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1. Introduction

Modelling membrane separation processes and well predicting process variables can reduce
the amount of tests, the costs and time usually consumed in pilot scale experiments. For these
purposes, numerical simulation is very convenient as it combines rapidity, low cost and
relatively easy implementation. The current work consists on developing a predictive numerical
model for applications ranging from reverse osmosis to nanofiltration. The model does not use
empirical correlations or experimental transfer coefficients: it depends only on solution physical
properties, membrane characteristics and operating conditions. Validation is made by
comparison to results found in scientific publications.

2. Methods

The present model considers a two-dimensional steady laminar Newtonian flow commonly
encountered in plane channels of membrane modules operating in the cross-flow filtration
mode. It follows the analytical works performed by Haldenwang et al. [1, 2] on the
hydrodynamics combined with solute transfer (concentration polarization) for a flow in a channel
presenting a leakage through its permeable walls. In addition to these phenomena, this
numerical model considers osmotic pressure effects and a variable rejection rate along the
membrane surface. The solvent flux through the membrane follows Darcy law and the solute
transport within the membrane is considered to follow the solution-diffusion model [3]. The
coupled Navier-Stokes and solute conservation equations are all conveniently rewritten in terms
of non-dimensional parameters under the assumption of Prandtl hypothesis (axial diffusion
negligible compared with transverse diffusion) and simultaneously solved by a second order
finite difference scheme.

3. Results

Main results concern the prediction of permeate fluxes, intrinsic rejection rates and transverse
concentration profiles.

Geraldes et al. [4] experimentally validated a predictive model using aqueous solutions and
commercial nanofiltration membranes in a plane channel module. When applied to the same
conditions, the model presented in this work exhibits a good agreement with experimental
results for permeate fluxes as a function of transmembrane pressure as shown in Fig. 1,
particularly in the case where other osmotic pressure laws are employed instead of van’t Hoff
law [4]. Comparisons with all polyethylene glycol (1000 g.mol'1) experimental values in [4] yield
a maximal relative error of 23% with a third-degree polynomial osmotic pressure law and of 70%
with van’t Hoff law. For sucrose, 5,9% and 12,3% respectively. Finally, for Na,SO,, errors are of
the order of 7,5% for a power law and of 18,5% for van’'t Hoff law. Pure water flux is estimated
at a 6,2% maximal error.
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Fig. 1. Comparison of predicted and
experimental permeate fluxes [4] as
a function of the operating pressure
for a polyethylene glycol (1000g.mol
1) aqueous solution.
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Fig. 2. Comparison of predicted and
experimental intrinsic rejection rates
[71 as a function of the operating
pressure for a NaCl aqueous
solution.

A good qualitative agreement is found with the experimental observations of permeate flux
made by Zhou et al. [5] in the RO treatment of a NaCl solution in a spiral-wound module. From
this finding, we also infer that a spiral-wound module channel may indeed be likened to a plane
channel.

Fernandez-Sempere et al. [6] visualized and quantified the concentration polarization layer in a
plane channel module during RO treatment of aqueous salt solutions through Digital
Holographic Interferometry. For this case too, the model reproduces with considerable
agreement the transverse concentration profile.

Geraldes et al. [7] calculated intrinsic rejection rates as functions of transmembrane pressure by
CFD by making use of experimental apparent rejection coefficients and permeation rates in a
plane channel configuration. As shown in Fig. 2, the present model well fits these results
(maximum relative error of 2%). For Na,SQO,, sucrose and polyethylene glycol (1000 g.mol'1),
the model yields a rejection rate of near 100% (as in [7]). In all these simulations, osmotic
pressure was considered to follow a power law.

4. Discussion

Using a well defined set of easily accessible parameters, the current model proves to be able to
well predict permeate fluxes, concentration polarization profiles and intrinsic rejection rates in
reverse osmosis and nanofiltration.

It is also an adaptable model. Any theoretical or empirical osmotic pressure law may be
employed, broadening the model's range of applicability to more specific solutes and yielding
better results. This represents an important advantage given that the classical van’t Hoff law is
primarily valid for dilute solutions.

The model may also be regarded as a practical tool for membrane selection with respect to its
expected performance as it allows to readily evaluate and quantify the impact of solute (and
solvent) permeability over virtually all process variables.

Lastly, applications for which the reduction in the amount of experimental tests is a critical
constraint could particularly benefit from this predictive model, as it may be the case for
dangerous, scarce or expensive solutions.
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