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Abstract

In this work, we propose an algorithm to price American options by directly solving
the dual minimization problem introduced by Rogers [2002]. Our approach relies on
approximating the set of uniformly square integrable martingales by a finite dimensional
Wiener chaos expansion. Then, we use a sample average approximation technique to
efficiently solve the optimization problem. Unlike all the regression based methods, our
method can transparently deal with path dependent options without extra computations
and a parallel implementation writes easily with very little communication and no
centralized work. We test our approach on several multi–dimensional options with up to
40 assets and show the impressive scalability of the parallel implementation.

Key words: American option, duality, Snell envelope, stochastic optimization, sample
average approximation, high performance computing, Wiener chaos expansion.
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1 Introduction
The pricing of American options quickly becomes challenging as the dimension increases and
the payoff gets complex. Many people have contributed to this problem usually by
considering its dynamic programming principle formulation Tilley [1993], Carriere [1996],
Tsitsiklis and Roy [2001], Longstaff and Schwartz [2001], Broadie and Glasserman [2004]
and Bally and Pages [2003]. Among this so extensive literature, the practitioners seem to
prefer the iterative optimal policy approach proposed by Longstaff and Schwartz [2001],
which proves to be quite efficient in many situations. However, true path–dependent options
cannot be handled by this approach. Solving the dynamic programming principle requires
the computation of a conditional expectation, which is eventually dealt with regression
∗This project was supported by the Finance for Energy Market Research Centre, www.fime-lab.org.
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techniques. These techniques are known to suffer from the curse of dimensionality: global
regression methods lead to high dimensional linear algebra problems, whereas local methods
see the number of domains blow up with the dimension. Despite the numerous parallel
implementation of this techniques (see for instance Dung Doan et al. [2010], Abbas-Turki
et al. [2014]), we cannot expect to obtain a fully scalable algorithm. In this work, we follow
the dual approach initiated by Rogers [2002], and Davis and Karatzas [1994], which can
naturally handle path dependent options. To make it implementable, we need a smart and
finite dimensional approximation of the set of uniformly integrable martingales. We chose
the set of truncated Wiener chaos expansions, which have some magic features in our
problem: its density makes the optimization differentiable almost everywhere and
computing its conditional expectation exactly is straightforward. Then, the pricing problem
boils down to a finite dimensional and convex optimization problem. The optimization
problem is solved using a Sample Average Approximation (see Rubinstein and Shapiro
[1993]), which can be easily and efficiently implemented using parallel computing.

We fix some finite time horizon T > 0 and a filtered probability space (Ω,F , (Ft)0≤t≤T ,P),
where (Ft)0≤t≤T is supposed to be the natural augmented filtration of a d−dimensional Brow-
nian motion B. On this space, we consider an adapted process (St)0≤t≤T with values in Rd′

modeling a d′–dimensional underlying asset. The number of assets d′ can be smaller than
the dimension d of the Brownian motion to encompass the case of stochastic volatility mod-
els or stochastic interest rate. We assume that the short interest rate is modelled by an
adapted process (rt)0≤t≤T with values in R+ and that P is an associated risk neutral mea-
sure. We consider an adapted payoff process Z̃ and introduce its discounted value process(
Zt = e−

∫ t

0 rsds Z̃t

)
0≤t≤T

. We assume that the paths of Z are right continuous and that

supt∈[0,T ] |Zt| ∈ L2. The process Z̃ can obviously take the simple form (φ(St))t≤T but it can
also depend on the whole path of S up to the current time. So, our framework transparently
deals with path–dependent option, which are far more difficult to handle using regression
techniques.

We consider the American option paying Z̃t to its holder if exercised at time t. Standard
arbitrage pricing theory defines the discounted time-t value of the American option to be

Ut = esssupτ∈Tt
E[Zτ |Ftk ]

where Tt denotes the set of F−stopping times with values in [t, T ]. The integrability prop-
erties of Z ensure that U is a supermartingale of class (D) and hence has a Doob–Meyer
decomposition

Ut = U0 +M?
t −A?t

where M? is a martingale vanishing at zero and A? is a predictable integrable increasing
process also vanishing at zero. With our assumptions on Z, M? is square integrable. Rogers
[2002] found an alternative representation of the price at time-0 of the American option as
the minimum value of the following optimization problem

U0 = inf
M∈H2

0

E
[
sup
t≤T

(Zt −Mt)
]

= E
[
sup
t≤T

(Zt −M?
t )
]

(1)

where H2
0 denotes the set of square integrable martingales vanishing at zero. A martingale

reaching the infimum is called an optimal martingale. As the dual price problem writes
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as a convex minimisation problem, the set of all optimal martingales is a convex subset of
H2

0 . Among the martingales reaching the infimum in (1), some of them actually satisfy the
pathwise equality supt≤T Zt −Mt = U0. These martingales are called surely optimal. Any
surely optimal martingale reaches the lower bound in (1) but not all optimal martingales
are surely optimal. We refer to Schoenmakers et al. [2013] for a detailed characterisation
of optimal martingales. Anyway, Jamshidian [2007] proved the uniqueness of surely optimal
martingales within the continuing region, ie. for any surely optimal martingale M and any
optimal strategy τ , (Mt∧τ )t = (M?

t∧τ )t a.s.
The most famous method using the dual representation (1) is probably the primal–dual

approach of Andersen and Broadie [2004], which heavily relies on the knowledge of an op-
timal exercising policy. The a priori knowledge may take the form of nested Monte Carlo
simulations as in Schoenmakers [2005], and Kolodko and Schoenmakers [2004]. To circum-
vent this difficulty, Rogers [2010] explained how to construct a good martingale. In a Wiener
framework, Belomestny et al. [2009] investigated this approach by relying on the martingale
representation theorem to build good martingales. When trying to practically use the dual
formulation (1), the first difficulty is to find a rich enough but finite dimensional approxi-
mation of H2

0 and then we face a finite although potentially high–dimensional minimization
problem (see Belomestny [2013] for one way of handling this approach).

The minimization problem (1) can be equivalently formulated as

U0 = inf
X∈L2

0(Ω,FT ,P)
E
[

sup
0≤t≤T

(Zt − E[X|Ft])
]

(2)

where L2
0(Ω,FT ,P) is the set of square integrable FT− random variables with zero mean. In

this work, we suggest to use the truncated Wiener chaos expansion as a finite dimensional ap-
proximation of L2(Ω,FT ,P). Since Wiener chaos are orthogonal for the L2 inner product, the
computations of the conditional expectations E[X|Ft] become straightforward and boil down
to dropping some terms in the chaos expansion, which makes our approach very convenient.
Based on this approximation, we propose a scalable algorithm and study its convergence.

The paper starts with the presentation of the Wiener chaos expansion and some of its
useful properties in Section 2. Then, we can develop the core of our work in Section 3 in which
we explain how the price of the American option can be approximated by the solution of a
finite dimensional optimization problem. First, we analyze the properties of the optimization
problem in order to prove the convergence of its solution to the American option price. Second,
we study its sample average approximation, which makes the problem tractable, and prove
its convergence. Based on all these theoretical results, we present our algorithm in Section 4
and discuss its parallel implementation on distributed memory architectures. Finally, some
numerical examples are presented in Section 5.

Notation
• For n ≥ 1, 0 = t0 < t1 < · · · < tn = T is a time grid of [0, T ] satisfying

limn→∞ sup0≤k≤n−1 |tk+1 − tk| = 0.

• For n ≥ 1, the discrete time filtration G is defined by Gk = σ(Bti+1−Bti , i = 0, . . . , k−1)
for all 1 ≤ k ≤ n, while G0 is the trivial sigma algebra. Obviously, Gk ⊂ Ftk for all
0 ≤ k ≤ n.
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• For 1 ≤ r ≤ n, I(r) ∈ {0, 1}n denotes the vector (0, . . . , 0︸ ︷︷ ︸
r−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−r

).

• For 1 ≤ q ≤ d, and 1 ≤ r ≤ n, I(r, q) ∈ Nn×d with all components equal to 0 except the
component with index (r, q) which is equal to 1.

2 Wiener chaos expansion
For the sake of clearness, we first present the Wiener chaos expansion in the case d = 1 (ie.
B is a real valued Brownian motion).

2.1 General framework in dimension one

The iterated stochastic integral approach to the Wiener chaos expansion is not applicable in
practice and cannot be generalized to multi–dimensional Brownian motions. Here, we would
rather adopt the Hermite polynomials point of view.

Let Hi be the i− th Hermite polynomial defined by

H0(x) = 1; Hi(x) = (−1)i ex2/2 di

dxi
(e−x2/2), for i ≥ 1.

They satisfy for all integer i, H ′i = Hi−1 with the convention H−1 = 0. We recall that if
(X,Y ) is a random normal vector with E[X] = E[Y ] = 0 and E[X2] = E[Y 2] = 1

E[Hi(X)Hj(Y )] = i! (E[XY ])i 1i=j . (3)

For all p ≥ 0, we define the spaces

Hp = span
{
Hp

(∫ T

0
ftdBt

)
: f ∈ L2([0, T ])

}
(4)

whose L2 closure corresponds to the Wiener chaos of order p. We denote the projection of a

random variable F ∈ L2(FT ) on to
p⊕
`=0
Hp by Cp(F ).

We consider the indicator functions of the grid defined by 0 = t0 < t1 < . . . . < tn = T

fi(t) = 1]ti−1,ti](t)/
√
ti − ti−1, i = 1, . . . , n,

When letting n go to infinity, the family (fi)i form an Hilbert basis of L2([0, T ]) and moreover∫ T

0
fi(t)dBt =

Bti −Bti−1√
ti − ti−1

= Gi.

Note that the random variables Gi are i.i.d. following the standard normal distribution. We
introduce the truncated chaos expansion of order p a random variable F ∈ L2(FT )

Cp,n(F ) =
∑

α∈Ap,n

λα
∏
i≥1

Hαi(Gi) (5)
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where Ap,n = {α ∈ Nn : ‖α‖1 ≤ p} with ‖α‖1 =
∑
i≥0 αi. Using Equation (3), we deduce

that the coefficients of the above decomposition are uniquely determined by

λα =
E
[
F
∏
i≥1Hαi(Gi)

]
(∏

i≥1 αi!
) . (6)

This formula can be rewritten more clearly by introducing the generalized Hermite polyno-
mials defined for any multi–index α = (αi)i≥1 ∈ NN

Ĥα(x) =
∏
i≥1

Hαi(xi), for x ∈ RN.

With this notation, Equation (5) becomes

Cp,n(F ) =
∑

α∈Ap,n

λαĤα(G1, . . . , Gn).

Proposition 2.1. Let F be a real valued random variable in L2(Ω,FT ,P) and let k ∈
{1, . . . , n} and p ≥ 0

E[Cp,n(F )|Ftk ] =
∑

α∈Ak
p,n

λα Ĥα(G1, . . . , Gn)

with Akp,n = {α ∈ Nn : ‖α‖1 ≤ p, α` = 0 ∀` > k}.

Proof. Taking the conditional expectation in Eq. (5) leads to

E[Cp,n(F )|Ftk ] =
∑

α∈Ap,n

λα

k∏
i=1

Hαi(Gi)E

 n∏
i=k+1

Hαi(Gi)
∣∣∣Ftk

 . (7)

Since the Brownian increments after time tk are independent of Ftk and are independent
of one another , E

[∏n
i=k+1Hαi(Gi)|Ftk

]
=
∏n
i=k+1 E [Hαi(Gi)], which is zero as soon as∑n

i=k+1 αi > 0. Hence, the sum in Equation (7) is reduced to the sum over the set of multi–
indices α ∈ Ap,n such that αi = 0 for all i > k, which is exactly the definition of the set
Akp,n. �

Remark 2.2. Since the sum appearing in E[Cp,n(F )|Ftk ] is reduced to a sum over the set
of multi–indices α ∈ Akp,n, it actually only depends on the first k increments (G1, . . . , Gk).
One can easily check that E[Cp,n(F )|Ftk ] is actually given by the chaos expansion of F on the
first k Brownian increments. Hence, computing a conditional expectation simply boils down
to dropping term. While it may look like a naive way to proceed, it is indeed correct in our
setting.

Proposition 2.3. Let F be a real valued random variable in L2(Ω,FT ,P) and let k ∈
{1, . . . , n} and p ≥ 1. For all t ∈]tr−1, tr] with 1 ≤ r ≤ k,

DtE[Cp,n(F )|Ftk ] = 1√
h

∑
α∈Ak

p,n, αr≥1
λα Ĥα−I(r)(G1, . . . , Gn)

where α− I(r) = (α1, . . . , αr−1, αr − 1, αr+1, . . . , αn).

5



Proof. From Proposition 2.1, we know that for all 1 ≤ k ≤ n

E[Cp,n(F )|Ftk ] =
∑

α∈Ak
p,n

λα Ĥα(G1, . . . , Gn)

Let r ≤ k and t ∈]tr−1, tr]. The chain rule for the Malliavin derivative yields

DtE[Cp,n(F )|Ftk ] =
∑

α∈Ak
p,n

λα Dt

(
k∏
i=1

Hαi(Gi)
)

Dt

(
k∏
i=1

Hαi(Gi)
)

=
k∏

i=1,i 6=r
Hαi(Gi)H ′αr

(Gr)

= 1αr≥1

k∏
i=1,i 6=r

Hαi(Gi)Hαr−1(Gr)

= 1αr≥1Ĥα−I(r)(G1, . . . , Gn). �

2.2 Multi–dimensional chaos expansion

In the previous section, we explained how a random variable measurable for a sigma field
generated by a one–dimensional Brownian motion could be approximated by a finite sum of
Hermite polynomials of Brownian increments.

In this section, we are back to our original multi–dimensional setting, as explained in
Section 1. The process B is a Brownian motion with values in Rd. The key idea to extend the
Hermite polynomial expansion to a higher dimensional setting is to consider a tensor product
of Hermite polynomials evaluated on a tensor basis of L2([0, T ],Rd).

Consider the functions (hi)i with values in Rd defined by

hji (t) =
1]ti−1,ti](t)√

h
ej , i = 1, . . . , n, j = 1, . . . , d

where (e1, . . . , ed) denotes the canonical basis of Rd. The p − th order Wiener chaos Cp,n is
defined as the closure of

d∏
j=1

Ĥαj (Gj1, . . . , Gjn) : α ∈ (Nn)d, ‖α‖1 ≤ p


where ‖α‖1 =

∑n
i=1

∑d
j=1 α

j
i and Gji =

Bj
ti
−Bj

ti−1√
h

. Using the independence of the Brownian
increments and the orthogonality of the Hermite polynomials, the chaos expansion of a square
integrable random variable F is given by

Cp,n(F ) =
∑

α∈A⊗d
p,n

λαĤ
⊗d
α (G1, . . . , Gn)

where

Ĥ⊗dα (G1, . . . , Gn) =
d∏
j=1

Ĥαj (Gj1, . . . , Gjn) ∀α ∈ (Nn)d

A⊗dp,n =
{
α ∈ (Nn)d : ‖α‖1 ≤ p

}
. (8)
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With an obvious abuse of notation, we write, for λ ∈ RA
⊗d
p,n ,

Cp,n(λ) =
∑

α∈A⊗d
p,n

λαĤ
⊗d
α (G1, . . . , Gn).

We also introduce the set of multi–indices truncated after time tk

A⊗d,kp,n =
{
α ∈ A⊗dp,n : ∀j ∈ {1, . . . , d}, ∀` > k, αj` = 0

}
. (9)

We introduce the set Cp,n defined by

Cp,n =
{
F ∈ L2(Ω,FT , P ) : F = Cp,n(F ) a.s.

}
.

We can easily deduce the multidimensional counterpart of Proposition 2.1

Proposition 2.4. Let F be a real valued random variable in L2(Ω,FT ,P) and let k ∈
{1, . . . , n} and p ≥ 0

E[Cp,n(F )|Ftk ] =
∑

α∈A⊗d,k
p,n

λα Ĥ
⊗d
α (G1, . . . , Gn).

Remark 2.5. The discrete time sequence (E[Cp,n(F )|Ftk ])0≤k≤n is of course adapted to the
filtration (Ftk)k but also to the smaller filtration (Gk)k. This property plays a crucial when
approximating a random variable F ∈ L2(Ω,Gn,P) as we know from [Nualart, 1998, Theorem
1.1.1] that in such a case limp→∞Cp,n(F ) = F in the L2−sense. This result holds for the
fixed value n. If F were only FT−measurable and not Gn−measurable, we would need to let
both p and n go to infinity, limp→∞,n→∞Cp,n(F ) = F .

Proposition 2.6. Let F be a real valued random variable in L2(Ω,FT ,P) and let k ∈
{1, . . . , n} and p ≥ 1. For t > tk, DtE[Cp,n(F )|Ftk ] = 0.

For all t ∈]tr−1, tr] with 1 ≤ r ≤ k, and q = 1, . . . , d,

Dq
tE[Cp,n(F )|Ftk ] = 1√

h

∑
α∈A⊗d,k

p,n ,αq
r≥1

λα Ĥ
⊗d
α−I(r,q)(G1, . . . , Gn)

where (α− I(r, q))ji = αji − 1j=q,i=r.

In this multi-dimensional setting, the Malliavin derivative operator is actually a gradient
operator Dt = (D1

t , . . . , D
d
t ).

Proof. From Proposition 2.4, we know that for all 1 ≤ k ≤ n

E[Cp,n(F )|Ftk ] =
∑

α∈A⊗d,k
p,n

λα

d∏
j=1

Ĥαj (Gj1, . . . , Gjn).
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Let r ≤ k and t ∈]tr−1, tr]. Let 1 ≤ q ≤ d. The chain rule for the Malliavin derivative yields

Dq
tE[Cp,n(F )|Ftk ]

=
∑

α∈A⊗d,k
p,n

λα D
q
t

 d∏
j=1

Ĥαj (Gj1, . . . , Gjn)


=

∑
α∈A⊗d,k

p,n

λα

 d∏
j=1,j 6=q

Ĥαj (Gj1, . . . , Gjn)

Dq
t

(
Ĥαq (Gq1, . . . , Gqn)

)

= 1√
h

∑
α∈A⊗d,k

p,n

λα

 d∏
j=1,j 6=q

Ĥαj (Gj1, . . . , Gjn)

 Ĥαq−I(r)(G
q
1, . . . , G

q
n)

= 1√
h

∑
α∈A⊗d,k

p,n ,αq
r≥1

λα Ĥα−I(r,q)(G1, . . . , Gn). �

Remark 2.7. The conditional expectation preserves the nature of a chaos expansion. Simi-
larly, the Malliavin derivative of a chaos expansion still writes as a chaos expansion and hence
is a Hermite polynomial of Brownian increments. The roots of a non zero polynomial being
a zero measure set and since the Brownian increments have a joined density, the Malliavin
derivative of a chaos expansion is almost surely non zero as soon as one of the coefficients λα
is non zero for α ∈ A⊗d,kp,n such that αjr ≥ 1 for some j ∈ {1, . . . , d}.

For i, k ∈ {1, . . . , n}, with i < k, we introduce the set A⊗d,i:kp,n defined as A⊗d,kp,n \A⊗d,ip,n .

A⊗d,i:kp,n =
{
α ∈ (Nn)d : ‖α‖1 ≤ p, and ∀1 ≤ j ≤ d, ∀` /∈ {i+ 1, . . . , k}, αj` = 0

}
. (10)

3 Pricing American options usingWiener chaos expansion and
sample average approximation

In this section, we aim at approximating the dual price (2) by a tractable optimization
problem. This involves two kinds of approximations: first, approximate the space L2

0(Ω,FT ,P)
by a finite dimensional vector space; second, replace the expectation by a sample average
approximation.

The dual price writes

inf
X∈L2

0(Ω,FT ,P)
E
[

sup
0≤t≤T

(Zt − E[X|Ft])
]
.

In this optimization problem, we replace X by its chaos expansion Cp,n(X), which has no
constant term as E[X] = 0 and we approximate the supremum by a discrete time maximum.
Then, we face a finite dimensional minimization problem to determine the optimal solution
with the subset Cp,n

inf
λ∈RA⊗d

p,n , λ0=0
E
[

max
0≤k≤n

(Ztk − E[Cp,n(λ)|Ftk ])
]
. (11)

In Section 3.1, we prove that this optimization problem is convex and has a solution (see
Proposition 3.2) and converges to the price of the American option (see Proposition 3.3).
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Moreover, as the cost function is differentiable, any minimizer is a zero of the gradient (see
Proposition 3.6), which makes it easier to derive an algorithm.

To come up with a fully implementable algorithm, Section 3.2 presents the sample average
approximation of (11), which consists in replacing the expectation by a Monte Carlo sum-
mation. We prove in Proposition 3.7 that the solution of the sample average approximation
converges to the solution of (11) when the number of samples goes to infinity.

Remark 3.1. Belomestny [2013] considered a penalized version of (1) of the form

inf
M∈H1

0

(
E
[

sup
0≤t≤T

(Zt −Mt)
]

+ κVar
(

sup
0≤t≤T

(Zt −Mt)
))

with κ > 0. This criteria naturally selects almost sure optimal martingales (see Schoenmakers
et al. [2013]) among those solving (1). Although adding such a penalization looks interesting
from a theoretical point of view, it breaks the convexity of the minimization criterion, which
makes it less appealing from a practical of view. Moreover, the convergence of our sample
average approximation developed in Section 3.2 requires convexity.

3.1 A stochastic optimization approach

We fix p ≥ 1 and define the random functions vp,n(·, ·;Z,G) : RA
⊗d
p,n × {0, . . . , n} by

vp,n(λ, k;Z,G) = Ztk −
∑

α∈A⊗d
p,n

λαE
[
Ĥ⊗dα (G1, . . . , Gn)

∣∣∣Ftk] ,
With the help of Proposition 2.1, the random functions vp,n can be rewritten

(λ, k, Z,G) = Ztk −
∑

α∈A⊗d,k
p,n

λαĤ
⊗d
α (G1, . . . , Gn) .

We consider the cost function Vp,n : RA
⊗d
p,n → R defined by

Vp,n(λ) = E
[

max
0≤k≤n

vp,n(λ, k;Z,G)
]

(12)

and we approximate the solution of (2) by

inf
λ∈RA⊗d

p,n , λ0=0
Vp,n(λ). (13)

3.1.1 Convergence results

Proposition 3.2. The minimization problem (13) has at least one solution.

Proof. As the supremum of linear functions is convex, the random function λ 7−→
maxk≤n vp,n(λ, tk, Z,G) is almost surely convex. The convexity of Vp,n ensues from the lin-
earity of the expectation.

Let us prove that Vp,n(λ) → ∞ when |λ| → ∞. Note that Vp,n(λ) ≥ E [(Cp,n(λ))−] ≥
1
2 E [|Cp,n(λ)|], where we have used that |x| = 2x− + x and E[Cp,n(λ)] = 0.

E [|Cp,n(λ)|] = |λ|E [|Cp,n(λ/ |λ|)|] ≥ |λ| inf
µ∈RA⊗d

p,n ,|µ|=1
E [|Cp,n(µ)|] .
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By a standard continuity argument, the infimum is attained. Moreover, it is strictly positive
as otherwise there would exist µ ∈ RA

⊗d
p,n with |µ| = 1 s.t. E [|Cp,n(µ)|] = 0. Using the

orthogonality of the family
(
H⊗dα

)
α∈A⊗d

p,n

, we would immediately deduce that µ = 0. Hence,
we show that Vp,n(λ)→∞ when |λ| → ∞. The growth at infinity of Vp,n combined with its
convexity yields the existence of a solution to the minimization problem (13). �

Proposition 3.2 ensures the existence of λ]p,n solving (13), ie.

Vp,n(λ]p,n) = inf
λ s.t. λ0=0

Vp,n(λ).

Moreover, ∇Vp,n(λ]p,n) = 0. This characterization of an optimal solution will be of prime
importance to practically devise an algorithm.
Proposition 3.3. The solution of the minimization problem (13), Vp,n(λ]p,n), converges to
U0 when both p and n go to infinity.
Proof. We introduce the truncated chaos expansion of M?

T and denote its coefficients by λ?p,n,
ie. Cp,n(M?

T ) = Cp,n(λ?p,n). Clearly, U0 ≤ Vp,n(λ]p,n) ≤ Vp,n(λ?p,n). Then, we obtain the
following result

0 ≤ Vp,n(λ]p,n)− U0 ≤ Vp,n(λ?p,n)− U0

= E
[
max
k

(Ztk − E[Cp,n(λ?p,n)|Ftk ])−max
k

(Ztk −M
?
tk

)
]

≤ E
[
max
k

∣∣∣M?
tk
− E[Cp,n(λ?p,n)|Ftk ]

∣∣∣]
≤ E

[
max
k

E
[∣∣∣M?

T − Cp,n(λ?p,n)
∣∣∣ |Ftk]]

≤
√
E
[
max
k

E
[∣∣∣M?

T − Cp,n(λ?p,n)
∣∣∣ |Ftk]2]

≤ 2 ‖M?
T − Cp,n(M?

T )‖2 (14)

where the last upper–bound ensues from Doob’s inequality. Note that this bound does not
depend on λ]p,n. [Nualart, 1998, Theorem 1.1.1, Proposition 1.1.1] yields the convergence
result when p and n go to infinity. �

Corollary 3.4. Consider the Bermudan option with exercising dates t0, . . . , tn and with dis-
counted payoff (Ztk)k assumed to be G−adapted. Then, Vp,n(λ]p,n) converges to the price of
the Bermudan option when p goes to infinity.
Proof. Let Ûk be the price at time−tk of the Bermudan option. The sequence (Ûk)0≤k≤n is a
supermartingale admitting the Doob–Meyer decomposition Ûk = Û0 + M̂k− Âk where M̂ is a
square integrable (Gk)k−martingale and Â a predictable increasing process for the filtration
G. The price at time−0 of the Bermudan option also writes

Û0 = inf
X∈L2

0(Ω,Gn,P)
E
[

max
0≤k≤n

(Ztk − E[X|Gk])
]
.

Clearly, Cp,n(λ) ∈ L2(Ω,Gn,P) for any λ such that λ0 = 0 and moreover Vp,n(λ]p,n) ≥ Û0.
Then, by reproducing the steps in (14), we get

0 ≤ Vp,n(λ]p,n)− Û0 ≤ 2
∥∥∥M̂n − Cp,n(M̂n)

∥∥∥
2
.

We deduce from Remark 2.5 that this upper–bound goes to zero as p tends to infinity. �
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From (14), we know that∣∣∣Vp,n(λ]p,n)− U0
∣∣∣ ≤ 2 ‖M?

T − Cp(M?
T )‖2 +2 ‖Cp(M?

T )− Cp,n(M?
T )‖2,

which enables us to separate the effect of the order of the chaos approximation from the
impact of the truncation of the basis of L2([0, T ]). We apply [Geiss and Labart, 2016, Lemma
2.4] to handle the error w.r.t p and [Briand and Labart, 2014, Lemma 4.14] the one due to n.
Then, we obtain the following convergence rate.

Proposition 3.5. Assume M∗T ∈ Dm,2 for some 1 ≤ m ≤ p + 1, and for all ` ≤ p and all
(t1, . . . , t`) ∈ [0, T ]` and (s1, . . . , s`) ∈ [0, T ]`

|E[Dt1,...,t`M
∗
T ]− E[Ds1,...,s`

M∗T ]| ≤ K`(|t1 − s1|β
∗

+ · · ·+ |t` − s`|β
∗
)

where (K`)` is an increasing sequence of positive real numbers and β∗ is a positive real con-
stant. Then,

0 ≤ Vp,n(λ]p,n)− U0 ≤ 2
‖DmM∗T ‖L2(Ω×[0,T ]m)√
(p+ 1) . . . (p−m+ 2)

+ 2
√
T (1 + T ) eT

(
T

n

)β∗
Kp.

3.1.2 Regularity of the optimization problem

Most convex optimization algorithms mainly rely on the gradient of the cost function. We
end this section by proving that Vp,n is almost everywhere differentiable, which implies that
∇Vp,n(λ]p,n) = 0. We introduce the set of random indices for which the pathwise maximum is
attained

I(λ, Z,G) =
{

0 ≤ k ≤ n : vp,n(λ, k;Z,G) = max
`≤n

vp,n(λ, `;Z,G)
}
.

Proposition 3.6. Let p ≥ 1. Assume that

∀1 ≤ r ≤ k ≤ n, ∀F Ftk −measurable, F ∈ Cp−1,n, F 6= 0, ∃ q′ ∈ {1, . . . , d} s.t.

P
(
∀t ∈]tr−1, tr], Dq′

t Ztk + F = 0 | Ztk > 0
)

= 0. (15)

Define the set

Λ = {(λα)α∈A⊗d
p,n
∈ RA

⊗d
p,n : ∀r ∈ {1, . . . , n}, ∃α s.t. αqr ≥ 1 for some q ∈ {1, . . . , d} and λα 6= 0}.

Then, the function Vp,n is differentiable on the set Λ and the gradient ∇Vp,n is given by

∇Vp,n(λ) = E
[
E
[
Ĥ⊗d(G1, . . . , Gn) | Fti

]
|{i}=I(λ,Z,G)

]
.

We refer the reader to section 5.1 for a detailed discussion on which kinds of models and
payoffs satisfy (15).

Proof. We already know that the function Vp,n is convex. Moreover, for all Z and G, the
function λ 7−→ maxk≤n vp,n(λ, k, Z,G) has a subdifferential given by ∑

i∈I(λ,Z,G)
βiE[Ĥ⊗d(G1, . . . , Gn)|Fti ] : βi ≥ 0, βi FT −measurable s.t.

∑
i∈I(λ,Z,G)

βi = 1


11



Then, the expression of the subdifferential ∂Vp,n(λ) ensues from Bertsekas [1973].

∂Vp,n(λ) =

E

 ∑
i∈I(λ,Z,G)

βiE[Ĥ⊗d(G1, . . . , Gn)|Fti ]

 : βi ≥ 0, βi FT −meas.,
∑
i

βi = 1

 .
It is sufficient to prove for any λ ∈ Λ, the set I(λ, Z,G) is almost surely reduced to a

single value as in this case the subdifferential ∂Vp,n(λ) contains a unique element, which is
then the gradient.

By the equality

{∃ti 6= tk ; vp,n(λ, i;Z,G) = vp,n(λ, k;Z,G)} =
⋃

i<k≤n
{vp,n(λ, i;Z,G) = vp,n(λ, k;Z,G)} ,

it is sufficient to prove that for any i < k ≤ n, P(vp,n(λ, i, Z,G) = vp,n(λ, k, Z,G)) = 0. Fix
i < k and set Xλ = vp,n(λ, k, Z,G) − vp,n(λ, i, Z,G). According to [Nualart, 1998, Theorem
2.1.3], proving that ‖DXλ‖L2([0,T ]) > 0 .a.s ensures that Xλ is absolutely continuous with
respect to the Lebesgue measure on R and hence is almost surely non zero. Note that
‖DXλ‖2L2([0,T ]) =

∫ T
0 |DtXλ|2dt ≥

∫ tk
ti
|DtXλ|2dt.

For t ∈ [0, T ], and 1 ≤ q ≤ d, the Malliavin derivative of Xλ is given by

Dq
tXλ = Dq

t (Ztk − Zti)−D
q
t

 ∑
α∈A⊗d,k

p;n

λαĤ
⊗d
α (G1, . . . , Gn)−

∑
α∈A⊗d,i

p;n

λαĤ
⊗d
α (G1, . . . , Gn)


= Dq

t (Ztk − Zti)−D
q
t

 ∑
α∈A⊗d,i:k

p;n

λαĤ
⊗d
α (G1, . . . , Gn)

 .
Clearly, w.p.1. Dq

tXλ = 0 for all t > tk. Hence,

{Dq
tXλ = 0 ∀t ∈ [0, T ] a.e.} ⊂

⋂
i<r≤k

{Dq
tXλ = 0 ∀t ∈ [tr−1, tr] a.e.} .

From Proposition 2.3, we can deduce that for i < r ≤ k, and t ∈]tr−1, tr]

Dq
tXλ = Dq

t (Ztk) + 1√
h

∑
α∈A⊗d,i:k

p;n ,αq
r≥1

λαĤ
⊗d
α−I(r,q) (G1, . . . , Gn) .

Using the locality of the operator D, we know that a.s Dq
t (Ztk) = 0 for all t ∈]tr−1, tr] on the

set {Ztk = 0}. Hence, we can write for any pair (q, q′) ∈ {1, . . . , d}2

P (∀t ∈]tr−1, tr], DtXλ = 0) ≤ P

 1√
h

∑
α∈A⊗d,i:k

p;n ,αq
r≥1

λαĤ
⊗d
α−I(r,q) (G1, . . . , Gn) = 0, Ztk = 0


+ P

(
∀t ∈]tr−1, tr], Dq′

t Xλ = 0 | Ztk > 0
)
P(Ztk > 0). (16)

Assume λ ∈ Λ and pick the corresponding value of q, then the chaos polynomial
1√
h

∑
α∈A⊗d,i:k

p;n ,αq
r≥1 λαĤ

⊗d
α−I(r,q) (G1, . . . , Gn) is either a non zero constant if p = 1 or it has an

12



absolutely continuous density thanks to Remark 2.7. In both cases, it is a non zero element
of Cp−1,n and

P

 1√
h

∑
α∈A⊗d,i:k

p;n ,αq
r≥1

λαĤ
⊗d
α−I(r,q) (G1, . . . , Gn) = 0

 = 0.

To treat the other term, we pick a q′ ∈ {1, . . . , d} as in (15) and it yields that

P
(
∀t ∈]tr−1, tr], Dq′

t Xλ = 0 | Ztk > 0
)

= 0.

Hence, we deduce from the last two results and (16) that

‖DXλ‖2L2([0,T ]) > 0 a.s.

which ends the proof. �

3.2 The Sample Average Approximation point of view

From (14), we can approximate U0 by solving the minimization problem (13), which admits
at least one solution λ]p,n, ie.

Vp,n(λ]p,n) = inf
λ∈A⊗d

p,n, λ0=0
Vp,n(λ)

where Vp,n defined by (12) is an expectation, which is barely tractable. To practically solve
such a problem, two differently approaches are commonly used. Either, one uses a stochastic
algorithm or one replaces the expectation by a sample average approximation. In this work,
we target large problems, which puts scalability as a primary requirement. The intrinsic
sequential nature of stochastic algorithms has led us to prefer the sample average
approximation approach. Moreover, we are more interested in the value function at the
minimum rather than in its minimizer and unlike stochastic algorithm, standard
optimization algorithms provide both at once.

We introduce the sample average approximation of Vp,n defined by

V m
p,n(λ) = 1

m

m∑
i=1

max
0≤k≤n

vp,n(λ, k;Z(i), G(i))

where (Z(i), G(i))1≤i≤m are i.i.d samples from the distribution of (Z,G).
For large enough m, V m

p,n inherits from the smoothness of Vp,n and is in particular convex
and a.s. differentiable at any point with no zero component. Then, we easily deduce from
Proposition 3.2 that there exits λmp,n such that

V m
p,n(λmp,n) = inf

λ∈RA⊗d
p,n , λ0=0

V m
p,n(λ)

and moreover ∇V m
p,n(λmp,n) = 0. The main difficulty in studying the convergence of V m

p,n(λmp,n)
when m goes to infinity comes from the non compactness of the set RA

⊗d
p,n . To circumvent

this problem, we adapt to non strictly convex problems the technique used in Jourdain and
Lelong [2009].
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Proposition 3.7. The sequence V m
p,n(λmp,n) converges a.s. to Vp,n(λ]p,n) when m→∞. More-

over, the distance between λmp,n and the convex set of minimizers in (13) converges to zero as
m goes to infinity.

Proof. The random function λ ∈ RA
⊗d
p,n 7→ max0≤k≤n vp,n(λ, k;Z,G) is a.s. continuous. For

Λ > 0,

sup
|λ|≤Λ

max
0≤k≤n

vp,n(λ, k;Z,G)

≤ max
0≤k≤n

Ztk + sup
|λ|≤Λ

max
0≤k≤n

∑
α∈A⊗d

p,n

λαE
[
Ĥ⊗dα (G1, . . . , Gn)

∣∣∣Ftk]
≤ max

0≤k≤n
Ztk + Λ sup

|λ|=1
max

0≤k≤n

∑
α∈A⊗d

p,n

λαE
[
Ĥ⊗dα (G1, . . . , Gn)

∣∣∣Ftk]
≤ max

0≤k≤n
Ztk + Λ max

0≤k≤n

∑
α∈A⊗d

p,n

∣∣∣E [Ĥ⊗dα (G1, . . . , Gn)
∣∣∣Ftk]∣∣∣

≤ max
0≤k≤n

Ztk + Λ
∑

α∈A⊗d
p,n

max
0≤k≤n

E
[∣∣∣Ĥ⊗dα (G1, . . . , Gn)

∣∣∣ ∣∣∣Ftk]

≤ max
0≤k≤n

Ztk + Λ
∑

α∈A⊗d
p,n

n∑
k=0

E
[∣∣∣Ĥ⊗dα (G1, . . . , Gn)

∣∣∣ ∣∣∣Ftk] .
The right hand side of the above inequality is integrable. We apply [Rubinstein and Shapiro,
1993, Lemma A1 Chapter 2] to deduce that a.s. V m

p,n converges locally uniformly to Vp,n.
From the proof of the Proposition 3.2, there exits Λ > 0 such that

γ = inf∣∣λ−λ]
p,n

∣∣≥Λ
Vp,n(λ)− Vp,n(λ]p,n) > 0.

The local uniform convergence of V m
p,n to Vp,n ensures that

∃ mγ ∈ N∗, ∀m ≥ mγ , ∀λ s.t.
∣∣∣λ− λ]p,n∣∣∣ ≤ Λ,

∣∣∣V m
p,n(λ)− Vp,n(λ)

∣∣∣ ≤ γ

3 .

For m ≥ mγ and λ such that
∣∣∣λ− λ]p,n∣∣∣ ≥ Λ, we deduce, using the convexity of V m

p,n, that

V m
p,n(λ)−V m

p,n(λ]p,n)

≥

∣∣∣λ− λ]p,n∣∣∣
Λ

V m
p,n

λ]p,n + Λ
λ− λ]p,n∣∣∣λ− λ]p,n∣∣∣

− V m
p,n(λ]p,n)


≥

∣∣∣λ− λ]p,n∣∣∣
Λ

Vp,n
λ]p,n + Λ

λ− λ]p,n∣∣∣λ− λ]p,n∣∣∣
− Vp,n(λ]p,n)− 2γ

3

 ≥ γ

3 .

Since V m
p,n(λmp,n) − V m

p,n(λ]p,n) ≤ 0, we conclude that the above inequality does not hold for
λmp,n, which proves that

∣∣∣λmp,n − λ]p,n∣∣∣ < Λ for m ≥ mγ .

Hence, for m ≥ mγ , it is sufficient to minimize V m
p,n on the compact set {λ :

∣∣∣λ− λ]p,n∣∣∣ ≤
Λ}. Now, we can apply [Rubinstein and Shapiro, 1993, Theorem A1 of Chapter 2] to prove
that V m

p,n(λmp,n) converges to Vp,n(λ]p,n) a.s. when m goes to infinity. The second assertion of
our proposition is discussed right after the proof of Theorem A1 in Rubinstein and Shapiro
[1993]. �
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Although V m
p,n is not twice differentiable and the classical central limit theorem for sample

average approximations cannot be applied, we can study the variance of V m
p,n(λmp,n) and obtain

some asymptotic bounds. Before stating our result, we introduce, for λ ∈ RA
⊗d
p,n , the notation

Mk(λ) = E[Cp,n(λ)|Ftk ] for 0 ≤ k ≤ n. We write M (i)
k (λ) for the value computed using the

sample G(i).

Proposition 3.8. Assume λ]p,n is unique. Then,

1
m

m∑
i=1

(
max

0≤k≤n
Z

(i)
tk
−M (i)

k (λmp,n)
)2
− V m

p,n(λmp,n)2

is a convergent estimator of Var(maxk≤0≤n Ztk −Mk(λ]p,n)) and moreover if λmp,n is bounded,
limm→∞mVar

(
V m
p,n(λmp,n)

)
= Var(maxk≤0≤n Ztk −Mk(λ]p,n)).

Proof. We know that V m
p,n(λmp,n) converges a.s. to Vp,n(λ]p,n). Following the beginning of the

proof of Proposition 3.7, one can easily prove that a.s. the sequence of random functions
ζm : λ 7→ ζm(λ) = 1

m

∑m
i=1

(
max0≤k≤n Z

(i)
tk
−M (i)

k (λ)
)2

converges locally uniformly to the
function λ 7→ E[(max0≤k≤n Ztk −Mk(λ))2]. We have already seen that for large enough m,
we can assume to have solved the optimization problem under a compact constraint. Hence,
we deduce that 1

m

∑m
i=1

(
max0≤k≤n Z

(i)
tk
−M (i)

k (λmp,n)
)2

converges a.s. to E[(max0≤k≤n Ztk −
Mk(λ]p,n))2]. This proves the first statement of the proposition.

As Var
(
V m
p,n(λ]p,n)

)
= m−1 Var(maxk≤0≤n Ztk −Mk(λ]p,n)), it is sufficient to compute

E
[(
V m
p,n(λmp,n)− V m

p,n(λ]p,n)
)2
]

≤ 1
m

m∑
i=1

E
[
max
k

∣∣∣M (i)
k (λmp,n)−M (i)

k (λ]p,n)
∣∣∣2]

≤ 1
m

m∑
i=1

E
[∣∣∣λmp,n − λ]p,n∣∣∣2 max

k

∣∣∣E [Ĥ⊗d(G(i)
1 , . . . , G(i)

n ) | Ftk
]∣∣∣2]

≤ 16
9 E

[∣∣∣λmp,n − λ]p,n∣∣∣4]1/2
E
[∣∣∣Ĥ⊗d(G(i)

1 , . . . , G(i)
n )
∣∣∣4]1/2

where we have used Cauchy Schwartz’ inequality and Doob’s maximal inequality. Then, we
easily conclude that V m

p,n(λmp,n) − V m
p,n(λ]p,n) converges to 0 in L2 if λmp,n is bounded. Hence,

limm→∞Var
(
V m
p,n(λmp,n)

)
−Var

(
V m
p,n(λ]p,n)

)
= 0. �

Proposition 3.8 enables us to monitor the variance of our estimator online as for a standard
Monte Carlo estimator. Even though the terms involved in V m

p,n(λmp,n) are not independent,
the classical variance estimator gives the right result. In practice, one should not feel con-
cerned with the boundedness condition used in the proposition as we know from the proof
of Proposition 3.7 that for large enough m we can impose a compactness constraint to the
optimization problem without changing its result. Hence, one can pragmatically rely on the
proposed variance estimator.
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4 The algorithm
Any optimization algorithm requires to repeatedly compute V m

p,n and therefore the truncated
chaos expansion, which becomes the most time consuming part of our approach as the di-
mension and/or p increase. A lot of computational time can be saved by considering slightly
modified martingales, which only start the first time the option goes in the money.

4.1 An improved set of martingales

We define the first time the option goes in the money by

τ0 = inf{k ≥ 0 : Ztk > 0} ∧ n,

which is a F− stopping time and becomes a G− stopping time when the sequence (Ztk)k is
G− adapted. To consider martingales only starting once the option has been in the money,
we define

Nk(λ) =
k∑
`=1

(M`(λ)−M`−1(λ))1`−1≥τ0 = (Mk(λ)−Mτ0(λ))1k>τ0 = Mk(λ)−Mk∧τ0(λ)

We easily check that N(λ) is a (Ftk)0≤k≤n− martingale. It is clear from the proof proposed
by Rogers [2002] that in the dual price of a Bermudan option (see (1)) the maximum can be
shrunk to the random interval [τ0, n]. Hence, it is sufficient to consider

inf
λ∈RA⊗d

p,n , λ0=0
E
[

max
τ0≤k≤n

(Ztk −Mk(λ))
]
.

Using Doob’s stopping theorem, we have, for any fixed λ,

E
[

max
τ0≤k≤n

(Ztk −Mk(λ))
]

= E
[

max
τ0≤k≤n

(Ztk − (Mk(λ)−Mτ0(λ)))
]

= E
[

max
τ0≤k≤n

(Ztk −Nk(λ))
]
.

We deduce from this equality that minimizing over either set of martingales M(λ) or N(λ)
leads to the same minimum value and that both problems share the same properties, which
justifies why we did not take into account the in–the–money condition for the theoretical
study. However, considering the set of martingales Nλ is far more efficient from a practical
point of view.

In our numerical examples, we modify Vp,n and V m
p,n to take into account this improvement

and consider instead

Ṽp,n(λ) = E
[

max
τ0≤k≤n

(Ztk −Nk(λ))
]

and Ṽ m
p,n(λ) = 1

m

m∑
i=1

max
τ0≤k≤n

(Z(i)
tk
−N (i)

k (λ)).

The idea of using martingales starting from the first time the option goes in the money is
actually owed to Rogers [2002]. Although he did not discuss it much, this was his choice in
the examples he treated.

4.2 Our implementation of the algorithm

To practically compute the infimum of Ṽ m
p,n, we advise to use a gradient descent algorithm, see

Algorithm 1. The efficiency of such an approach mainly depends on the computation of the
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descend direction. When the problem is not twice differentiable, the gradient at the current
point is used as a descent direction but it often needs to be scaled, which makes the choice
of the step size α` a burning issue to ensure a fast numerical convergence. We refer to Boyd
et al. [2003] for a comprehensive survey of several step size rules. After many tests, we found
that the step size rule proposed by Polyak [1987] was the best in our context

α` =
Ṽ m
p,n(x`)− v]∥∥∥∇Ṽ m

p,n(x`)
∥∥∥2

where v] is the price of the American option we are looking for. In practice, we use the price
of the associated European option instead of v], which makes α` too large and explains the
need of the magnitude factor γ. The value of the European price does not need to be very
accurate. A decent and fast approximation can be computed with a few thousand samples
within few seconds no matter the dimension of the problem.

1 Generate (G(1), Z(1)), . . . , (G(m), Z(m)) m i.i.d. samples following the law of (Z,G) ;
2 x0 ← 0 ∈ RA

⊗d
p,n ;

3 `← 0, γ ← 1, d0 ← 0, v0 ←∞ ;
4 while True do
5 Compute v`+1/2 ← Ṽ m

p,n(x` − γα`d`) ;
6 if v`+1/2 < v` then
7 x`+1 ← x` − γα`d` ;
8 v`+1 ← v`+1/2 ;
9 d`+1 ← ∇Ṽ m

p,n(x`+1) ;
10 if |v`+1−v`|

v`
≤ ε then return;

11 else
12 γ ← γ/2 ;
13 end
14 end

Algorithm 1: Sample Average Approximation of the dual price

To better understand how this algorithm works, it is important to note that as N(λ)
linearly depends on λ, N(λ) = λ · ∇λN(λ) and therefore both the value function and its
gradient are computed at the same time without extra cost. So, ∇Ṽ m

p,n(x`+1) is not actually
computed on line 9 but at the same time as v`+1/2 on line 5.

The HPC approach. Our method targets large problems with as many as several thou-
sands of components for λ. This requires to design a scalable algorithm capable of making
the most of cluster architectures with hundreds of nodes. At each iteration, the computation
of Ṽ m

p,n and ∇Ṽ m
p,n is nothing but a standard Monte Carlo method and it inherits from its

embarrassingly parallel nature.
A parallel algorithm for distributed memory systems based on the master/slave paradigm

is proposed in Algorithm 2. At the beginning, each process samples a bunch of the m paths
(lines 1–3). Then, at each iteration the master process broadcasts the value of d`, x`, α` and
γ (line 7 of Algorithm 1). With these new values, each process computes its contribution
to Ṽ m

p,n(x` − γα`d`) and ∇Ṽ m
p,n(x` − γα`d`) (lines 8–9) and the Monte Carlo summations are
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1 In parallel do
2 Generate (G(1), Z(1)), . . . , (G(m), Z(m)) m i.i.d. samples following the law of (Z,G)
3 end
4 x0 ← 0 ∈ RA

⊗d
p,n ;

5 `← 0, γ ← 1, d0 ← 0, v0 ←∞ ;
6 while True do
7 Broadcast x`, d`, γ, α`;
8 In parallel do
9 Compute maxτ0≤k≤n(Z(i)

tk
−N (i)

k (x` − γα`d`)) for i = 1, . . . ,m
10 end
11 Make a reduction of the above contributions to obtain Ṽ m

p,n(x` − γα`d`) and
∇Ṽ m

p,n(x` − γα`d`);
12 v`+1/2 ← Ṽ m

p,n(x` − γα`d`) ;
13 if v`+1/2 < v` then
14 x`+1 ← x` − γα`d` ;
15 v`+1 ← v`+1/2 ;
16 d`+1 ← ∇Ṽ m

p,n(x`+1) ;
17 if |v`+1−v`|

v`
≤ ε then return;

18 else
19 γ ← γ/2 ;
20 end
21 end
Algorithm 2: Parallel implementation of the Sample Average Approximation of the
dual price

obtained by two simple reductions (line 11). Then, the master process tests whether the
move is admissible and updates the parameter for the next iteration or returns the solution
if the algorithm is not moving enough anymore. This part carried out by the master process
is very fast compared to the rest of the code and we dare say that there is no centralized
computation in our algorithm. Moreover the communications are reduced to fours broadcasts,
which guarantees an almost perfect very good scalability. The number of communications is
monitored by the number of function evaluations, which remains quite small (between 10 and
20). We study the efficiency of our algorithm on a few examples at the end of Section 5.

Study of the complexity. Most of the computational time is spent computing the mar-
tingale part; remember that the cardinality of Cp,n is given by

(nd+p
nd

)
= (nd+p)...(nd+1)

p! . Using
martingales only starting once the option has been in the money enables us to only compute
the martingale part on paths going in the money strictly before maturity time. Depending
on the product, this may allow for saving a lot of computational time. The complexity of one
iteration of the loop line 3 in Algorithm 1 is proportional to

]{paths in the money strictly before T} ×
(
nd+ p

nd

)
.

The payoffs are computed once and for all before starting the descent algorithm. It is worth
noting that its computational cost becomes negligible compared to the optimization part when
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the dimension of the model or the number of dates increase, the most demanding computation
being the evaluation of the martingale decomposition.

5 Applications

5.1 Some frameworks satisfying the assumption of Proposition 3.6

Let (rt)t be the instantaneous interest rate supposed to be deterministic.

5.1.1 A put basket option in the multi–dimensional Black Scholes model

The d−dimensional Black Scholes model writes fori j ∈ {1, . . . , d}

dSjt = Sjt ((rt − δj)dt+ σjLjdBt)

where W is a Brownian motion with values in Rd, σt = (σ1
t , . . . , σ

d
t ) is the vector of volatil-

ities, assumed to be deterministic and positive at all times, δ = (δ1, . . . , δd) is the vector of
instantaneous dividend rates and Lj is the j-th row of the matrix L defined as a square root
of the correlation matrix Γ, ie. Γ = LL′. Moreover, we assume that L is lower triangular.
Clearly, for every t, the random vector St is an element of D1,2.

The payoff of the put basket option writes as φ(St) =
(
K −

∑d
i=1 ω

jSjt

)
+

where ω =
(ω1, . . . , ωd) is a vector of real valued weights. The function φ is Lipschitz continuous and
hence φ(St) ∈ D1,2 for all t. Moreover, for s ≤ t and q ∈ {1, . . . , d}, we have on the set
{φ(St) > 0}

Dq
sφ(St) =

d∑
j=1

ωjSjt σ
jLj,q.

In particular for q = d, we get Dd
sφ(St) = ωdSdt σ

dLd,d.
Let 1 ≤ k ≤ n and F be a non zero and Ftk−measurable element of Cp−1,n, ie.

F =
∑

α∈A⊗d,k
p−1,n

λαĤ
⊗d
α (G1, . . . , Gn)

for some λ ∈ RA
⊗d
p,n . Let 1 ≤ r ≤ k.

P
(
∀t ∈]tr−1, tr], Dd

t φ(Stk) + F = 0 | φ(Stk) > 0
)

= P
(
∀t ∈]tr−1, tr], ωdSdtkσ

d
tLd,d + F = 0 | φ(Stk) > 0

)
≤

P
(
∀t ∈]tr−1, tr], ωdSdtkσ

d
tLd,d + F = 0

)
P(φ(Stk) > 0) . (17)

If p = 1, then F is a deterministic non zero constant. In this case, the numerator vanishes
because Sdtk has a density. Assume p ≥ 2, then F is a multivariate polynomial with global
degree p− 1 ≥ 1. Then we can find ` ∈ {1, . . . , k}, q ∈ {1, . . . , d} and α such that αq` ≥ 1 and
λα 6= 0. Let Ĝ be the sigma algebra generated by (Gji , 1 ≤ i ≤ k, 1 ≤ j ≤ d, (i, j) 6= (`, q)).

P
(
∀t ∈]tr−1, tr], ωdSdt σdtLd,d + F = 0

)
= E

[
P
(
∀t ∈]tr−1, tr], ωdSdt σdtLd,d + F = 0 | Ĝ

)]
.
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Conditioning on Ĝ, the random variable ωdSdt σdtLd,d + F only depends on Gq` . Consider the
algebraic equation for x ∈ R

a ebx+c = P (x) (18)

where (a, b, c) ∈ R3, a 6= 0, b 6= 0 and P is polynomial with degree p − 1 ≥ 1. Let
f(x) = a ebx+c−P (x), f (p)(x) = abp ebx+c. Clearly, f (p) never vanishes, which ensures
that f has at most p different roots. Hence, we deduce that for any t ∈]tr−1, tr],
P
(
ωdSdt σ

d
tLd,d + F = 0 | Ĝ

)
= 0. Combining this result along with (17) proves that Equa-

tion (15) holds in this setting.

5.1.2 A put option on the minimum of a basket in the multi–dimensional Black
Scholes model

We use the notation of the previous example. The payoff of the put option on the minimum
of d assets write φ(St) = (K − minj(Sjt ))+. One can prove by induction on d that the
function x ∈ Rd 7−→ minj(xj) is 1−Lipschitz for the 1−norm on Rd. Hence, as the positive
part function is also Lipschitz, the payoff function φ is Lipschitz. Then, [Nualart, 1998,
Proposition 1.2.4] yields that for all t ∈ [0, T ], φ(St) ∈ D1,2 and for all q ∈ {1, . . . , d},

Dq(φ(St)) =
d∑
j=1

∂xjφ(St)Dq(Sjt ) =
d∑
j=1

∂xjφ(St)Sjt σjLj,q.

With our choice for the matrix L,

Dd(φ(St)) = ∂xdφ(St)Sdt σdLd,d = −Sdt σdLd,d1φ(St)>01minj(Sj
t )=Sd

t
.

Let 1 ≤ k ≤ n and F be a non zero and Ftk−measurable element of Cp−1,n. For 1 ≤ r ≤ k,

P
(
∀t ∈]tr−1, tr], Dd

t φ(Stk) + F = 0 | φ(Stk) > 0
)

= P
(
∀t ∈]tr−1, tr], −Sdt σdLd,d + F = 0 | φ(Stk) > 0, min

j
(Sjt ) = Sdt

)
P
(

min
j

(Sjt ) = Sdt

)
+ P

(
∀t ∈]tr−1, tr], F = 0 | φ(Stk) > 0, min

j
(Sjt ) 6= Sdt

)
P
(

min
j

(Sjt ) 6= Sdt

)
Clearly, the second term in the above sum is zero as F has a density. Hence,

P
(
∀t ∈]tr−1, tr], Dd

t φ(Stk) + F = 0 | φ(Stk) > 0
)
≤

P
(
∀t ∈]tr−1, tr], −Sdt σdLd,d + F = 0

)
P(φ(Stk) > 0) .

We conclude as in the case of the put basket option.

5.1.3 A put option in the Heston model

The Heston model can be written

dSt = St(rtdt+
√
σt(ρdW 1

t +
√

1− ρ2dW 2
t )

dσt = κ(θ − σt)dt+ ξ
√
σtdW

1
t .

For s ≤ t, D2
sSt = St

√
1− ρ2√σt. Conditionally on W 1, D2

sSt writes as a ebW 2
t +c and we can

unfold the same reasoning as after (18).
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5.2 Numerical experiments

In this part, we present results obtained from a sequential implementation of our approach as
described in Algorithm 1. The computations are run on a standard laptop with an Intel Core
i5 processor 2.9 Ghz. For each experiment, we report the price obtained using Algorithm 1
along with its computational time and standard deviation.

5.2.1 Examples in the Black Scholes models

We consider the d−dimensional Black Scholes as presented in Section 5.1.1. For the sake of
simplicity in choosing the parameters, we have decide to use the same correlation between all
the assets, which amounts to considering the following simple structure for Γ.

Γ =


1 ρ . . . ρ

ρ 1 . . . ...
... . . . . . . ρ
ρ . . . ρ 1


where ρ ∈]− 1/(d− 1), 1] to ensure that Γ is positive definite.

A basket option in the Black–Scholes model. We consider a put option on several
assets as presented in Section 5.1.1. We report in Table 1 the price obtained with our ap-
proach for m = 20, 000. The last column reference price corresponds to the prices reported
in Schoenmakers et al. [2013] on the same examples. These reference prices were obtained
within a few minutes according to the authors whereas here we manage to get similar values
within a few seconds. We can see that a second order chaos expansion, p = 2, already gives
very accurate results within a few tenths of a second for a 5−dimensional problem with 6
dates, which proves the impressive efficiency of our approach.

p n S0 price Stdev time (sec.) reference price
2 3 100 2.27 0.029 0.17 2.17
3 3 100 2.23 0.025 0.9 2.17
2 3 110 0.56 0.014 0.07 0.55
3 3 110 0.53 0.012 0.048 0.55
2 6 100 2.62 0.021 0.91 2.43
3 6 100 2.42 0.021 14 2.43
2 6 110 0.61 0.012 0.33 0.61
3 6 110 0.55 0.008 10 0.61

Table 1: Prices for the put basket option with parameters
T = 3, r = 0.05, K = 100, ρ = 0, σj = 0.2, δj = 0, d = 5,
ωj = 1/d.

A call on the maximum of d assets in the Black–Scholes model. We consider a call
option on the maximum of d assets in the Black Scholes model. As in the previous example,
the last column reference price corresponds to the prices reported in Schoenmakers et al.
[2013] on the same examples. With no surprise, the computational times reported in Table 2
increase exponentially with the dimension n × d and the degree p. Whereas a second order
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d p m S0 price Stdev time (sec.) reference price
2 2 20, 000 90 10.18 0.07 0.4 8.15
2 3 20, 000 90 8.5 0.05 4.1 8.15
2 2 20, 000 100 16.2 0.06 0.54 14.01
2 3 20, 000 100 14.4 0.06 5.6 14.01
5 2 20, 000 90 21.2 0.09 2 16.77
5 3 40, 000 90 16.3 0.05 210 16.77
5 2 20, 000 100 30.7 0.09 3.4 26.34
5 3 40, 000 100 26.0 0.05 207 26.34

Table 2: Prices for the call option on the maximum of d
assets with parameters T = 3, r = 0.05, K = 100, ρ = 0,
σj = 0.2, δj = 0.1, n = 9.

expansion provides very accurate results for the basket option, it only gives a rough upper–
bound for the call option on the maximum of d assets. Considering a third order expansion
p = 3 takes far longer but enables us to get very tight upper–bounds.

A geometric basket option in the Black–Scholes model Benchmarking a new method
on high dimensional products becomes hardly feasible as almost no high dimensional American
options can be priced accurately in a reasonable time. An exception to this is the geometric
option with payoff (K − (

∏d
j=1 S

j
t )1/d)+ for the put option. Easy calculations show that

the price of this d−dimensional option equals the one of the 1−dimensional option with
parameters

Ŝ0 =

 d∏
j=1

Sj0

1/d

; σ̂ = 1
d

√∑
i,j

σiσjΓij ; δ̂ = 1
d

d∑
j=1

(
δj + 1

2(σj)2
)
− 1

2(σ̂)2.

Table 3 summarizes the correspondence values used in the examples.

d S0 σ ρ Ŝ0 σ̂ δ̂

2 100 0.2 0 100 0.14 0.01
10 100 0.3 0.1 100 0.131 0.036
40 100 0.3 0.1 100 0.105 0.039

Table 3: Correspondence table for the parameters of the ge-
ometric options with δj = 0.

The 1−d price is computed using a tree method with several thousand steps. We can see in
Table 4 that a second order approximation gives very accurate result within a few seconds for
an option with 10 underlying assets, which proves the efficiency of our approach. We cannot
beat the curse of dimensionality, which slows down of algorithm for very large problems. For
an option on 40 assets, we obtain a price up to a 3% relative error within 3 minutes which is
already very fast for such a high dimensional problem. The number of terms involved in the
chaos expansion can become very large: for d = 40 and p = 2, there are 65340 elements in
Cp,n. Even though we are not working in a linear algebra framework, it is advisable to ensure
that the number of samples m used in the sample average approximation is larger than the
number of free parameters in the optimization problem. When m becomes too small, we may
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d σj ρ p m price Stdev time(sec) 1−d price
2 0.2 0 2 5000 4.32 0.04 0.018 4.20
2 0.2 0 3 5000 4.15 0.04 1.3 4.20
10 0.3 0.1 1 5000 5.50 0.06 0.12 4.60
10 0.3 0.1 2 20000 4.55 0.02 17 4.60
40 0.3 0.1 1 10000 4.4 0.03 1.4 3.69
40 0.3 0.1 2 20000 3.61 0.02 170 3.69

Table 4: Prices for the geometric basket put option with
parameters T = 1, r = 0.0488 (it corresponds to a 5% annual
interest rate), K = 100, δj = 0, n = 9.

face an over–fitting phenomenon as the number of parameters is far too large compared to
the information contained in the sample average approximation. This probably explains why
the price obtained for p = 2, d = 40 and m = 40 is slightly smaller than the true price.

In the next paragraph, we test the scalability of Algorithm 2 on this particular examples
for a larger number of samples.

5.2.2 Scalability of the parallel algorithm

We consider the 40−dimensional geometric put option studied in Table 4 with p = 2 and
test the scalability of our parallel implementation for m = 200, 000. The tests are run on a
BullX DLC supercomputer containing 190 nodes for a total of 3204 CPU cores. We report in
Table 5 the results of our scalability study using from 1 to 512 cores. Despite the two levels of
parallelism available on this supercomputer, we have used a pure MPI implementation without
any reference to multithread programming. We could probably have improved the efficiency
a bit using two levels of parallelism, but the results are already convincing enough and do
not justify the need of a two level approach, which makes the implementation more delicate.
The sequential Algorithm runs within one hour and a quarter whereas using 512 cores we
manage to get the computational time down to a dozen of seconds, which corresponds to a
0.6 efficiency. Considering the so short wall time required by the run on 512 cores, keeping the
efficiency at this level represents a great achievement. Note that with 128 cores, the code runs
within a minute with an efficiency of three quarters. These experiments prove the impressive
scalability of our algorithm.

6 Conclusion
We have proposed a purely dual algorithm to compute the price of American or Bermudan
options using some stochastic optimization tools. The starting point of our algorithm is
the use of Wiener chaos expansion to build a finite dimensional vector space of martingales.
Then, we rely on a sample average approximation to effectively optimize the coefficients of
the expansion. Our algorithm is very fast: for problems up to dimension 5, a price is obtained
within a few seconds, which is a tremendous improvement compared to existing purely dual
methods. For higher dimensional problems, we can use a very scalable parallel algorithm
to tackle very high dimensional problems (40 underlying assets). We can transparently deal
with complex path–dependent payoffs without any extra computational cost. Event though,
we restricted to a Brownian setting in this work, our approach could easily be extended to
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#processes time (sec.) efficiency
1 4365 1
2 2481 0.99
4 1362 0.90
16 282 0.84
32 272 0.75
64 87 0.78
128 52 0.73
256 34 0.69
512 10.7 0.59

Table 5: Scalability of Algorithm 2 on the 40−dimensional
geometric put option described above with T = 1, r =
0.0488, K = 100, σj = 0.3, ρ = 0.1, δj = 0, n = 9, p = 2.

jump diffusion models by introducing Poisson chaos expansion, which is linked to Charlier
polynomials (see Geiss and Labart [2016]). We believe that our approach could be improved
by cleverly reducing the number of terms in the chaos expansion, the computation of which
centralizes most of the effort.

References
L. Abbas-Turki, S. Vialle, B. Lapeyre, and P. Mercier. Pricing derivatives on graphics pro-
cessing units using monte carlo simulation. Concurrency and Computation: Practice and
Experience, 26(9):1679–1697, 2014.

L. Andersen and M. Broadie. Primal-dual simulation algorithm for pricing multidimensional
american options. Management Science, 50(9):1222–1234, 2004.

V. Bally and G. Pages. A quantization algorithm for solving multidimensional discrete-time
optimal stopping problems. Bernoulli, 9(6):1003–1049, 2003.

D. Belomestny. Solving optimal stopping problems via empirical dual optimization. Ann.
Appl. Probab., 23(5):1988–2019, 2013.

D. Belomestny, C. Bender, and J. Schoenmakers. True upper bounds for Bermudan products
via non-nested Monte Carlo. Math. Finance, 19(1):53–71, 2009.

D. P. Bertsekas. Stochastic optimization problems with nondifferentiable cost functionals. J.
Optimization Theory Appl., 12:218–231, 1973.

S. Boyd, L. Xiao, and A. Mutapcic. Subgradient methods. lecture notes of EE392o, Stanford
University, Autumn Quarter, 2004:2004–2005, 2003.

P. Briand and C. Labart. Simulation of BSDEs by Wiener Chaos Expansion. Annals of
Applied Probability, 24(3):1129–1171, 2014.

M. Broadie and P. Glasserman. A stochastic mesh method for pricing high-dimensional
american options. Journal of Computational Finance, 7:35–72, 2004.

24



J. F. Carriere. Valuation of the early-exercise price for options using simulations and non-
parametric regression. Insurance: mathematics and Economics, 19(1):19–30, 1996.

M. H. A. Davis and I. Karatzas. A deterministic approach to optimal stopping. In Probability,
statistics and optimisation, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., pages
455–466. Wiley, Chichester, 1994.

V. Dung Doan, A. Gaiwad, M. Bossy, F. Baude, and I. Stokes-Rees. Parallel pricing algorithms
for multimensional bermudan/american options using Monte Carlo methods. Mathematics
and Computers in Simulation, 81(3):568–577, 2010.

C. Geiss and C. Labart. Simulation of BSDEs with jumps by wiener chaos expansion. Stochas-
tic Processes and their Applications, 2016. URL http://dx.doi.org/10.1016/j.spa.
2016.01.006.

F. Jamshidian. The duality of optimal exercise and domineering claims: a Doob-Meyer
decomposition approach to the Snell envelope. Stochastics, 79(1-2):27–60, 2007.

B. Jourdain and J. Lelong. Robust Adaptive Importance Sampling for Normal Random
Vectors. Ann. Appl. Probab., 19(5):1687–1718, 2009.

A. Kolodko and J. Schoenmakers. Upper bounds for bermudan style derivatives. Monte Carlo
Methods and Applications mcma, 10(3-4):331–343, 2004.

F. Longstaff and R. Schwartz. Valuing American options by simulation : A simple least-square
approach. Review of Financial Studies, 14:113–147, 2001.

D. Nualart. Analysis on Wiener space and anticipating stochastic calculus. In B. Springer-
Verlag, editor, Lectures on Probability Theory and Statistics (Saint- Flour, 1995), pages
123–227. 1998.

B. T. Polyak. Introduction to optimization. Optimization Software, 1987.

L. C. G. Rogers. Monte Carlo valuation of American options. Math. Finance, 12(3):271–286,
2002.

L. C. G. Rogers. Dual valuation and hedging of Bermudan options. SIAM J. Financial Math.,
1:604–608, 2010.

R. Y. Rubinstein and A. Shapiro. Discrete event systems. Wiley Series in Probability and
Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Ltd.,
Chichester, 1993. ISBN 0-471-93419-4. Sensitivity analysis and stochastic optimization by
the score function method.

J. Schoenmakers. Robust Libor modelling and pricing of derivative products. CRC Press,
2005.

J. Schoenmakers, J. Zhang, and J. Huang. Optimal dual martingales, their analysis, and
application to new algorithms for bermudan products. SIAM Journal on Financial Math-
ematics, 4(1):86–116, 2013.

J. A. Tilley. Valuing american options in a path simulation model. Transactions of the Society
of Actuaries, 45(83):104, 1993.

25

http://dx.doi.org/10.1016/j.spa.2016.01.006
http://dx.doi.org/10.1016/j.spa.2016.01.006


J. Tsitsiklis and B. V. Roy. Regression methods for pricing complex American-style options.
IEEE Trans. Neural Netw., 12(4):694–703, 2001.

26


	Introduction
	Wiener chaos expansion
	General framework in dimension one
	Multi–dimensional chaos expansion

	Pricing American options using Wiener chaos expansion and sample average approximation
	A stochastic optimization approach
	Convergence results
	Regularity of the optimization problem

	The Sample Average Approximation point of view

	The algorithm
	An improved set of martingales
	Our implementation of the algorithm

	Applications
	Some frameworks satisfying the assumption of Proposition 3.6
	A put basket option in the multi–dimensional Black Scholes model
	A put option on the minimum of a basket in the multi–dimensional Black Scholes model
	A put option in the Heston model

	Numerical experiments
	Examples in the Black Scholes models
	Scalability of the parallel algorithm


	Conclusion

