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Gaussian image smoothing is a fundamental operation in the extraction of scale-invariant feature points. Its computation, however, can be too expensive in some resource-constrained scenarios. Alternative solutions such as the box filter can be computed more efficiently, at the cost of a loss in feature repeatability under some conditions. In this paper we propose a fast and accurate image smoothing operator based on integral images. It has the same order of computational complexity as the box filter, but provides much more accurate visual results and improved keypoint repeatability, which is confirmed in a feature detection scenario using SIFT features.

INTRODUCTION

Low pass image filtering (smoothing) is a basic operation in many image processing applications, including image matching through local features. For instance, Gaussian smoothing is used to generate a scale space and detect interesting points in a scale-invariant manner [START_REF] David G Lowe | Distinctive image features from scaleinvariant keypoints[END_REF]. While this approach can provide very stable keypoints, its computation may not be feasible when power or battery resources are limited. As an alternative, one can use simpler and faster smoothing techniques such as the box filter [START_REF] Bay | Speeded-up robust features (SURF)[END_REF], although this can imply lower feature matching performance under some transformations. The trade-off between computational efficiency and accuracy of the smoothing filter is therefore a key factor in the stability and repeatability of extracted features.

In this paper we introduce a fast and accurate image smoothing filter based on integral images. In terms of computational complexity, the proposed approach is similar to the box filter, as the response is computed in constant time at any image point and any smoothing level. However, our filter provides improved rotational invariance and a better approximation of Gaussian smoothing.

The rest of the paper is organized as follows. In Section 2 we review some useful properties of the Gaussian and the box filter. Section 3 describes the proposed filtering approach in detail. In Section 4 we illustrate the results and performance of the proposed filter, in terms of computation time and rotational invariance, and evaluate its use in a keypoint detection scenario. Finally, Section 5 concludes the paper.

BACKGROUND AND RELATED WORK

Image smoothing is a well-explored research area. Some recent works in it are focused on complexity reduction, e.g. [START_REF] Hassan | Reducedlatency architecture for image smoothing exponential filters[END_REF]. The focus of this paper is image smoothing complexity in context of salient visual point detection.

Gaussian smoothing

Bi-dimensional Gaussian filter is one of the most commonly used image smoothing operators. To smooth an input image f (x, y) up to a given smoothing level σ, one would typically compute the following quantity:

fout(x, y, σ) = 1 2πσ 2 R 2 f (x, y)e - (x-u) 2 +(y-v) 2 2σ 2 dudv. (1)
Thanks to the exponential decay, the integral may be contracted to a reasonably compact support, for example applying the well known rule of 3σ [START_REF] David G Lowe | Distinctive image features from scaleinvariant keypoints[END_REF]. Moreover, the convolutional kernel is separable, allowing to replace the two-dimensional convolution by two simple ones. The numerical filter, obtained by replacing the integrals by integer summations, has linear complexity in function of σ for computing the response in a given spatial point. In other words, discrete version of fout(x, y, σ) at a given point (x, y, σ) may be computed in O(σ) operations. We recall in the following two important properties of the Gaussian filter:

Relation to the heat diffusion equation. It is known that the expression (1) is the solution of the differential problem for the heat diffusion equation. The input image becomes the initial condition of this problem, and the amount of injected smoothing σ is related to the diffusion time. This enables to establish a set of important properties, allowing to use this filter to engender a proper scale space [START_REF] Weickert | Anisotropic diffusion in image processing[END_REF]. The latter may be understood as a representation of the internal image structure at multiple scales. This kind of representations is predominant in vision problems, such as keypoint detection for image matching [START_REF] Lindeberg | Real-time scale selection in hybrid multi-scale representations[END_REF].

Rotational invariance. The Gaussian convolutional kernel is radially symmetric. This implies perfect invariance of the filter response to in-plane image rotations.

A notable successful application of the Gaussian smoothing motivated by these properties is SIFT image features [START_REF] David G Lowe | Distinctive image features from scaleinvariant keypoints[END_REF]. Similarly, the Gaussian scale space is employed in the MPEG Compact Descriptors for Visual Search standard [START_REF]CDVS: Requirements[END_REF]. However, due to the linear computational complexity, this filter has been systematically criticized [START_REF] Bay | Speeded-up robust features (SURF)[END_REF][START_REF] Grabner | Fast approximated SIFT[END_REF][START_REF] Chiu | Fast sift design for real-time visual feature extraction[END_REF]9], and approximate solutions such as the box filter have become popular.

Box filter

The box filter response is given by the following expression:

fout(x, y, s) = 1 s 2 x+ s 2 x-s 2 y+ s 2 y-s 2 f (u, v)dudv (2) 
The filter thus may be seen as a convolution with a kernel taking a constant value within the rectangular support

Ω = [-s 2 , s 2 ] × [-s 2 , s 2 
], i.e., taking the average image value in Ω. Here s represents the scale parameter, or the amount of smoothing required on the output. Integral image technique [START_REF] Franklin | Summed-area tables for texture mapping[END_REF] allows to avoid the explicit computation of the integral, providing constant computational complexity, i.e., independent of the amount of smoothing s, provided that the integral image has been precomputed. This principle is illustrated on filter is largely used in different applications and scenarios. Some complex image filters, such as the guided filter [START_REF] He | Guided image filtering[END_REF] or some bilateral filter variant [START_REF] Weiss | Fast median and bilateral filtering[END_REF], employ the box filtering. In the vision applications, the box filter is often used to approximate the timeconsuming Gaussian scale space in SIFT-like detectors. Thus, [START_REF] Grabner | Fast approximated SIFT[END_REF] proposes to select the keypoint candidates in a Difference-of-Mean (DoM) image pyramid built with the box filtering instead of the original Difference-of-Gaussian pyramid. In a similar way integral images [START_REF] Chiu | Fast sift design for real-time visual feature extraction[END_REF] and their generalizations [9] are combined with SIFT detection strategy. Speeded Up Robust Features (SURF) [START_REF] Bay | Speeded-up robust features (SURF)[END_REF] also make use of the box filtering for the keypoint detection. Center Surrounded Extrema (CenSurE) detector [START_REF] Agrawal | Censure: Center surround extremas for realtime feature detection and matching[END_REF] uses slanted integral images to detect the interesting points without computing explicitly a pyramidal representation. BRISK [START_REF] Leutenegger | BRISK: Binary robust invariant scalable keypoints[END_REF] employs the box smoothing to compute the descriptor. An issue when using the box filter in vision problems comes from its sensitivity to rotations. Due to the sharp corners of the rectangular convolutional kernel, rotating the input image of 45°may drastically change the distribution of interesting points with respect to the structure of the image. For instance, it is known that SURF features suffer from limited rotational invariance, which is partially due to the use of box filtering [START_REF] Bay | Speeded-up robust features (SURF)[END_REF].

THE PROPOSED FILTER DESIGN

Filter kernel definition

The key idea of the proposed approach consists in approximating the Gaussian kernel by a function that can be computed using image moments, which are efficiently represented by the integral images.

Let us consider the following function:

K(x, y) = A -B(x 2 + y 2 ), (3) 
where A and B are constants. It is straightforward to show that the convolution F of the image with this kernel may be decomposed as follows:

F (x, y, s) = Ω f (u, v)K(x -u, y -v)dudv = A -B(x 2 + y 2 ) I1(x, y, s) -BI x 2 +y 2 (x, y, s) +2B [xIx(x, y, s) + yIy(x, y, s)] (4) 
The integrals I (•) denote image moments. Specifically, I1 is the zeroorder moment that is equivalent to the box filter output, Ix and Iy are first-order moments with respect to x and y, and I x 2 +y 2 is the sum of two second-order moments:

Ix(x, y, s) = Ω uf (u, v)dudv (5) 
Iy(x, y, s)

= Ω vf (u, v)dudv (6) 
I x 2 +y 2 (x, y, s) = Ω u 2 + v 2 f (u, v)dudv. (7) 
The main point of using K as the filter kernel is that all the image moment integrals may be computed in constant time using the integral image technique: an integral image is precomputed for each image moment and is then used to obtain the required value. Therefore, the convolution F may be computed in O(1) operations for any x, y and s.

To design a suitable filter whose response is expected to be close to the Gaussian filter, we need to choose proper values of A and B. This is done assuming that 1. K must be nonnegative within the support Ω, in order to have a smoothing filter,

2.

Ω K(u, v)dudv = 1, 3. there is a linear relation between the scale parameter and the standard deviation of the Gaussian filter, e.g. s = Cσ.

To satisfy the first constraint we simply set A = Bs 2 2 . The second one then gives directly the kernel normalization constant:

Ω K(u, v)dudv = As 2 -Bs 4 6 = Bs 4
3 . Dividing the kernel by this value and applying s = Cσ we obtain the filter kernel expression:

K(x, y) = 3 2s 2 - 3 s 4 (x 2 + y 2 ) = 3 C 2 σ 2 1 2 - x 2 + y 2 C 2 σ 2 . ( 8 
)
We finally tune the constant C to minimize the total squared difference between K and the Gaussian kernel, i.e. in order to assure the response close to the Gaussian one, obtaining C ≈ 3.5. The resulting kernel K is shown in Figure 2.

Continuous response computation

To achieve subsample precision with the designed filter, a specific interpolation has to be applied to the integral images. The interpolation coefficients are derived assuming that the input image is a piecewise constant function having a constant value at each pixel position. Then,

• I1 is piecewise constant,

• Ix and Iy are piecewise linear in x and y respectively,

• I x 2 and I y 2 are piecewise quadratic, I x 2 +y 2 = I x 2 + I y 2 . 

I x 2 α 3αx0 + 3x 2 0 + α 2 3x 2 0 + 3x0 + 1 β I y 2 α β 3βy0 + 3y 2 0 + β 2 3y 2 0 + 3y0 + 1
Table 1. Interpolation coefficients for integral images of the image moments.

It can be shown that the exact value of each image moment may be obtained through a linear interpolation with proper weights of the four closest neighbors of each vertex of the support Ω. Specifically, let x = x0 + α, y = y0 + β, where x0 ∈ Z, y0 ∈ Z, and 0 ≤ α, β < 1. Let J represent the integral image of a given image moment. Then

J(x, y) = [(1 -ξ)J(x0, y0) + ξJ(x0 + 1, y0)] (1 -η)+ + [(1 -ξ)J(x0, y0 + 1) + ξJ(x0 + 1, y0 + 1)] η, (9) 
where the weights ξ and η in function of x, y, α and β are given in Table 1.

EXPERIMENTS AND DISCUSSION

In this section we compare the proposed approach notably to the original box filter. Our test data consists of several natural images acquired with a DSLR camera. In all our experiments, the box filter support size is defined as 2.6σ, which is a known convention when one tries to approximate the Gaussian. [START_REF] Leutenegger | BRISK: Binary robust invariant scalable keypoints[END_REF] As for the implementations of SIFT features and the separable convolution with Gaussian kernel, we take VLFeat library. [START_REF] Vedaldi | VLFeat: An open and portable library of computer vision algorithms[END_REF] 4.1. Qualitative assessment

We first evaluate the proposed approach visually. Some filtered images are presented on Fig. 3. "Phantom contours" along the real edges in the box filter output appear due to the kernel discontinuity near the support boundaries; their displacement is therefore related to the support size s. Typically, this kind of visual artifacts of lowpass filtering are undesirable. As the proposed filter has continuous falloff to the corners of Ω, the "phantom contours" are attenuated in the resulting image. However, they do not disappear completely as some discontinuities are present near middle points on the sides of the square support region (see Fig. 2). 

Rotational invariance

As it is discussed before, the invariance of the filter response to image rotations is a very desirable property in some cases. In this experiment we study the rotational invariance of our proposed filter. We proceeded as follows:

• an input image H is first smoothed to a level σ and stored to H0,

• H is then rotated by angle a, smoothed with the same value of σ and then rotated back giving Ha,

• H0 is finally compared to Ha in a pixelwise manner. The difference between the images is evaluated in terms of PSNR.

To avoid sampling artifacts at this point, σ is chosen large enough.

The experiment is repeated for several values of a from a given range.

A filter stable response to the image rotations will imply the rotated smoothed image Ha close to the smoothed image without rotations H0. The more invariant a filter is, the closer the two images should be. As it is explained before, the Gaussian filter reveals perfect rotational invariance.

We perform this experiment on a set of 5 different images (indoor and outdoor photos of 4.5 megapixels), smoothing each of them Image σ Gauss. 
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 11 Fig.1. Integral image principle. For a given function, the integral over any rectangle AD may be computed immediately, if for any point X on the plane the integral over OX is known. The latter ones are precomputed once during the filter initialization stage, and form the integral image (the rectangles are denoted by their diagonals).

Fig. 2 .

 2 Fig. 2. Bi-dimensional Gaussian filter kernel of variance (left) compared to the proposed filter kernel (right). It provides a more accurate (closer to the Gaussian) output than the box filter, but the convolution may still be computed in O(1) operations as the kernel surface is polynomial.

Fig. 3 .

 3 Fig. 3. An input image fragment of 600*600 pixels and filter outputs for σ = 20.

  with 3 values of σ: 5, 10 and 20, resulting in 15 cases per each value of the rotation angle a. The averaged results in function of a are presented on Fig.4. The proposed filter clearly demonstrates a more stable response to image rotations than the box filter. Moreover, obtained PSNR values justify the visual similarity between the Gaussian and the proposed filter, which is illustrated on Fig.3.
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 2 1 Box Proposed resolution tS, ms tI , ms tS, tI ., ms tS, ms Computation times for different filters in function of input image resolution and smoothing level σ. Each value is averaged over 10 repetitions.

		1	86				
		2	134				
	1.1 Mpix	4	237	13	34	63	124
		8	433				
		16	865				
		1	418				
		2	611				
	4.5 Mpix	4	994	49	135	260	502
		8	1823				
		16	3543				
		1	968				
		2	1381				
	10.1 Mpix 4	2264	110	300	579	1102
		8	4084				
		16	7905				

Computational time

In this section we evaluate the computational time of the proposed approach. The results for different values of σ and different input image resolutions are presented in Table 2. For each filter we present the smoothing time tS and the initialization time tI . The latter comprises the integral images computation.

Keypoint detection

We finally test the proposed filter in a keypoint detection scenario. Similarly to [START_REF] Grabner | Fast approximated SIFT[END_REF][START_REF] Chiu | Fast sift design for real-time visual feature extraction[END_REF] we replace the Gaussian scale space in the SIFT keypoint detector by image pyramids generated using our proposed filter and the box filter. Following a classic local feature evaluation 1 To have a fair comparison, we disabled the use of SSE2 instructions in VLFeat library in these tests.

procedure [START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF], we study the repeatability of detected local features obtained with different smoothing operators by means of matching score, i.e. ratio between the number of correctly matched features between two given images and the minimal number of detected features for these two images. We evaluate the features repeatability with respect to the in-plane image rotations. The resulting matching scores obtained with several different image sequences are presented on Fig. 5.

The proposed filter demonstrates stable repeatability gain with respect to the box filtering. The performance could be further improved by properly tuning the detector to the filter output. 

CONCLUSION

In this paper we proposed an efficient and accurate image smoothing operator, that provides a good trade-off between fast box filtering and classic Gaussian smoothing. Based on the integral images, our proposed filter inherits the ability of the box filter to compute the response in a constant time at any given point (x, y, σ). This makes the approach particularly useful not only in feature matching applications, but also in cases where a non-structured smoothing is required, for example a non-uniform spatially adaptive filtering. Further efficiency improvements are possible, e.g., by using multithreading for initialization or vectorial processor instructions.