slow-slow when the steady-state regime is a periodic regime,
i.e. when σ < σth

2 and σ > σnum
3 . Moreover the theoretical

values
√

H (Xu ) = YM and Xu (see Fig. 6) give an approx-
imated prediction of maximum amplitudes when full-SMR
occurs, i.e. for 1.08 < σ < σnum

3 .

Comparison betweenRHM+NES and the slow-flow. The
comparison between numerical simulations of RHM+NES
and the slow-flow is important because the capacity of the
slow-flow to reproduce the behavior of the RHM+NES re-
flect the quality of all mathematical developments which de-
rive from (even those not presented in this paper). Observing
Fig. 15, the comparison shows that the slow-flow well pre-
dicts the boundary values of σ. The slow-flow well predicts
also the steady-state amplitudes except for periodic regimes
in domain 2 (see Fig. 7) corresponding toNomitigation of the

dynamic instability. Indeed, one can observe a significant un-
derestimation of the steady-state amplitude (here especially
for the variable N2, see Fig. 15(b)). However, in the context
of the control of the instability the most pertinent values to
predict are the boundaries, in particular the boundary σ3 cor-
responding to the transition fromMitigation through Strongly
Modulated Response to No mitigation of the instability. The
fact that the slow-slow can describe this transition motive us
to continue this research in order to find a theoretical value
of σ3.

8 Conclusion

We studied the capacity of Nonlinear Energy Sinks (NES)
to mitigate vibrations due to mode-coupling instability in
braking systems. To achieve that, a simple two degree of
freedommodel which can reproduce mode-coupling instabil-
ity (i.e. the well-known Hultèn’s model) was coupled to two
ungrounded NES.

To analyze the steady-state response regimes, the system
is partitioned in slow-fast dynamics using complexification-
averaging approach. The presence a small dimensionless pa-
rameter related to themass of theNES in the slow-flow system
implies that it involves two "slow" complex variables and two
”super-slow” complex variables. The "super-slow/slow" na-
ture of the system allowed us to usemultiple scale approach to
analyze it. In particular, theCriticalManifold of the slow-flow
was determined. Its S-shape (i.e. involving two folded sin-
gularities) and the associated stability properties provide an
analytical tool to explain the existence of three regimes: peri-
odic response regimes, stronglymodulated responses regimes
and no mitigation regimes that appear when the trivial solu-
tion is unstable. A complete suppression regimes is also
observed and it is studied directly on the full system.

The boundary values of the friction coefficient corre-
sponding to the transition from complete suppression regime
to periodic response regimes and from periodic response
regimes to strongly modulated responses are predicted an-
alytically. However the prediction of the boundary value
between strongly modulated responses and no mitigation re-
sponses is not performed, this highlights that global structure
of possible response regimes can not be deduced from local
stability analysis of a super-slow flow subsystem with dimen-
sion larger than one. The prediction of this boundary value
could be important in the context of engineering applications.
That is why advanced mathematical procedure will be devel-
oped to predict this boundary.

A Link between the periodic solutions of the
RHM+NES and the fixed points of theRFSF

To explain the link between the periodic solutions of the
RHM+NES (on the form of (17)) and the fixed points of the
RFSF (23), let’s consider a periodic steady-state regime of
the system (17) defined by

u1(t) = U1 sin
(
(1 + e)t + θu1

)
(58a)

v1(t) = V1 sin
(
(1 + e)t + θv1

)
(58b)
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u2(t) = U2 sin
(
(1 + e)t + θu2

)
(58c)

v2(t) = V2 sin
(
(1 + e)t + θv2

)
(58d)

whereU1, V1,U2, V2, θu1 , θv1 , θu2 , θv2 and e are real constant.
e characterizes the error made using 1 as fast component
frequency in the complexification-averaging method with the
assumption that e � 1.
Using Eqs. (18) and (20), the steady-state regime described

by (58) is written in terms of complex slow modulated am-
plitude φi (with i ∈ [1, 4])

φ1 = (u̇1 + ju1) e− j t

= U1

(
1 +

e
2

)
e j

(
et+θu1

)
+ t.h.f, (59a)

φ2 = (v̇1 + jv1) e− j t

= V1

(
1 +

e
2

)
e j

(
et+θv1

)
+ t.h.f, (59b)

φ3 = (u̇2 + ju2) e− j t

= U2

(
1 +

e
2

)
e j

(
et+θu2

)
+ t.h.f, (59c)

φ4 = (v̇2 + jv2) e− j t

= V2

(
1 +

e
2

)
e j

(
et+θv2

)
+ t.h.f, (59d)

where "t.h.f" means term of higher frequency.
Using the polar coordinates ni (t) and θi (t) (with i ∈ [1, 4])

defined by Eq. (22), Eqs. (59) become

n1 = U1

(
1 +

e
2

)
≈ U1 (60a)

n2 = V1

(
1 +

e
2

)
≈ V1 (60b)

n3 = U2

(
1 +

e
2

)
≈ U2 (60c)

n4 = V2

(
1 +

e
2

)
≈ V2 (60d)

δ21 = θ2 − θ1 = θv1 − θu1 (60e)
δ23 = θ2 − θ3 = θv1 − θu2 (60f)
δ24 = θ2 − θ4 = θv1 − θv2 . (60g)

Comparing Eqs. (59) and (60) we understand why the ar-
gument differences must be used. Indeed, even if e � 1,
the error e caused a linear growth of the arguments of the
complex amplitude φi , which are therefore not stationary.
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(a) Complete suppression

(b) Mitigation: PR

(c) Mitigation: SMR

(d) No suppression

Figure 5: Comparison between time series x1(t∗) and x2(t∗) resulting from the numerical integration of the RHM+NES (Eqs. (6)) (solid
black line) and x1(t∗) and x2(t∗) resulting of the numerical integration of the RPS (Eqs. (7)) (solid gray line). Set of parameters (10) is used
with (a) σ = 0.2, (b) σ = 0.6, (c) σ = 1.3 and (d) σ = 2. On the left, the position of each simulation in the graph representing the real parts
of the eigenvalues with respect to γ is shown.
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Figure 6: Critical Manifold (CM). Following parameters are used:
α = 7 and µ = 0.4.
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(a) (b)

Figure 7: Comparison between the bifurcation diagrams of the slow-flow of the systemwithout NES (RPS (7)) and with NESwhich is obtained
from the analysis of the super-slow subsystem (50); with respect to the variable N1 (a) and to the variable N3 (b). Set of parameters (10) is
used.

Figure 8: Outline schematic showing the definition of the boundary
values σ1, σ2 and σ3 which separate the regions of existence of the
four steady-state response regimes.
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(a) (b)

Figure 9: Bifurcation diagram of the slow-flow of the system with NES obtained from the analysis of the super-slow subsystem (50); with
respect to the variable N2 and N4 (a) and to the variable ∆24 (b). Set of parameters (10) is used.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10: (a), (b), (c) and (d) compare numerical simulations of the RHM+NES written using barycentric coordinates (see Eq. (17)) (solid
grey line) and numerical simulations of the slow-flow (21) (solid black line). (e) and (f) compare the Critical Manifold N1 =

√
H (N2) and

N3 =
√

H (N4) (dashed grey line) (see Eq. (32)) with numerical simulations of the slow-flow (solid black line). (g) and (h) compare the
bifurcation diagram obtained from Eq. (53) (black and grey points for stable and unstable branches respectively) with the trajectory of the
slow-flow (solid red line) in the 3D N2, N4,∆25-space, The blue point shows the initial condition and two views are used to make the reading
of the 3D graph easier. Set of parameters (10) is used and σ = 0.2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11: Same caption as for Fig. 10. Set of parameters (10) is used and σ = 0.6.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12: Same caption as for Fig. 10. Set of parameters (10) is used and σ = 0.9.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13: Same caption as for Fig. 10. Set of parameters (10) is used and σ = 1.3.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14: Same caption as for Fig. 10. Set of parameters (10) is used and σ = 2.
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(a) (b)

(c) (d)

Figure 15: Comparison between steady-state amplitudes obtained from numerical simulations of the RHM+NES written using barycentric
coordinates (see Eq. (17)) (blue squares) and from numerical simulations of the slow-flow (21) (red circles). Set of parameters (10) is used.
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