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Determination of material models for arterial walls from uniaxial
extension tests and histological structure

Gerhard A. Holzapfel

An approach is proposed that allows the determination of material models from uniaxial tests and histostructural data including

on of the tissue. A combination of neo Hookean and Fung type strain energy functions is utilized, and inequality
constraints imposed on the constitutive parameters are derived providing strict local convexity and preferred fiber orientations. It is
shown how the Fung type model gets a pseudo structural aspect inherent in the phenomenological model; a correlation between the
fiber structure and the parameters of the Fung type model is explicitly provided. In order to apply the proposed approach, quasi
static uniaxial extension tests of preconditioned prepared strips from the intima, media and adventitia of a human aorta with non
atherosclerotic intimal thickening are acquired in axial and circumferential directions; structural information from histological
analyses for each aortic tissue are documented. Data reveal a remarkable thickness, load bearing capacity and stiffness of the intimal

samples in comparison with the media and adventitia. Constitutive parameters for each aortic tissue layer are determined by solving
the constrained problem using a penalty function method; a new approach for the estimation of appropriate start values is proposed.
Finally, the predictivity and efficacy of the material models is shown by comparing model data with data from the uniaxial extension
tests and histological image analyses.

Soft biological tissue; Artery; Aorta; Uniaxial extension test; Histology; Fiber reinforced material; Constitutive model; Nonlinear 
constrained optimization
1. Introduction

Uniaxial extension tests of soft biological tissue strips
are not sufficient for the determination of multi-
dimensional (two or three-dimensional) material models
that aim to predict the material behavior in physiolo-
gical loading states. One essential reason for this is that
the ‘experimental paths’ of uniaxial extension tests with
respect to the in-plane strain components do not cover
the physiological domain. Fig. 1, for example, shows a
lot indicating the ‘experimental paths’ for
nsion of two arterial strips with orientations
o each other (x1 denotes the circumferential
and x2 the axial directions of an artery, and convex
contours represent states of constant energy of a
hypothetical strain-energy function). In addition,
Fig. 1 shows the physiological strain domain (indicated
by the grey area), which is typically covered by an artery
under physiological loading conditions, i.e. cyclic infla-
tion, axial extension (and twist), leading to positive
Green–Lagrange strains E11 and E22 (and stresses) in the
circumferential and axial directions. As can be seen, the
strain domain in a physiological loading state, does not
coincide with the experimental paths obtained from
uniaxial extension tests. Since data are provided only for
a small domain in the strain space, fitting of multi-
dimensional constitutive (material) models to uniaxial
data may lead to ill-conditioned equations, slow
convergence rates and non-unique solutions. In other
1



Fig. 1. Schematic plot indicating the Green Lagrange strains E11 and

E22 in the (x1; x2) plane, where x1 denotes the circumferential and x2

the axial directions of an artery. The convex contours represent states

of constant energy of a (hypothetical) strain energy function. Experi

mental paths for uniaxial extension of two strips with orthogonal

orientations are shown by solid and dashed thick lines.

Table 1

Model assumptions

Structure Isotropic (soft) ground matrix

Two embedded families of (stiff) collagenous fibers

Symmetrical fiber arrangement in the (x1; x2) plane

Fiber angles j and j
Homogeneous composition

Material Strain energy function

C ¼ ĈisoðE11;E22Þ þ ĈorthoðE11;E22Þ; a possible

choice for the mechanical response of arterial walls
words, various sets of constitutive parameters may
provide equally good representations of uniaxial data
but predict material responses for physiological loading
states that differ significantly. This problem can be
overcome by preparing tissue samples amenable to
multi-axial loading, i.e. patches and cylindrical tubes,
and simulating in vivo loading states by means of
appropriate testing equipment. Frequently, however,
such equipment and skilled operators are not available.
Moreover, and even more importantly, for many
biological specimens such as components of diseased
arteries, only (small) strip preparations are feasible. For
such cases, consideration of additional information
coming, for example, from structural investigations,
may help to reduce the variability and to improve the
predictive capability of constitutive models.

The objective of this paper is to present an approach
that allows reasonable determination of material re-
sponses for arterial walls that uses data from uniaxial
extension tests. Methods used are based on the constitu-
tive theory of finite hyperelasticity, that utilize a
combination of neo-Hookean and Fung-type strain-
energy functions. The basic idea of the proposed approach
is to impose physically and structurally motivated
constraints on the constitutive parameters, and to present
a pseudo-structural aspect inherent in the phenomenolo-
gical Fung-type model, i.e. (mean) orientation of collagen
and smooth muscle components. For the purpose of
comparison, structural information from histological
analyses and uniaxial extension tests for the intima, media
and adventitia of one human aorta with non-athero-
sclerotic intimal thickening are acquired, and used to
show the predictivity and efficacy of the material model.
2. Methods

2.1. Theoretical framework

The considered type of flat arterial tissue layer is
assumed to be a fiber-reinforced material with relatively
stiff collagenous fibers embedded in a homogeneous
isotropic (soft) ground matrix. The sheet is embedded in
a reference frame (right-handed) of coordinate axes with
a fixed set of orthonormal basis vectors fe1; e2; e3g.
Suppose that the axes are aligned with the major faces of
the sheet and that the fibers lie in the plane spanned by
the vectors e1 and e2 (notation is adopted from
Holzapfel (2000) throughout the paper). The collage-
nous fibers are organized in two families, which are
symmetrically arranged with respect to the x1- and x2-
axes and which have the same stiffness (x1 and x2 denote
the circumferential and the axial directions of the artery,
respectively). The fiber families are assumed to have
preferred orientations characterized by the (mean) fiber
angles j and �j with respect to the x1-axis. It is these
orientations that render the material properties ortho-
tropic. The structural model assumptions are summar-
ized in Table 1. This particular ‘histo-structural’ design
provides the typical orthotropic response observed in a
large number of soft biological tissues, such as layers of
tube organs (blood vessels, esophagus, gut, ureter, etc.),
serous membranes (pericardium, pleura, peritoneum)
etc. Note that it is assumed that the orientations of the
axes x1 and x2 are known a priori.
2.1.1. Kinematics of uniaxial extension tests

Consider two rectangular strips cut out from the flat
arterial tissue layer undergoing uniaxial tensile testing.
2



One strip is aligned with the x1-axis, while the other is
aligned with the x2-axis. In-plane components E11 and
E22 of the Green–Lagrange strain tensor E and the
(tensile) component of the second Piola–Kirchhoff stress
tensor S is computed from original data. Uniaxial test
data appear as characteristic ‘experimental paths’ in the
(E11;E22)-plane, as can be seen in Fig. 1. For uniaxial
loading the components of the stress tensor that are
oriented in the transverse direction of the tensile axis are
zero. Therefore, the experimental path must cross the
contours of an associated strain-energy function at
positions where the transverse component of the second
Piola–Kirchhoff stress tensor vanishes.

2.1.2. Constitutive model

The passive mechanical behavior of the considered
type of material is characterized by a strain-energy
function per unit reference volume, C say, according to
Holzapfel and Weizsäcker (1998), i.e.

C ¼ CisoðEÞ þCorthoðEÞ, (1)

where Ciso is an isotropic contribution to C, which
governs mainly the initial stiffness of the artery wall
represented by the elasticity of the non-fibrous sub-
stances (extracellular aqueous ground substance matrix
containing proteoglycans and non-cytoskeletal intracel-
lular components). The strain energy Cortho denotes an
orthotropic contribution which governs the much higher
stiffness at large strains represented by the randomly

oriented collagen (primarily of type I in the adventitia
and intima, and of type III in the media (von der Mark,
1981)) and aligned components of collagenous fibers.

As a particular choice for C, the study of Holzapfel
and Weizsäcker, 1998, proposed a combined polyno-
mial-exponential form. They suggest to use the neo-
Hookean model Ciso ¼ mðI1 � 3Þ=2 for the isotropic
contribution, with the stress-like material parameter
m40 (i.e. the shear modulus), and the first invariant
I1 ¼ trC ¼ 2 trEþ 3 of the right Cauchy–Green tensor
C ¼ 2Eþ I, with the unit tensor I.

Assuming incompressibility (det C ¼ 1), the strain-
energy function ĈðE11;E22Þ can be expressed in terms of
the Green–Lagrange strain components E11 and E22.
Thus, Ĉ ¼ ĈisoðE11;E22Þ þ ĈorthoðE11;E22Þ (see Table 1),
with

Ĉiso ¼
m
2
f2ðE11 þ E22Þ þ ½ð2E11 þ 1Þð2E22 þ 1Þ� 1 � 1g.

(2)

For the orthotropic contribution Ĉortho we adopt an
exponential ‘Fung-type’ strain-energy function which
incorporates the four constitutive parameters C, c11,
c12, c22 (Fung et al., 1979; von Maltzahn et al., 1984; see
Holzapfel et al. (2000) for a discussion and a comparative
study with other material models, and Holzapfel
et al. (1996) for a detailed numerical realization
of Ĉortho). Thus,

Ĉortho ¼ C½expðQÞ � 1�,

Q ¼ c11E
2
11 þ c12E11E22 þ c22E

2
22, ð3Þ

where C40 is a stress-like material parameter, whereas
the other three are non-dimensional parameters. Con-
sistent with the assumptions about the fiber orientations,
Ĉortho is a two-dimensional model expressed in terms of
E11 and E22. It is a well-established type of strain-energy
function describing transverse isotropy in plane, which is
frequently used for the representation of nonlinear
anisotropic soft biological tissue responses.

Since we may set the stress component S33 ¼ 0,
without loss of generality, we have simply the (non-
vanishing) second Piola–Kirchhoff stresses (see, for
example, Ogden, 2003)

S11 ¼
qĈðE11;E22Þ

qE11
; S22 ¼

qĈðE11;E22Þ

qE22
. (4)

Formulation (3) is inherently limited to specific
kinematics, for example, it is not suitable for analysis
of the through-thickness stress distribution in an artery
or for the treatment of shearing deformations. Note,
however, that for isochoric deformations without
shearing, no approximation is involved in Eq. (3), and
therefore the model is three-dimensional despite its two-
dimensional form (see also Section 4.2.1 in Holzapfel et
al. (2000)). Model (3) can be used to simulate the
deformation in special cases, such as that corresponding
to simple tension, as studied in the present work, and
inflation of an artery regarded as a thin-walled (or thick-
walled) circular cylindrical tube.

2.1.3. Inequality constraints

At this point the common approach is to fit the
chosen constitutive model to experimental data utilizing
nonlinear regression analysis. For the case of uniaxial
data, however, the solutions (constitutive parameters)
obtained will be questionable, as mentioned in the
Introduction. Determination of appropriate inequality
constraints restricts the solutions to a small and mean-
ingful domain in the ‘parameter space’, here spanned by
the set fm;C; c11; c12; c22g of constitutive parameters.

In the following physically and structurally motivated
constraints are derived by using the notion of strict local
convexity of the strain-energy function Ĉ, which means
that the matrix containing the second derivative of Ĉ
with respect to E11 and E22 is positive definite. This
implies that the contours of constant Ĉ are convex, and,
in particular, that the projections of these contours in
the (E11;E22)-plane are convex, as can be seen in Fig. 2.
Convexity is a fundamental physical requirement which
ensures physically meaningful and unambiguous me-
chanical behavior also important from the point of view
of numerical computations. It precludes undesirable
3
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Fig. 2. Contour plots representing states of constant energy of the

function (3), as proposed by Fung et al. (1979), with a set of material

parameters chosen to illustrate convexity. The eigenvectors with slopes

k1 and k2 ¼ 1=k1 are indicated by dash dotted lines. Roman

numbers I IV denote the quadrants of the (E11;E22) plane.
material instabilities (for a general discussion of
convexity and material stability in hyperelasticity the
reader is referred to, for example, Ogden (1997), for an
application to models in arterial wall mechanics see the
comparative study (Holzapfel et al., 2000) and the
lecture note (Ogden, 2003)).

Hence, considering Eq. ð3Þ2, the contours may be
obtained by setting Q ¼ const. Because of the quadratic
nature of Q we may write Eq. ð3Þ2 in a matrix form, with

the eigenvalues g1;2 ¼
1
2
½c11 þ c22 � c212 þ ðc11 � c22Þ

2
q

�,

g14g2, of the Hessian matrix. If we require that the
Hessian matrix is positive definite, then all eigenvalues
are (real and) positive, which implies the inequality

4c11c22 � c21240. (5)

This inequality dictates that c11 and c22 are either
positive or negative. Since negative values of c11 and c22
lead to negative stress components for tensile strains we
require that

c1140; c2240. (6)

Restrictions (5) and (6) imposed on the material
parameters of the two-dimensional Fung model (Fung
et al., 1979) were first provided in Holzapfel et al. (2000)
(compare with Section 4.2.3 therein). Basically, inequal-
ity (5) allows positive and negative values for c12. It
turns out, however, that only a positive value is
consistent with mechanics, as briefly shown. The
eigenvector (principal axis) related to the larger eigen-
value g1 is located in the first and third quadrants of the
(E11;E22)-plane (see Fig. 2), which is the domain for
biaxial extension (first quadrant) and compression (third
quadrant), respectively. Only then the stress components
are positive for all biaxial extensions, and negative for
all biaxial compressions. The slope k1 ¼ E22=E11 of the
eigenvector related to g1 can then be computed by means
of standard algebra. Thus,

k1 ¼
c12

c11 � c22 þ c212 þ ðc11 � c22Þ
2

q , (7)

where the root is nonnegative by definition. The location
of the eigenvector in the first and third quadrants
requires that k1 must be positive. According to Eq. (6)
this is only satisfied if c1240.

Consequently, the two-dimensional exponential
form proposed by Fung et al. (1979) is not convex
for all possible sets of material parameters. Function
(3) is strictly locally convex if and only if certain
restrictions are imposed on the material parameters
(for a summary of the a priori restrictions on the
material parameters see Table 2—‘mechanics’). Hence,
the material parameters cannot be chosen arbitrarily if
convexity of function (3) is desired. Note that in a paper
by Wilber and Walton (2002), it is shown that, for
example, the strong ellipticity condition, crucial in
avoiding certain types of non-physical singularity a
priori, imposes very severe restrictions on the material
constants in the model (3). In fact, these restrictions are
inconsistent with the ability of the model to fit the
experimental data.

We assume now that the slope k1 of one eigenvector
(related to g1) coincides with the slope tanj of the
(mean) direction of one family of collagen (or smooth
muscle component), where the parameter j is the angle
between the (mean) fiber orientation and the circumfer-
ential direction of the artery (for a motivation of this
assumption see the remark at the end of this section).
Thus, we may write

k1 ¼ tanj. (8)

Since the eigenvectors of ellipses are mutually orthogo-
nal the slope k2 of the second eigenvector is �1=k1 (see
Fig. 2). Substituting Eq. (8) in Eq. (7) gives an equation
that relates the constitutive parameters c11, c12 and c22 to
the fiber angle j. After some algebra we deduce that

c12

c11 � c22
¼ tan 2j. (9)

Hence, knowing that c1240 this relation implies
immediately that 0ojop=4 for c114c22, and
p=4ojop=2 for c224c11.

If the distribution of the fiber angles in a tissue is
known from structural investigation, c12 can be re-
4



Table 2

Inequality constraints

Mechanics m40, C40, c1140, c1240, c2240

4c11c22 c21240 (convexity)

Structure tan 2juðc11 c22ÞXc12X tan 2jlðc11 c22Þ

(fiber orientation j, see Eqs. (9) and (10))

c12

c11
c22

Convexity
c22 = 0

c11= 0

Upper fiber angle ϕu

Lower fiber angle ϕl

Parameter
search domain

c12 = 0

Fig. 3. Sketch of the parameter subspace fc11; c12; c22g with related

inequality constraints (compare also with Table 2).
stricted according to

tan 2juðc11 � c22ÞXc12X tan 2jlðc11 � c22Þ, (10)

where jl and ju are appropriate (lower and upper)
limits for the fiber angle (jl and ju could be chosen, for
example, as the mean fiber angle � standard deviation;
Holzapfel et al., 2002). The determined inequality
constraints are summarized in Table 2. They restrict
the ‘search domain’ for the constitutive parameters. The
constraints may be visualized as boundary surfaces in
the ‘parameter space’ or subspaces of it, as illustrated in
Fig. 3.

Note that the slope k1 of the eigenvector characterizes
the path in the (E11;E22)-plane perpendicular to the
surface of constant energy. Clearly, this path is
associated with the maximum fiber stretch lf . For the
type of considered fiber-reinforced model (Table 1), an
analytical expression for the fiber stretch lf in terms of
j is given by the kinematic relation (Holzapfel and
Gasser, 2001)

l2f ¼ l21 cos
2 jþ l22 sin

2 j, (11)

where l1 and l2 are the in-plane stretches related to the
x1- and x2-directions, respectively. They are defined as
the ratios of the actual to the unloaded (referential) in-
plane specimen dimension.

Remark 1. By intuition we would think that collagen
fibers, which somehow ‘reinforce’ biological tissues in
order to bear (higher) loads, naturally grow in that
direction in which the maximum stresses (or strains)
occur. Hence, collagen fiber directions evolve such that
the load-bearing capacity of the tissue is optimized.

In the recent paper, Menzel (2005) developed a
theoretical and computational framework that describes
the remodeling (isotropic and anisotropic growth and
reorientation processes) of biological tissues, considered
as transversely isotropic materials. The author has used
the property that the stored energy in an anisotropic
material takes on an extremum only if the principal axes
of stress and strain coincide (see, for example, the early
work Pedersen, 1989). In Menzel (2005) it is further
shown that the principal axes of stress and strain
coincide if the anisotropy axis shares its direction with
one of the principal strain directions, which motivates to
align the fiber direction with the eigenvector of the strain
(see also Driessen et al., 2004). A few representative
numerical examples illustrate the alignment of the fiber
direction with respect to the predominant principal
strain direction during a certain loading process and
time interval. Note, however, that a stress-based
remodeling concept of the collagen fibers would also
have its merits. The collagen fiber direction would then
be associated with the directions of the two largest
principal (tensile) Cauchy stresses, because it is the high
tensile stress domain in which the collagen fibers are
mainly active. There is still a debate over which is the
superior hypothesis.
3. Example

In order to illustrate the merits of the proposed
approach, the determination of layer-specific constitu-
tive models for a human aorta with non-atherosclerotic
intimal thickening is demonstrated.

3.1. Specimen preparation and uniaxial extension tests

Since the preparations of intact separated aortic
patches or intact (leak-free) tubes of the adventitia,
media and the intima suitable for biaxial tests are
difficult (or in the case of tubes even impossible) to
perform we have prepared strips of aortic tissue. In
particular, an abdominal aorta from a human cadaver
(female, 80 years, primary disease: congestive cardio-
myopathy) was excised during autopsy within 24 h from
death. The vessel exhibited no appreciable disease. The
heterogeneous arterial wall structure was separated
anatomically into its three layers (intima, media,
5



adventitia). From each arterial layer, strip samples with
axial and circumferential orientations were cut out so
that six specimens, two for each layer, were obtained.
Two black colored chips of a straw were glued
transversely in parallel onto the middle part of the
samples to act as gage markers for the axial deformation
measurements. The length/width ratio was about 6 such
that it is most likely that the desired homogeneous
stress–strain state within the measuring range could be
achieved. For representative tissue samples see, for
example, Fig. 4 in Holzapfel et al. (2004a). The strips
underwent cyclic uniaxial extension tests in 0.9% NaCl
solution at 37 �C with continuous recording of tensile
force, gage length and strip width at a constant
crosshead speed of 1mm/min. Gage length and width
were measured optically using a PC-based (CPU 586)
videoextensometer (model ME 46-350, Messphysik)
utilizing a full-image charge-coupled device (CCD)
camera, that allowed automatic gage mark and edge
recognition. The corresponding deformation data were
averaged with respect to the measuring zone and sent to
a data-processing unit in real time. For details on the
customized tensile testing machine the reader is referred
to Schulze-Bauer et al. (2002) and Holzapfel et al.
(2004a). Executing five successive loading cycles pre-
conditioned the samples. Typical (free) sample length
and width were 30mm and 5mm, respectively. Mean
thicknesses of intimal, medial and adventitial samples
Fig. 4. Histological images (3mm thick sections) of an intimal strip, a media

are contrast enhanced). Planar sectioning was performed so that the in plane

lines in the intima and as wavy structures in the adventitia (only the global or

of the adventitial fiber orientations). In the media oblate nuclei of smooth m

orientations and radial positions, indicate preferred orientations of the tissue.

(determination of j is based on additional microphotographs not shown h

staining.
were 0.33, 1.32 and 0.96mm, whereas a customized back
light device was used for measuring the thickness from
the lateral sample contour (Schulze-Bauer et al., 2002).
3.2. Histology

After all tests, the strip samples were inserted into a 4%
buffered formaldehyde solution (pH 7:4) for fixation and
further histological preparation with Elastica van Gieson
(EvG). Specimens were embedded maintaining their
planar geometry and sectioned serially at 3mm in
tangential orientation so that the fiber orientations in
the (x1;x2)-plane were seen on the histological images,
where x1 and x2 denote the circumferential and the axial
directions (see Fig. 4). A skilled histopathologist mea-
sured the orientation of 60 representative collagen fibers
in the intima and adventitia and oblate nuclei of smooth
muscle cells in the media per specimen from the
histological images. Mean (fiber) angles and standard
deviations were determined numerically from the data by
assuming normal distribution and symmetrical arrange-
ment with respect to the circumferential direction.
3.3. Optimization

Fitting the material model to experimental data is
achieved by optimizing (minimizing) the stress-based
l strip and an adventitial strip with circumferential orientation (images

fiber orientations are seen. Collagen fibers appear as relatively straight

ientations of the wavy structures were considered for the determination

uscle cells, which appear as black dashes or dots, depending on their

Crossing solid lines indicate mean (fiber) orientation characterized by j
ere). EvG, Elastica van Gieson staining. HE, hematoxylin and eosin
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nonlinear function

f s ¼
Xn

i¼1

w1
qĈðE11;E22Þ

qE11

�����
ðiÞ

� S
ðiÞ
11

0
@

1
A

22
4

þ w2
qĈðE11;E22Þ

qE22

�����
ðiÞ

� S
ðiÞ
22

0
@

1
A

23
5, ð12Þ

where n is the number of experimental data records, w1

and w2 are weighting factors, and qĈ=qE11jðiÞ and
qĈ=qE22jðiÞ are the second Piola–Kirchhoff stresses
related to the x1- and x2-directions (see Eq. (4)) and
predicted by the constitutive model for the ith data
record. For this purpose the in-plane strains E

ðiÞ
11 and E

ðiÞ
22

are computed according to E
ðiÞ
11 ¼ ðl

2ðiÞ
1 � 1Þ=2 and

E
ðiÞ
22 ¼ ðl

2ðiÞ
2 � 1Þ=2, with the measured in-plane stretches

lðiÞ1 and lðiÞ2 for the ith data record. The related
‘experimental’ second Piola–Kirchhoff stresses S

ðiÞ
11 and

S
ðiÞ
22 are calculated directly from the original data as

F=ðAltensÞ, where F is the actual axial force, A the
unloaded cross-sectional area, and the ‘experimental’
stretch in the tensile direction ltens is the ratio of the
actual gage length to the gage length in the reference
configuration. Accordingly, ltens is either l1 or l2
depending on the orientation of the sample. Represen-
tative sets of 20 data records per sample were extracted
from the original data files, whereas data of the loading
and unloading branches were averaged.

Alternatively to the stress-based approach expressed
by Eq. (12), an energy-based nonlinear function, f w say,
may also be chosen. Thus,

f w ¼
Xn

i¼1

ðĈ
ðiÞ
� Ŵ

ðiÞ
Þ
2, (13)

where Ĉ
ðiÞ

is the strain energy for the ith data record
predicted by the constitutive model, and Ŵ

ðiÞ
is the work

done by the stress field on the continuum body of unit
volume during the stress-free configuration and the
current (final) configuration associated with the ith data
record. In regard to the theoretical framework intro-
duced in Section 2.1 we may write for the case of
hyperelastic properties

Ŵ
ðiÞ
¼

Z E
ðiÞ

11

0

S
ðiÞ
11 dE

ðiÞ
11 þ

Z E
ðiÞ

22

0

S
ðiÞ
22 dE

ðiÞ
22, (14)

where E
ðiÞ
11, E

ðiÞ
22 are the (in-plane) Green–Lagrange

strains for the ith data record. The integrals in Eq.
(14) are to be computed numerically for each data
record by means of polynomial interpolation.

From a mathematical point of view both approaches
are equivalent since there is an analytical relation
between a strain-energy function and the associated
stresses. For this study the stress-based approach (Eq.
(12)) is used in order to maximize the accuracy with
respect to the representation of stress responses of the
uniaxial test data. An additional advantage of the stress-
based approach over the energy-based approach is that
the weighting factors for the stress components S11 and
S22 allow a better control over the fitting procedure. In
contrast to the stress-based approach the energy-based
approach tends to smooth the material response because
it is based on an integral formulation.

As described in Section 2.1, the neo-Hookean con-
tribution Ĉiso to the overall strain energy may be mainly
associated with the response of non-fibrous substances.
The orthotropic contribution Ĉortho to Ĉ, however, is
thought to be the energy mainly stored in the
collagenous fibers (Roach and Burton, 1957), which
are active at high arterial pressures. Because of this
model assumption and the (two-term) potential (1) it is
preferable to fit Ĉiso separately to a selected subset of
data records representing the initial isotropic (soft)
response of the individual arterial layer. For this
purpose the stress–strain curve of the arterial layer strip
is divided into low and high stiffness regions. The
‘transition point’, ðEtrans;StransÞ say, between the two
regions is defined as that point of the stress–strain curve
with the maximum normal distance to the global secant,
which is defined as the line spanned between the origin
to the end of the curve (see Fig. 5). Hence, the transition
point is located somewhere at the ‘knee’ of the
stress–strain curve. Note that the transition point, as
defined here, may not be viewed as an intrinsic material
property of the arterial tissue. The transition point
depends on the choice of the maximum stress, and the
region of the low (nearly linear) modulus which, in
general, might also differ between circumferential and
axial strips. Anyway, although a rough estimation, for
many cases the transition point may serve as a
convenient initial measure for the fitting purpose (see
also the considerations in the appendix). Best-fit
parameters for m40 according to model (2) are
determined by means of the Levenberg–Marquardt
algorithm. Consequently, m is no longer a free para-
meter. It remains to fit the remaining material para-
meters to the experimentally observed response of the
arterial layers.

The goal is now to minimize the nonlinear function
(12) subject to the given inequality constraint functions
fmðC; c11; c12; c22Þ40, where m 2 f1; 2; 3; . . . ;Mg de-
notes the mth constraint and M is the total number of
constraints. For the present study a penalty function
method is chosen from the wealth of methods available
for nonlinear constrained optimization. Penalty meth-
ods provide a solution of the constrained problem by
means of a sequence of unconstrained minimization
problems. We consider the penalty function

p ¼ f s þ OðR;f1;f2;f3; . . . ;fMÞ, (15)

where the penalty term O incorporates the M inequality
constraint functions, and R is a fixed constant. The
7
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point, which separates a low stiffness region from a high stiffness region at the ‘knee’ of the stress strain curve, is illustrated for the media strip with

circumferential orientation (a).
penalty term has to be updated for each minimization
step.

A particular penalty function method is Schuldt’s
algorithm (Schuldt et al., 1977), in which O is expressed
as

O ¼ R
XM
m¼1

ðhfm þ smi
2 � s2mÞ, (16)

where sm 2 f1; 2; 3; . . . ;Mg are adjustable parameters
associated with the inequality constraints, and the
bracket operator h�i in O symbolizes the rule

h�i ¼
� 8 �p0;

0 8 �40:

�
(17)
While R is kept fixed through all stages of the solution,
the penalty parameter sm is updated after each mini-
mization step according to the rule

sðnewÞ
m ¼ hfmðC

ðoldÞ; cðoldÞ
11 ; cðoldÞ

12 ; cðoldÞ
22 Þ þ sðoldÞ

m i,

m 2 f1; 2; 3; . . . ;Mg, ð18Þ

where the set fCðoldÞ; cðoldÞ
11 ; cðoldÞ

12 ; cðoldÞ
22 g is the solution of

the previous minimization step. For the initial step a
convenient choice of the set fs1;s2;s3; . . . ;sMg is zero.
Since there is no general applicable rule for determining
R, appropriate values must be chosen through numerical
experiments. For this study the described penalty
method was programmed as a Mathematica package.
For the unconstrained optimization steps a built-in
8



Mathematica module was used, which utilizes optionally
Brent’s method, the Levenberg–Marquardt method,
Newton’s method and the quasi-Newton method. A
new approach for the estimation of an appropriate set
fC; c11; c12; c22g of start values is presented briefly in the
appendix.
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strains E11 and E22. Physiological loading occurs in the region of
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4. Results

4.1. Histology and constitutive models

Intimal, medial and adventitial samples showed fiber
angles of 18:8� � 8:2�, 37:8� � 20:6� and 58:9� � 14:8�

(mean � SD, see Fig. 4), respectively.
The constitutive parameters m;C; c11; c12; c22 and the

fiber angles, jpred say, predicted by the model through
Eqs. (7) and (8) for each arterial layer are summarized in
Table 3. Note that the predicted (model) fiber angles
jpred for all arterial layers are in relatively good
agreement with the mean fiber angles obtained from
histological images examined by a histopathologist; this
is particularly the case for the intima and the adventitia
(compare with Fig. 4). In addition, root mean square
errors � for the circumferential and axial components (�-
S11 and �-S22) of the second Piola–Kirchhoff stress
tensor are provided. The error measure is based on the
value of the ‘objective function’ w2 of the considered
constitutive model, and defined as

� ¼
w2=ðn� qÞ

p
Sref

, (19)

where n is the number of considered data points, q is the
number of parameters of C, and hence n� q is the
number of degrees of freedom. The value Sref is the sum
of all second Piola–Kirchhoff stresses for each data
point divided by the number of all data points.
Analogous to the procedure which was used to
determine �-S, the root mean square errors for the
circumferential and axial components of the Green–
Lagrange strain tensor were computed to be 0:0280,
0:1024 for the intima, 0:0852, 0:0922 for the media, and
0:1208, 0:0998 for the adventitia, respectively.
Table 3

Constitutive parameters for the intima, media and adventitia of a human ao

Layer m C c11 c

(kPa) (kPa)

Intima 39.8 1.42 999.0 5

Media 31.4 0.140 32.8

Adventitia 17.3 471:0E 6 37.7

The fiber angles jpred predicted by the models are computed through Eqs. (7) a

(� S11) and axial (� S22) components of the second Piola Kirchhoff stress te
Plots for the strain energy of the intima, media and
adventitia over the in-plane strains E11 and E22

demonstrate remarkable differences for the layers in
stiffness, anisotropy and nonlinearity (see Fig. 6).

4.2. Load-deformation behavior

All three layers show anisotropic responses (compare
the stress–strain behaviors for the circumferential and
axial strips), with nonlinear stiffening, which is typical
for most soft biological tissues; the hystereses are
remarkably small (Fig. 5). Additionally, the media and
adventitia show soft initial responses, which are similar
for both orientations. Despite these common features
the layer responses are highly specific. The intima, for
example, has the highest global stiffness and the highest
degree of anisotropy, while the adventitial response
exhibits the most pronounced nonlinearity.
5. Discussion

Constitutive models for soft biological tissues, when
based on appropriate mechanical tests, are vital for the
rta

12 c22 jpred � S11 � S22

(�)

10.0 127.0 15.2 0.0377 0.1282

14.7 23.5 28.8 0.0526 0.0197

58.0 63.8 57.1 0.0348 0.0523

nd (8). Root mean square errors � are computed for the circumferential

nsor according to Eq. (19).
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understanding of living matter as a mechanical system.
Frequently, however, tests that mimic physiological
loading states are difficult or even impossible (Holzapfel
et al., 2004a). For such cases, the proposed approach is
intended to approximate physiological responses with
uniaxial data obtained from two strip samples oriented
orthogonally to each other. It is also possible to use data
from only one strip, which, of course, decreases the
predictability, and anisotropy cannot be described. One
achievement of this study is to present explicit correla-
tions between the fiber structure and the constitutive
parameters of the well-established phenomenological
Fung-type model (compare with Eqs. (9) and (10)).
Hence, the Fung-type model gets a kind of pseudo-

structural aspect. This result is based on the assumption
to align the fiber direction (mean orientation of collagen
or smooth muscle component) with the eigenvector of
the strain. The quantitative assessment of three-dimen-
sional orientations of collagen—and (medial) smooth
muscle component is still an open problem, related data
are rather scarce. In particular, the assumption made in
this study regarding the structural fabric in the three
layers needs to be analysed in more detail. Despite the
seminal work (Canham et al., 1989), in which the three-
dimensional structural fabric of the different layers in
human coronary arteries are analysed by means of
polarizing light microscopy, there is some recent work
that makes progress in quantifying the patterns of
orientation by using microscopy (Finlay et al., 1995),
Section 2 in Holzapfel et al. (2002), small-angle light
scattering (Billiar and Sacks, 1997), and suitable image
processing tools (Elbischger et al., 2004).

Apart from the shortcomings already discussed, there
are additional problems with uniaxial extension tests.
For example, the structural integrity of the strips is
disturbed at the lateral edges. Cut fibers may retract
spontaneously or may be pulled back during strip
extension, which could lead to alterations of the tensile
responses. Additionally, because of their initial soft
responses it is sometimes not easy to insert strip samples
to a tensile testing machine without subjecting axial
loads. Finally, the composition of a specimen may vary
throughout its thickness. This is the case, for example,
for adventitias, whose fiber densities are highest at the
inner portions. All that leads to uncertainties in the
constitutive parameters of the material models. Hence,
analyses based on such models have to be interpreted
with caution.

In order to validate the predictive capability of the
models with respect to physiological loading states,
comparisons between data from corresponding multi-
axial tests and model responses must be performed,
whenever this is feasible. Multi-axial tests could then
also be used to show the ability how good the model
parameters obtained from fitting uniaxial data can
predict multi-axial tests. As pointed out above, many
specimens such as multi-component diseased materials
and layered organs, do, however, not allow (conven-
tional) biaxial tests, which is a fundamental limitation.
For this important class of problems constitutive
modeling cannot provide precise determination but only
reasonable approximations of the multi-axial behavior.
The present approach attempts to make the most of this
situation by using a theoretical framework that captures
the essential mechanical features of arterial walls by
incorporating additional structural information. Despite
significant limitations, models determined by means of
the proposed approach may provide valuable guidance
for biomechanical and mechanobiological research.

The potential of the proposed approach was demon-
strated by the example of layer-specific models for a
human aorta with non-atherosclerotic intimal thicken-
ing. This type of wall thickening is thought to restore the
baseline wall stress and differs from an atherosclerotic
plaque (Glagov and Zarins, 1989). Preparation tests on
different aged human aortas indicated that it was not
feasible to obtain intact (leak-free) one-layer tubes of all
individual tissues in order to perform inflation and
extension experiments. According to the author’s
knowledge the current data are novel regarding the
investigation of all three tissue types, and the use of
human specimens. One essential result obtained is the
marked mechanical heterogeneity of the different aortic
tissues (see Figs. 5 and 6). The present study reveals a
remarkable thickness, load-bearing capacity and stiff-
ness of the intimal samples in comparison with the
media and adventitia. The intima may, therefore, be
regarded as a prominent ‘macroscopic’ layer which
seems to contribute significantly to vascular physiology,
and which plays a significant role in controlling vessel
structure and function. In the face of these data it
becomes clear that approaches, which assume that the
artery consists of a (single-layer) homogeneous wall
structure, are inappropriate if stress–strain distributions
through the wall thickness are of interest. More
elaborate studies to identify the mechanical properties
and geometrical dimensions of the individual vascular
tissues are of pressing need, and were performed in a
recent study (Holzapfel et al., 2005b) for human
coronary arteries. The importance of the proposed
approach in biomedical engineering and clinics becomes
evident. For example, we know that the shape of stent
struts, which are in contact with the intimal surface, has
a strong effect on the stress concentration in the intima
and on the clinical outcome after stenting (see, e.g.
Pache et al., 2003; Holzapfel et al., 2005a); stent struts
may lead to intimal laceration and to endothelial cell
denudation (see, e.g., Rogers et al., 1999; König et al.,
2002), which is a local effect. Hence, for improving our
understanding of the balloon–artery interactions during
stent placement and for improving stent designs, it is
fundamental to better explore the mechanical properties
10



and role of the separate arterial layers, in particular of
the intimal tissue, which is in contact with a deployed
stent.

Note, however, that apart from suitable constitutive
models, more reliable stress analyses require additional
information on residual strains and in situ pre-stretches
for each individual layer. Considering the marked
differences in the mechanical properties, the mechanical
interplay between the three layers in the intact arterial
wall must be mediated by (large) residual deformations
related to each arterial layer. Actually, experimental
studies on aged human arteries have demonstrated
significant layer-specific residual strains in the intact
arterial wall, see, e.g. Schulze-Bauer et al. (2002, 2003)
for femoral and iliac arteries, respectively.

The form of C, as postulated in Eq. (1) with
particularizations in Eqs. (2) and (3), is motivated by
the observation that the initial response is comparable
to that exhibited by rubberlike solids, which is modeled
by the neo-Hookean material. The nonlinear stiffening
at high strains, observed in several types of soft
biological tissues is modeled suitably by the exponential
function, as proposed by Fung and co-workers. The
study by Holzapfel and Weizsäcker (1998) show good
fits to multi-axial data from rat abdominal aorta. It has
also been shown to represent appropriately the exten-
sion-inflation response in the physiological domain of
aged human iliac arteries (Schulze-Bauer et al., 2003).
The two-term model (1)–(3), as originally proposed in
Holzapfel and Weizsäcker (1998), has been demon-
strated to capture better the passive mechanical beha-
vior of arteries than the pure Fung-type strain-energy
function (Schulze-Bauer et al., 2003).

The search for appropriate strain-energy functions
that represent material responses of arterial tissues,
however, is not yet complete; structural approaches
seem to be particularly promising. Holzapfel et al. (2000,
2004b) (with an extension in Holzapfel et al. (2005a)),
for example, have proposed a structurally motivated
energy function, which, for one family of fibers, has the
particular form of

C ¼ Ciso þ
k1

2k2
fexp½k2ðI4 � 1Þ2� � 1g, (20)

where the exponential function accounts for the strong
stiffening effect of each layer observed at high arterial
pressures. Note that the parameters k1 and k2 differ
from those introduced in Section 2.1. In Eq. (20), k140
is a stress-like material parameter and k240 is a
dimensionless parameter. An appropriate choice of k1

and k2 enables the histologically-based assumption that
the collagen fibers do not influence the mechanical
response of the artery in the low arterial pressure
domain to be modeled (Roach and Burton, 1957).

The energy function (20) considers the (mean)
orientation of collagen (or smooth muscle component)
in the form of the invariant I4, which is the square l2f of
the fiber stretch (see Eq. (11)). The invariant I4 can also
be expressed as the double contraction C : A, where A ¼
a0 � a0 is a structure tensor, and ½a0� ¼ ½cosj sinj�T is
the matrix representation of the direction vector a0
(ja0j ¼ 1) for the fiber bundle characterized by j. The
anisotropic term in Eq. (20) contributes only when the
fibers are extended, i.e. when I441. If this inequality
condition is taken into account, convexity is guaranteed
a priori by the exponential form (20) for an arbitrary set
of (positive) material parameters (Holzapfel et al.,
2004b). Since the mean angle j acts as a geometrical
parameter, upper and lower limits ju and jl for the fiber
orientation are provided directly. For more details of the
model and related mechanical, mathematical and
computational aspects the reader is referred to Holzap-
fel et al. (2002, 2004b).

Additionally to structural models, advances may still
come from phenomenological approaches. Ogden and
Schulze-Bauer (2000), for example, have proposed a
phenomenological strain-energy function that has been
shown to model extension-inflation responses of aged
human iliac arteries in a broad load range more
efficiently than Fung-type models. Modeling the in vivo
constitutive behavior is a challenging task. It requires
continuous advances and developments in experimental
and theoretical methods tailored to arterial tissues.
Appropriate methods will likely have to combine
mechanical, structural and biological information.
Determination of material models from uniaxial exten-
sion tests and histostructural data, as presented in this
study, may help to advance constitutive descriptors for
arterial walls.
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Appendix A. Estimation of appropriate start values for

the constitutive parameters C ; c11; c12, c22

The efficiency of multivariate nonlinear regression
analysis depends crucially on the choice of appropriate
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start values for the constitutive parameters C; c11; c12
and c22 considered in the function Ĉortho, i.e. Eq. (3). The
fifth constitutive parameter m40 associated with Ĉiso,
i.e. Eq. (2), is determined by a simple univariate fitting
procedure, as described in Section 3.3.

Data on the experimental path can be used to
determine the ratios c11 : c12 : c22. For this purpose we
provide equations related to the experimental paths
S11 ¼ 0 (strip with x2-orientation) and S22 ¼ 0 (strip
with x1-orientation) predicted by the function
ĈorthoðE11;E22Þ, i.e.

S11 ¼
qĈortho

qE11
¼ 0; S22 ¼

qĈortho

qE22
¼ 0, (21)

respectively. As solutions we obtain the linear path
E22 ¼ �2c11E11=c12 for the strip with x2-orientation
(S11 ¼ 0), and E11 ¼ �2c22E22=c12 for the strip with x1-
orientation (S22 ¼ 0). Since the mechanical response in
the high-stress domain is mainly governed by Ĉortho, the
values for �2c11=c12 (strip with x2-orientation) and
�c12=2c22 (strip with x1-orientation) can be approxi-
mated from experimental data as the respective secants
k2 ¼ E22=E11jSmax

22
(strip with x2-orientation) and k1 ¼

E22=E11jSmax
11

(strip with x1-orientation), where Smax
22 and

Smax
11 are the maximum tensile stresses of the related

uniaxial extension data. Hence, we deduce a rough
estimation that

c11 : c12 : c22 ¼ �
k2
2

� �
: 1 : �

1

2k1

� �
, (22)

where k1 and k2 are to be computed from experimental
data.

Start values for C and c12 can then be determined by
taking experimental data for one strip sample. That strip
sample should be considered (circumferential or axial),
which behaves stiffer under extension. Subsequently, we
compute the orthotropic ‘Fung-type’ strain-energy
function Ĉortho, i.e. Eq. (3), by means of the work Ŵ

done by the stress field on the strip of unit volume
during testing, i.e. Eq. (14), and the isotropic function
Ĉiso, i.e. Eq. (1), according to ĈorthoðE11;E22Þ ¼

Ŵ ðE11;E22Þ � ĈisoðE11;E22Þ. This equation is now
evaluated for two data records: (i) for the strains
E11 ¼ Emax

11 , E22 ¼ Emax
22 which occur at the maximum

tensile stress of the related uniaxial extension test, and
(ii) for the strains E11 ¼ Etrans

11 , E22 ¼ Etrans
22 at the

‘transition point’, as introduced in Section 3.3. In
addition, there is a need to check that
Ŵ ðEtrans

11 ;Etrans
22 Þ � ĈisoðE

trans
11 ;Etrans

22 Þ40. This generates
two equations for the four unknowns C, c11, c12, c22
(note that the constitutive parameter m is already
determined). Two additional equations are used by
expressing c11 and c22 in terms of c12 using relation (22).
The remaining two equations can then be solved for C

and c12 so that a complete set of start values is
determined.
Remark A.1. Relation (22) may also be helpful for a
rough ‘consistency check’, which is a check to identify
the deviation of the used constitutive model from
experimental data (provided that the uniaxial extension
tests have caused significant stiffening of the specimens).

The identification of the slopes �2c11=c12 and
�c12=2c22 with k2 and k1, respectively, implies that
c212 ¼ 4c11c22k1=k2. By comparing with inequality (5) we
find the ‘consistency check’

k1
k2

o1. (23)

If experimental data do not satisfy condition (23) one
may conclude that either the constitutive model used is
inappropriate for the considered type of material or that
the response data are flawed due to, for example, bulge
of the sample and rotation of markers during extension
testing, etc. Finally, the mean angle j can be estimated
by substituting Eq. (8) and the relations c11=c12 and
c12=c22, which are obtained from Eq. (22), into Eq. (7) to
get

tanj ¼
1

kþ ð1þ k2Þ1=2
; k ¼

1� k1k2
2k1

(24)

and to be solved for j. A comparison of the result with
histostructural data provides another immediate ‘con-
sistency check’.

Remark A.2. The ‘experimental path’ may appear in a
variety of characteristic shapes, which depend on the
(mean) angle j, the position of the ‘transition point’ and
the width of a so-called ‘transitional zone’ in which the
material behavior shifts from the ‘isotropic path’,
described by Ĉiso, to the ‘anisotropic path’, described
12



by Ĉortho (see Fig. 7 for an axial strip of the adventitia
obtained from a human aorta). The ‘isotropic path’ for
strips oriented and tested uniaxially along, for example,
the x2-axis is governed by the nonlinear function
E11 ¼ ½ð2E22 þ 1Þ 1=2

� 1�=2, which is the solution of
the equation qĈiso=qE11 ¼ 0, while the ‘anisotropic
path’ is governed by function (21)1.
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