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In the context of the expansion of actors and active objects, we are still facing a gap between the safety guaranteed by modelling and verification languages and the efficiency of distributed middlewares. In this paper, we reconcile two active object-based languages, ABS and ProActive, that respectively target the aforementioned goals. We compile ABS programs into ProActive, making possible to benefit from the strengths of both languages, while requiring no modification on the source code. After introducing the translational semantics, we establish the properties and the correctness of the translation. Overall, this paper presents an approach to running different active object models in distributed environments, and more generally studies the implementation of programming languages based on active objects.

From Modelling to Systematic Deployment of Distributed Active Objects -Extended Version

Résumé : Dans le contexte de l'expansion des acteurs et des objets actifs, il existe toujours un écart visible entre la sûreté garantie par les langages de modélisation et de vérification, et l'efficacité des intergiciels distribués. Dans cet article, nous proposons de réconciler deux langages de programmation à objets actifs, ABS et ProActive, qui ciblent respectivement les deux objectifs précédents. En compilant des programmes ABS vers des programmes ProActive, il est possible de bénéficier des avantages des deux langages, sans requérir de modifications dans le code source ABS. Après avoir introduit la sémantique translationnelle, nous établissons la correction de la traduction. Plus généralement, cet article étudie l'implantation efficace des langages de programmation à objets actifs.
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Introduction

Writing distributed and concurrent applications is a challenging task. In distributed environments, the absence of shared memory makes information sharing more di cult. In concurrent environments, data sharing is easy but shared data must be manipulated with caution. Several languages and tools have been developed to handle those two programming challenges and make distributed and concurrent systems safe by construction. Among them, the active object programming model [START_REF] Lavender | Active object: an object behavioral pattern for concurrent programming[END_REF] helps building safe multi-core applications in objectoriented programming languages. The active object model derives from the actor model [START_REF] Agha | Concurrent programming using actors[END_REF] that is particularly regaining popularity with Scala [START_REF] Haller | Scala actors: Unifying thread-based and event-based programming[END_REF] and Akka1 . Such models are natively adapted to distribution because entities do not share memory and behave independently from each other.

There exist now several programming languages implementing and enhancing in various ways the active object and actor models. In particular, emerging active object languages, like the Abstract Behavioral Specification language [START_REF] Johnsen | ABS: A core language for abstract behavioral specification[END_REF] (hereafter ABS), provide various programming abstractions or static guarantees that help the developer designing and implementing robust distributed systems. Among existing implementations of active objects, ProActive 2 is a Java middleware implementing multi-threaded active objects that provides a holistic support for deployment and execution of active objects on distributed infrastructures. This paper reconciles cooperative active object languages by translating their main concurrent paradigms into ProActive, thus benefiting from its support for deployment. We illustrate our approach on ABS, which has a wide support for modelling and verification. We translate all the concurrent object layer of ABS into ProActive. We also introduce in this paper Multiasp, a formal language that models ProActive, in order to verify the translation.

Beyond the generic high-level approach to cross-translating active object languages, the practical contribution of this paper is a ProActive backend for ABS, that automatically translates an ABS application into a distributed ProActive application. As a result, the programmer can design and verify his program using the powerful toolset of ABS, and then generate e cient distributed Java code that runs with ProActive. The proof of correctness of the translation ensures the equivalence of execution in terms of the operational semantics. Consequently, it guarantees that the verified properties dealing with the program behaviour (e.g. absence of deadlocks, typing properties) will still be valid. Our approach requires no change in the ABS code except the minimal (required) deployment information. Overall, our contribution can be summarised in four points:

-We analyse existing active object programming paradigms in Section 2.

-We provide Multiasp, a class-based semantics of the multi-threaded active objects featured in ProActive in Section 3. -We present a systematic strategy to translate active objects with cooperative scheduling into ProActive, and present more specifically the ProActive backend for ABS in Section 4. The translation is formalised in Section 5. -We prove translation equivalence in Section 6 and highlight similarities and di↵erences between active object models. In particular the proof of equivalence reveals intrinsic di↵erences between explicitly typed futures and transparent first-class futures.

Background and Related Works

The actor model was one of the first to schematically consider concurrent entities evolving independently and communicating via asynchronous messages. Later on, active objects have been designed as the object-oriented counterpart of the actor model. The principle of active objects is to have a thread associated to them. We call this notion activity: a thread together with the objects managed by this thread. Objects from di↵erent activities communicate with remote method invocations: when a method is invoked on a remote active object, this creates a request in the remote activity; the invoker continues its execution while the invoked active object serves the request asynchronously. Requests wait in a request queue until they are executed. In order to allow the invoker to continue execution, a placeholder for the expected result is created, known as future [START_REF] Flanagan | The semantics of future and its use in program optimization[END_REF]: an empty object that will later be filled by the result of the request. When the value of a future is known, we say that it is resolved.

Design choices for active object-based languages

Implementing active objects raises the three following questions:

How are objects associated to activities? In uniform active object models, all objects are active and have their own execution thread (e.g. Creol [START_REF] Johnsen | Creol: A type-safe object-oriented model for distributed concurrent systems[END_REF]). This model is distinguished from non uniform active object models which feature active and passive objects (e.g. ASP [START_REF] Caromel | A Theory of Distributed Objects[END_REF]). Each passive object is a normal object not equipped with any thread nor request queue; there is no race condition on the access to passive object because each of them is accessible by a single active object. In practice, non uniform active object models are more scalable, but they are trickier to formalise than uniform active object models. A trade-o↵ between those two models appeared with JCoBox [START_REF] Schäfer | JCoBox: Generalizing active objects to concurrent components[END_REF] that introduced the active object group model, where all objects are accessible from any object, but where objects of the same group share the same execution thread.

How are requests scheduled? The way requests are executed in active objects depends on the threading model used. In the original programming model, active objects are mono-threaded. With cooperative scheduling like in Creol, requests in execution can be paused on some condition (e.g. awaiting on the resolution of a future), letting another request progress in the meantime. In all cooperative active object languages, while no data race is possible, interleaving of the di↵erent request services (triggered by the di↵erent release points) makes the behaviour more di cult to predict than for the mono-threaded model. Still, the previous models are ine cient on multi-cores and can lead to deadlocks due to reentrant calls and/or inadequately placed release points. Newest active object models like multiactive objects [START_REF] Henrio | Multi-threaded active objects[END_REF] and Encore [START_REF] Brandauer | Parallel objects for multicores: A glimpse at the parallel language Encore[END_REF] feature controlled multi-threading. Such active object models succeed in maximising local parallelism while avoiding communication overhead, thanks to shared memory between the di↵erent threads [START_REF] Henrio | Multi-threaded active objects[END_REF]. Also, controlled multi-threading prevents many deadlocks in active object executions.

Is the programmer aware of distributed aspects? Existing implementations of active objects either choose to hide asynchrony and distribution or, on the contrary to use an explicit syntax for handling asynchronous method calls and to use an explicit type for handling futures. This makes the programmer aware of where synchronisation occurs, but consequently requires more expertise. The choice of transparency also impacts the language possibilities, like future reference transmission: it is easier to transmit futures between active objects when no specific future type is used, and the programmer does not have to know how many future indirections have to be unfolded to get the final value.

Overview of active object-based languages

Creol [START_REF] Johnsen | Creol: A type-safe object-oriented model for distributed concurrent systems[END_REF] is a uniform active object language that features cooperative scheduling based on await operations that can release the execution thread. In this language, asynchronous invocations and futures are explicit, and futures are not transmitted between activities. Creol in [START_REF] Boer | A complete guide to the future[END_REF]. Overall, explicit future access, explicit release points, and explicit asynchronous calls make Creol rich and precise but also more di cult to program than the languages featuring more transparency.

JCoBox [START_REF] Schäfer | JCoBox: Generalizing active objects to concurrent components[END_REF] is an active object programming model implemented in a language based on Java. It has an object group model, called CoBox, and also features cooperative scheduling. In each CoBox, a single thread is active at a time; it can be released using await(). JCoBox better addresses practical aspects than Creol: it is integrated with Java and the object group model improves thread scalability, however JCoBox does not support distributed execution. Thread interleaving is similar and has the same advantages and drawbacks as in Creol.

AmbientTalk [START_REF] Dedecker | Ambient-oriented programming in ambienttalk[END_REF] is an object-oriented distributed programming language that can execute on the JVM. One original aspect of AmbientTalk is that a future access is a non-blocking operation: it is an asynchronous call that returns another future; the call will be performed when the invoked future is resolved. The AmbientTalk future model forces two activities to coordinate only through callbacks. This inversion of control has the advantage to avoid deadlocks but also breaks the program into independent procedures where sequences of instructions are di cult to enforce.

ABS [START_REF] Johnsen | ABS: A core language for abstract behavioral specification[END_REF] is an active object-based language that targets modelling of distributed applications. The fragment of the ABS syntax regarding the concurrent object layer is shown on Figure 1. ABS has an object group model, like JCoBox, based on the notion of concurrent object group (hereafter cog). Asynchronous method calls and futures are explicit:

1 Fut<V> future = object!method(); In those examples, the execution thread is released if the future is not resolved or if the condition is not fulfilled. ABS also features a get accessor to retrieve a future's value; it blocks the execution thread until the future is resolved:

V v = future. ;
The ABS tool suite3 provides a wide variety of static verification engines that help designing safe distributed and concurrent applications. Those engines include a deadlock analyser [START_REF] Giachino | A framework for deadlock detection in ABS[END_REF], a resource and cost analyser for cloud environments [START_REF] Albert | SACO: Static analyzer for concurrent objects[END_REF], and general program properties verification with the ABS-Key tool [START_REF] Din | KeY-ABS: A deductive verification tool for the concurrent modelling language abs[END_REF].

The ABS tool suite also includes a frontend compiler and several backend translators into various programming languages. The Java backend for ABS translates ABS programs into concurrent Java code that runs on a single machine. The Haskell backend for ABS [START_REF] Bezirgiannis | SOFSEM 2016, chapter ABS: A High-Level Modeling Language for Cloud-Aware Programming[END_REF] performs the translation into distributed Haskell code. The ABS semantics is preserved thanks to the thread continuation support of Haskell, which is not supported on the JVM. ASP and ProActive. Asynchronous Sequential Processes (ASP) [START_REF] Caromel | A Theory of Distributed Objects[END_REF] is a monothreaded active object programming language that has a non-uniform object model. In ASP, active objects are transparent to the programmer and futures are created and manipulated implicitly. A wait-by-necessity is triggered upon access to an unresolved future. Futures are first class: they are transparently passed and updated across activities. ProActive is the Java library that implements ASP. ProActive is a middleware that supports application deployment on distributed infrastructures such as clusters, grids and clouds. The program below creates explicitly an active object using newActive instead of new. The variable v stores an implicit future that is the result of a (transparent) asynchronous call.

T t = PAActiveObject.newActive(T. , parameters, node); V v = t.bar(); o.foo(v); // does not block even if v is unresolved (o is any active or passive object) v.foobar(); // blocks if v is unresolved Recently, ProActive integrated multiactive objects [START_REF] Henrio | Multi-threaded active objects[END_REF] to enable multi-threaded request processing. Multiasp, presented in the next section, is an update of ASP and thus formalises the new version of ProActive. In practice, a programmer declares which requests of an active object can safely be executed in parallel, namely which requests are compatible, as shown in the following example:

(name="group1", selfCompatible= )

(name="group2", selfCompatible= ) ({"group1", "group2"}) MyClass { ("group1") ... method1(...) { ... } ("group2") ... method2(...) { ... } }

In this example, a request for method1 can be executed at the same time as a request for method2, but two requests for method2 cannot be executed at the same time. With similar annotations, it is also possible to set a limit on the number of threads running in parallel [START_REF] Henrio | Declarative Scheduling for Active Objects[END_REF]. The limit can be applied in two ways: a hard limit restrains the overall number of threads whereas a soft limit only counts threads that are not in wait-by-necessity. Encore. Encore [START_REF] Brandauer | Parallel objects for multicores: A glimpse at the parallel language Encore[END_REF] is an active object-based parallel language currently in development. Encore features active and passive objects but even if passive objects are private by default, they can be shared at di↵erent scales depending on qualifying keywords. Asynchronous calls are transparent for active objects (by default) but futures are explicit, using a dedicated type. Finally, an active object has a single thread of execution by default, but parallelism is automatically created by attaching callbacks to future updates and using parallel combinators.

Positioning of this work

The reason why there are many di↵erent implementations of the active object programming model is to better fit particular objectives, from reasoning about programs to optimised program execution. Implementations that focus on the deployment of real-world systems comply to constraints related to existing execution platforms and languages. They are mostly used by programmers interested in the performance of the application. ProActive and Encore typically fit in this category. On the other side, some active object languages target verification and proof of programs, but have not been originally designed for e cient execution, like typically ABS and Creol. They are massively used and developed by academics and less constrained by existing execution platforms.

We give a proven translation of ABS programs into ProActive code in order to reconcile both domains: verified applications also have the right to be run efficiently. We also study the generalisation of our approach to other active object languages. Overall, our objective is to show that generic active object abstractions can be correctly encoded with di↵erent active object implementations.

Class-based Semantics of MultiASP

We start by introducing the semantics of Multiasp4 , the calculus representing ProActive and multiactive objects. Unlike the preliminary formalisation of multiactive objects in [START_REF] Henrio | Multi-threaded active objects[END_REF], we present here a class-based formalisation and the formalisation of threading policies. Multiasp is an imperative programming language and its syntax is close to the one of ABS. Syntax of Multiasp. Figure 3 shows the static syntax of Multiasp. A program is made of classes and a main method. x denotes local variables in method bodies and object fields in class declarations. There are two ways to create an object: new creates a new object in the current activity, and newActive creates a new active object. e.m(e) is the generic method invocation, there is no syntactic distinction between local and remote (asynchronous) invocations. Similarly, as 

P ∶∶= C { x ; s } program S ∶∶= m(x) method signature C ∶∶= class C(x) { x M } class M ∶∶= S{ x
v ∶∶= o ↵ . . . elem ∶∶= fut(f, v, ) fut(f, ) act(↵, o, , p, Rq) cn ∶∶= elem E ∶∶= {` s} F ∶∶= E E ∶∶ F p ∶∶= ⇀ q F Storable ∶∶= [ ⇀ x v] v f ∶∶= ⇀ o Storable q ∶∶= (f, m, v) Rq ∶∶= q ∶∶ Rq `∶∶= this v, ⇀ x v s ∶∶= x = • . . .

Fig. 4: Runtime syntax of Multiasp

synchronisation on futures is transparent and handled with wait-by-necessity, there is no particular syntax for interacting with a future. A special variable this exists for accessing the current object.

Semantics of Multiasp. Multiasp semantics is defined as a transition relation between configurations, noted cn, and for which the runtime syntax is displayed in Figure 4. At runtime, the dynamic configuration of a Multiasp program consists of a set of activities and a set of futures. The transition relation uses three infinite sets: object locations in the local store, ranged over by o, o ′ , ; active objects names, ranged over by ↵, , ; and future names, ranged over by f , f ′ , . Activities are of the form act(↵, o, , p, Rq) where ↵ is an activity name; o is the location of the active object in ; is a local store mapping object locations to storable values; p is a set of requests currently served (a mapping from requests to their thread F); and Rq is a FIFO request queue of requests awaiting to be served. A thread is a stack of methods being executed, and each method execution E consists of local variables `and statement s to execute. The first method of the stack is the one that is executing, the others have been put in the stack due to local synchronous method calls. `is a mapping from local variables (including this) to runtime values. A configuration also contains future binders. They are of two forms: fut(f, ), meaning that the value for the future has not been computed yet, and fut(f, v, ), when the reply value is known; if it is an object (and not a static value), then v will be its location in the store .

An object o is fresh if it does not exist in the store in which it is added. Similarly, a future or an activity name is fresh if it does not exist in the current configuration. Runtime values (v, ) can be either static values, object locations, or active object names. An object is a mapping from field names to their values, denoted [ ⇀ x v]. We denote mappings by ⇀ , and use union ∪ (resp. disjoint union ) over mappings. Mapping updates are of the form [x v]. dom returns the domain of a mapping. Storable values are objects, futures, or runtime values. 

serialise(o, ) = (o (o)) ∪ serialise( (o), ) serialise([ ⇀ x v], ) = v ′ ∈v serialise(v ′ , ) serialise(f, ) = serialise(↵, ) = serialise(null, ) = serialise(primitive-val, ) = Fig. 5: Serialisation [[primitive-val]] ( +`) primitive-val [[f ]] ( +`) [[↵]] ( +`) ↵ [[null]] ( +`) null [[x]] ( +`) [[`(x)]] ( +`) if x ∈ dom(`) [[x]] ( +`) [[`(this)(x)]] ( +`) if x ∉ dom(`) [[o]] ( +`) o if (o) = f or (o) = [ ⇀ x v] [[o]] ( +`) [[ (o)]] ( +`) else
(o, m, v ′ ) = { ⇀ y v ′ , ⇀ z null, this o s},
where the arguments of method m, typed in the class of o, are y, and where the method body is {z; s}. ready is a predicate deciding whether a request q in the queue Rq is ready to be served: ready(q, p, Rq) is true if q is compatible with all requests in p (requests currently served by the activity) and with older requests in Rq. Serialisation reflects the communication style happening in Java RMI; it ensures that each activity has a single entry point: the active object. Consequently, all references to passive objects are serialised when communicated between activities, so that they are always handled locally. serialise(o, ) marks and copies the objects referenced from o to deeply serialise, recursively; it returns a new store made of all the objects that are referenced by o. serialise is defined as the mapping verifying the constraints of Figure 5. rename (v, ′ ) renames the object locations appearing in v and ′ , making them disjoint from the object locations of ; it returns a renamed set of values v ′ and a store ′′ .

Figure 7 shows the part of Multiasp semantics that regards active object execution. Rules involving classical objects, namely object creation, field assignment, passive invocation, and local return of method call have been removed due to space limitation. The full Multiasp semantics can be found in Appendix B. In all cases, rules only show activities and futures involved in the current reduction. Serve picks the first request that is ready in the queue (compatible with executing requests and with older requests in the queue) and allocates a new thread to serve it. It fetches the method body and creates the execution context. Assign-Local assigns a value to a local variable. If the statement to be executed is an assignment of an expression that can be reduced to a value, then the mapping of local variables is updated accordingly. New-Active creates a new activity that contains a new active object. It picks a fresh activity name, and assigns serialised object parameters: the initial local store of the activity is the piece of store referenced by the parameters. Invk-Active performs an Serve ready(q, p, Rq) q = (f, m, v) bind(o↵, m, v) = {` s} act(↵, o↵, , p, Rq ∶∶ q ∶∶ Rq') → act(↵, o↵, , {q {`s}} p, Rq ∶∶ Rq') Threading Policies. We extend the above semantics to specify the threading policies featured in multiactive objects (see Section 2.2). First, we extend the syntax of Multiasp so that the threading policy can be programmatically changed from a soft limit, i.e. a thread blocked in a wait-by-necessity is not counted in the limit, to a hard limit, i.e. all threads are counted in the limit:

Assign-Local x ∈ dom(`) v = [[e]] ( +`) act(↵, o↵, , {q {` x = e; s} ∶∶ F} p, Rq) → act(↵, o↵, , {q {`[x v] s} ∶∶ F} p, Rq) New-Active fields(C) = x o, fresh ′ = {o [ ⇀ x = v]} ∪ serialise(v, ) [ [e]] ( +`) = v act(↵, o↵, , {q {` x = newActive C(e); s} ∶∶ F} p, Rq) → act(↵, o↵, , {q {` x = ; s} ∶∶ F} p, Rq) act( , o, ′ , , ) Invk-Active [[e]] ( +`) = [[e]] ( +`) =v f, o fresh 1 = ∪ {o f } (vr, r ) =rename ′ (v, serialise(v, )) ′′ = ′ ∪ r act(↵,
Return v = [[e]] ( +`) act(↵, o↵, , {(f, m, v) {` e; sr}} p, Rq) fut(f, ) → act(↵, o↵, , p, Rq) fut(f, v, serialise(v, )) Update (o) = f (vr, r ) = rename (v, ′ ) ′′ = [o
s ∶∶= ... setLimitSoft setLimitHard
Each request q belongs to a group group(q). The filter p g gives, among the active threads p, only requests of group g. There is a thread limit L g defined for each group. We tag each of the currently served request as either active or passive. p contains then two kinds of served requests: active ones, noted q A F, and passive ones, noted q P F. Active(p) returns the number of active requests in p. Finally, each activity is either in a soft limit state written act(. . .) S (by default at activity creation), or in a hard limit state written act(. . .) H . sh is a variable ranging over S and H. Multiasp semantics is modified as follows:

-Each rule allowing a thread to progress requires now that the thread is active, i.e. q is replaced by q A in all rules except Serve and Update. -The rule Serve is only triggered if the thread limit is not reached, i.e. if Active(p group(q) ) < Lg. Simmilarly, a rule for activating a thread is added: -If the kind of limit is a soft limit, a wait-by-necessity passivates the current thread5 ; a rule for method invocation on a future is added: Line 1 creates a regular server object. Lines 2 uses the newActive ProActive primitive to create a new cog active object. Additionally to the constructor parameters, ProActive allows the specification of the node onto which the active object is deployed. Line 3 makes the local server aware of its cog. Finally in line 4, due to the ProActive by-copy parameter passing, the server object is copied in the local memory space of the newly created remote cog, and is thus locally accessible there. For objects created with new local in ABS, the ProActive backend simply registers them locally in the current cog. To enable the same object invocation model as in ABS, we use a two-level reference system in the ProActive translation: each cog is accessible by a global reference and each translated ABS object is accessible inside its cog through a local identifier. The pair (cog, identifier) is a unique reference for each object and allows the runtime to retrieve any object. When objects are transmitted between cog (e.g. as parameter of method invocations), a lightweight copy is transmitted by the ProActive middleware; it can be used to reach the original object by using its cog and identifier. As only the cog and the identifier are needed to reference an ABS object, we tune the object serialisation mechanism so that only those fields are transmitted between active objects, thus saving memory and bandwidth. The same strategy can be applied to translate any language featuring active object groups into non uniform active objects. For uniform active objects, creating one active object per translated object handles straightforwardly the translation but limits scalability; grouping several objects behind a same active object (proxy) would produce a more e cient program.

Activate-Thread Group(q) = g Active(p g ) <
Invk-Future [[e]] ( +`) = o (o) = f act(↵,
In order to explain now how we translate ABS asynchronous method calls in ProActive, consider the following ABS asynchronous method call:

server!start(param1, param2);
In ProActive such a call becomes a remote method invocation. In order to handle it with our object translation model, we perform a generic method call (implicitly asynchronous) named execute, on the cog of the translated server object: server.getCog().execute(server.getId(), "start",

Object[]{param1, param2});

When run, the execute method of the COG class retrieves the target object through its identifier and runs the start method on it by reflection with the given parameters. Upon execute remote call, objects param1 and param2 are copied to the memory space of the retrieved cog. Consequently, two copies of param1 and param2 exist in the translation whereas only one of them exists in ABS. However, if method calls occurs on them, the requests for those objects always go to the cog that manages those objects. This callback ensures that only one copy of a translated object is manipulated, like in ABS. Consequently, the behaviour by reference of ABS-like languages can be simulated with the behaviour by copy of ProActive. This mechanism is also applied for future updates.

Cooperative Scheduling. Active object languages often support sophisticated threading models and have constructs to impact on the scheduling of requests. Those constructs can be translated into adequate request scheduling of multiactive objects. For demonstration, we consider here the translation that the ProActive backend gives for ABS await statements (representative of cooperative scheduling), and for ABS get statements (representative of explicit futures).

await statements on futures. An await statement on an unresolved futures releases the execution thread, for example:

startedFut?;

In order to have the same behavior in the ProActive translation, we force a wait-by-necessity. We use the getFutureValue ProActive primitive to do that:

PAFuture.getFutureValue(startedFut);

As in ProActive a wait-by-necessity blocks the thread, we need to configure the ProActive cog class with multiactive object annotations (see Section 2.2) in order to qualify the execute method and to specify a soft thread limit: 

.} }

This configuration allows a thread to process an execute request while a current thread that processes another execute request is waiting for a future. Indeed, the hardLimit=false parameter ensures that the threads counted in the limit (of 1 thread) are only active threads. In the example, the thread can be handed over to another execute request if startedFut is not resolved, just like in ABS.

get statements. The ABS get statement blocks the execution thread to retrieve a future's value, as for example on the previous future variable:

Bool started = startedFut.

;

The ProActive backend translates this ABS instruction into the following code:

getCog().switchHardLimit( ); // the retrieved COG is local: the call is synchronous PAFuture.getFutureValue(startedFut); getCog().switchHardLimit( );

This temporarily hardens the threading policy (i.e. all threads are counted in the thread limit) so that no other thread can start while the future is awaited.

-Other synchronisation constructs. We also tackled the translation of ABS suspend statements and of await statements on conditions. In this paper, we only provide the formal definition of their translation in Section 5. The details of their translation into ProActive code can be found in [START_REF] Rochas | A ProActive Backend for ABS: from Modelling to Deployment[END_REF].

Wrap Up and Applicability. In order to finalise the ProActive backend for ABS, we add deployment information in the translation; for that we use the deployment descriptor embedded in ProActive: configuration files binding virtual nodes to physical machines. On the ABS side, new cog is followed by the name of a node for deployment. This is the only modification that ABS programs must incur to be executed in a distributed way. An experimental evaluation (in Appendix D) shows that a significant speedup can be achieved by a distributed execution of an ABS program thanks to the ProActive backend. It also shows that the program obtained with the ProActive backend incurs an overhead of less than 10% compared to a native ProActive application.

We have presented in details the ProActive backend for ABS and discussed the translation of common active object constructs. The concepts applied in the case of ABS are generic and can systematically turn various active object languages into deployable active objects. As an example, JCoBox is similar enough to ABS so that the approach presented here is straightforwardly applicable. The most challenging aspect is that JCoBox features a globally accessible and immutable memory, which could be translated into one active object, or which could rely on copies since the immutable property holds. Regarding Creol, in which all objects are active, the best approach is to group several objects behind a same proxy for performance reasons. Then, preserving the semantics of Creol relies on a precise interleaving of local threads. The transposition to Am-bientTalk is trickier on the scheduling aspect, due to the existence of callbacks. However, we found that a callback on a future can be translated as a request that is ready to run but that starts by a wait-by-necessity on the adequate future.

Translational Semantics

This section formalises the translation given by the ProActive backend by introducing the translational semantics from ABS to Multiasp. We refer to Figure 1 for the concurrent object layer of ABS. Runtime syntax and semantics of ABS can be found in Appendix A. Most of the translation from ABS to Multiasp impacts statements. The rest of the source structure (classes, interfaces, methods) is unchanged except the two following: 1) We define a new class COG. It has methods to store and retrieve local objects, and to execute a method on a local object; UUID is the type of object identifiers: 2) All translated ABS classes are extended with two parameters: a cog parameter, storing the cog to which the object belongs, and an id parameter, storing the object's identifier in that cog; methods cog() and myId() return those two parameters; a dummy method get() that returns null is added to each object.

The translation of statements and expressions is shown in Figure 8. Each of them is explained below. Object instantiation first gets a fresh identifier from the current cog. Then, the new object is created with the current cog and the identifier 6 . It is stored in a reserved temporary local variable no. Finally, the object is referenced in the current cog and stored in x. Object instantiation in a new cog is similar to object instantiation in the current cog but method invocations on newcog variable are asynchronous remote method calls. The new object is thus copied to the memory space of the remote new cog via the register invocation, before being assigned to x. Await future uses the dummy get() method, that all translated objects have, in order to trigger the wait-by-necessity mechanism and potentially block the thread if the future is not resolved. Get future sets a hard limit on the current activity, so that no other thread starts, and then restores the soft limit after having waited for the future. Await on conditions performs sequential get() within an activity in soft limit. Conditional guards are detailed later in this section. Asynchronous method call retrieves the cog of the object and relies on the execute asynchronous method call as described in Section 4. Synchronous local method call distinguishes two cases, like in ABS. Either the call is local and an execution context is pushed in the stack, or the call is remote and, like in ABS, we perform an asynchronous remote method invocation and immediately wait the associated future within an activity in hard limit. Finally, instructions that do not deal with method invocation, future manipulation, or object creation, are kept unchanged.

In the translation, there exist di↵erent multiactive object groups and each group has its own thread limit. Group g 1 encapsulates freshId requests; those requests cannot execute in parallel safely, so g 1 is not self compatible and can only use one thread at a time. Group g 2 gathers execute requests. It is limited to one thread to comply with the threading model of ABS, and the requests are self compatible to enable interleaving. Group g 3 contains register requests that are self compatible and that have an infinite thread limit. Concerning compatibility between groups, they are all compatible except g 3 and g 2 : their compatibility is defined dynamically such that an execute request and a register request are compatible only if they do not a↵ect the same identifier. In summary:

group(freshId) = g1 group(execute) = g2 group(register) = g3 Lg 1 = 1 Lg 2 = 1 Lg 3 = ∞ ∀q, q ′ . (q ≠ q ′ ≠ freshId() ∧ (id.q = register(x, id) ∧ q ′ = execute(id, m, e))) ⇒ compatible(q, q ′ )
In order to support ABS conditional guards, for each guard g, we generate a method condition g that takes as parameters the needed local variables x. The method body can normally access the fields of the object this. A condition evaluation g is defined as follows: condition g(x) = while(¬g) skip; return null.

Fig. 8: Translational semantics from ABS to Multiasp

We encode the suspend statement the same way with a True condition. We define an execute condition method in the COG class; it executes generated condition methods. The execute condition method has its own group with an infinite thread limit because any number of conditions can evaluate in parallel. More formally, we have:

group(execute condition) = g 4 L g4 = ∞

Translation Equivalence and Active Object Insights

Proving that Multiasp executions exactly simulate ABS semantics is not possible by direct bisimulation of the two semantics. Instead, we prove two di↵erent theorems stating under which conditions each semantics simulates the other. We present all technical details on the equivalence and the proof in Appendix C. We summarise below the highlights of the proof, the principles of the underlying equivalence between Multiasp and ABS terms, the di↵erences between the languages and the restrictions of the proof.

Communication and request serving ordering. The semantics of ABS relies on a completely asynchronous communication scheme while Multiasp ensures causal ordering of requests. The equivalence can only be valid for the ABS reductions that preserve causal ordering of requests. Also, Multiasp serves requests in FIFO order, so similarly we execute a FIFO service of ABS requests, like in the existing Java backend for ABS. Note that those di↵erences are more related to scheduling and communication patterns than to the nature of the two languages. Shallow translation. ABS requests, cogs and futures respectively match oneto-one Multiasp requests, active objects and futures. Likewise, except for cog objects, for each ABS object there exist several copies of this object in Multiasp, all with the same cog and the same identifier, but only one of those copies (the one hosted in the right cog) is equivalent to the ABS object.

Futures. Because of the di↵erence between the future update mechanisms of ABS and Multiasp, the equivalence relation can follow as many local future indirections in the store as necessary. A variable holding a pointer to a future object in Multiasp is equivalent to the same variable holding directly the future reference in ABS. But also, the equivalence can follow future references in ABS: a future might have been updated transparently in Multiasp while in ABS, the explicit future read has not been performed yet.

Equating Multiasp and ABS configurations. A crucial part of the correctness proof consists in stating whether an ABS and a Multiasp configuration are considered equivalent. The principles of this equivalence are the following:

-Equivalence can "follow futures": A Multiasp value v is equivalent to an ABS future provided the future's value is equivalent to v; indeed in Multiasp a future can be automatically updated earlier than in the ABS case. -Objects are identified by their identifier and their cog name: the value of the object fields are meaningless except in the cog that initially created the object. It is in this cog that we check that fields are equivalent. -Equivalence between requests distinguishes two cases. 1) active tasks: there is a single active task per cog in ABS and it must correspond to the single active thread serving an execute request in Multiasp. The second element in the call stack corresponds to the invoked request. 2) inactive tasks in ABS correspond either to passive requests being currently interrupted or to not-yet-served requests in Multiasp. For each task, equivalence of executed statements, of local variables, and of corresponding future is checked. Observational equivalence. The precise formulation of our theorems proves that the ABS behaviour is faithfully simulated by our translation (Appendix C.4) and conversely (Appendix C.5). This is proven by adequately choosing the observable and not observable actions in the weak simulation. For example remote method invocation, object creation, and field assignment can be observed and faithfully simulated. The most striking observable reduction in ABS that is not always observable in Multiasp is the future value update. For example, in ABS the configurations (a) fut(f, f ′ ) fut(f ′ , ) and the configuration (b) fut(f, ) are observationally di↵erent, whereas in Multiasp they are not. Indeed, in Multiasp, there is no process able to detect whether the first future has been updated or not. However, this example is artificial as no information is stored in the first future of configuration (a); any access to the future's value will have to follow indirections and eventually access the value that is not a future. Thus, transparency of futures and of future updates create an intrinsic di↵erence between the two languages. This is why, in the theorem, we exclude the possibility to have a future's value being a future in the configuration. Eliminating syntactically such programs is not possible, thus we reason on reductions for which the value of a future is not a future; this is not a major restriction on expressiveness because it is still possible to have a future value that is an object containing a future (as future wrappers).

In the other direction, namely from Multiasp to ABS, the translation adds several steps in the reduction. However, the added sequences of actions never introduce concurrency so equivalence still holds because we can ignore additional local actions such as assignments and method calls that are not in the ABS program source (e.g. myId()).

Theorem 1 (ABS to Multiasp). The translation simulates all ABS executions with FIFO policy and rendez-vous communications provided that no future value is a future reference.

Theorem 2 (Multiasp to ABS). Any reduction of the Multiasp translation corresponds to a valid ABS execution.

Globally, our translational semantics fully respects the ABS semantics and simulates exactly all executions complying to the aforementioned restrictions, which either are already existing restrictions of the Java backend for ABS, or for which we have given relevant alternatives.

Conclusion

This paper tackled the question of providing active object languages, aimed at modelling and verification, with systematic deployment for distributed computing. For that, we have identified the necessary design choices for active object models and languages, involving: object referencing, language transparency, and request scheduling. These design choices have to be considered when implementing any active object language. We have introduced Multiasp, a multi-threaded active object language that has showed to be expressive enough to embody the main paradigms of ABS, featuring in particular cooperative scheduling. We demonstrated how to translate the constructs of an easy to program and verify active object language into the executable code of an e cient and scalable active object middleware. We have instantiated our approach by translating ABS into the ProActive middleware, that implements Multiasp in Java. The immediate outcome of this work is a ProActive backend for ABS. Our approach could be quite easily ported other active object languages since we reason more on active object abstractions than on language specifics. Typically, our work can be straightforwardly adapted to any active object language featuring cooperative scheduling, like Creol and JCoBox. Porting our results on AmbientTalk only requires minor adaptations. A comparison of the ProActive backend against a currently developed Java 8 backend for ABS [START_REF] Serbanescu | A design pattern for optimizations in data intensive applications using ABS and JAVA 8[END_REF] is ongoing. This analysis focuses on the di↵erent implementation approaches for e ciently encoding the ABS semantics. More generally, the provided proof of correctness highlighted the intrinsic di↵erences between active object languages and models. This work will help active object users to choose the language that is the most adapted for their needs, and also help active object designers to identify the implication of specific language constructs and abstractions.

Appendix

This appendix presents more details about the ProActive backend for ABS and its associated proof of correctness. More precisely, it adds:

-A recall of ABS runtime syntax and semantics, for self contents.

-The full semantics of Multiasp.

-The proofs of Theorem 3 and Theorem 4, with restrictions, equivalence relation, and preliminary lemmas. -An experimental evaluation of the ProActive backend for ABS.

A ABS Runtime Syntax and Semantics

We first recall the runtime syntax of ABS below. ABS runtime syntax is taken from [2] .

cn ∶∶= ✏ fut(f, val) act ∶∶= o " ob(o, a, p, q) invoc(o, f, m, v) cog(c, act) cn cn p ∶∶= {l s} val ∶∶= v q ∶∶= ✏ {l s} q q a ∶∶= [, x v, ] s ∶∶= (f ) . . . v ∶∶= o f . . .
We also recall the semantics of ABS on Figure 9 and Figure 10. The ABS semantics presented below is based on the one presented in [2] , which itself represents a more mature ABS semantics than the original one in [4] (minor updates). The modifications we make on the semantics of ABS simply aim at making the proof clearer on concurrency aspects, and still keeping the essence of the translation.

In particular, below is the list of the modifications we bring:

-Class fields and class parameters distinction have been removed, one of them simply being a syntactic sugar for fields initialised automatically to null. -When an object is created, it is and has no request in queue instead of having the init request in the queue (New-Object case) or as current task (New-Cog-Object case). Consequently, a new cog coming from a new object has no current activated object instead of having the new object activated. As we enforce causal ordering of requests, it is easy to perform an init invocation on the newly created object; it will necessarily be executed first. a → ob(o, a, {l s 2 ; s}, q)

(Await-True) f = [[x]] A (a+l) v ≠ ob(o, a, {l x ; s}, q) fut(f, v) a → ob(o, a, {l s}, q) fut(f, v) (Await-False) f = [[x]] A (a+l) ob(o, a, {l x ; s}, q) fut(f, ) a → ob(o, a, , q ∪ {l x ; s}) fut(f, ) (Release-Cog) ob(o, a, , q) cog(c, o) a → ob(o, a, , q) cog(c, ✏) (Activate) c = a(cog) ob(o, a, , q ∪ {l s}) cog(↵, ✏) a → ob(o, a, {l s}, q) cog(c, o) (Read-Fut) f = JeK A (a+l) v ≠ ob(o, a, {l x = e.
; s}, q) fut(f, v)

a → ob(o, a, {l x = v; s}, q) fut(f, v) (New-Object) o ′ = fresh(C) fields(C) = x v = [[e]] A (a+l) a ′ = [x v, cog c] ob(o, a, {l x = C(e); s}, q) cog(c, o) a → ob(o, a, {l x = o ′ ; s}, q) cog(c, o) ob(o ′ , a ′ , , ) 
(New-Cog-Object) c ′ = fresh( ) o ′ = fresh(C) fields(C) = x v = [[e]] A (a+l) 
a ′ = [x v, cog c ′ ] ob(o, a, {l x = C(e); s}, q) a → ob(o, a, {l x = o ′ ; s}, q) ob(o ′ , a ′ , , ) cog(c ′ , ✏)
Fig. 9: Semantics of core ABS(1).

-Statements following a instruction are discarded. This fits better with most of mainstream programming languages, and, in addition, having a second in further statements would cause a deadlock in the semantics since there would be no recipient for the future and the rule cannot be reduced. Additionally, the Java backend for ABS already implement this semantics for . 

B Multiasp Semantics

C Proof of Theorem 3 and Theorem 4

In this section, we prove two theorems that corroborate the translation from ABS to Multiasp. The theorems specify under which conditions each semantics simulates the other. We first focus the proof on the less trivial and most

(Rendez-vous-Comm) f = fresh( ) o ′ = JeK A (a+l) v = JeK A (a+l) p ′′ = bind(o ′ , f, m, v, class(o ′ )) ob(o, a, {l x = e m(e); s}, q) ob(o ′ , a ′ , p ′ , q ′ ) a → ob(o, a, {l x = f ; s}, q) ob(o ′ , a ′ , p ′ , q ′ ∪ p ′′ ) fut(f, ) (Context) cn a → cn ′ cn cn ′′ a → cn ′ cn ′′ (Cog-Sync-Call) o ′ = [[e]] A (a+l) v = [[e]] A (a+l) f = fresh( ) c = a ′ (cog) f ′ = l(destiny) {l ′ s ′ } = bind(o ′ , f, m, v, class(o ′ )) ob(o, a, {l x = e m(e); s}, q) ob(o ′ , a ′ , , q ′ ) cog(c, o) a → ob(o, a, , q ∪ {l f ; x = f. ; s}) fut(f, ) ob(o ′ , a ′ , {l ′ s ′ ; f ′ }, q ′ ) cog(c, o ′ ) (Cog-Sync-Return-Sched) c = a ′ (cog) f = l ′ (destiny) ob(o, a, {l f }, q) cog(c, o) ob(o ′ , a ′ , , q ′ ∪ {l ′ s}) a → ob(o, a, , q) cog(c, o ′ ) ob(o ′ , a ′ , {l ′ s}, q ′ ) (Self-Sync-Call) f ′ = l(destiny) o = [[e]] A (a+l) v = [[e]] A (a+l) f = fresh( ) {l ′ s ′ } = bind(o, f, m, v, class(o)) ob(o, a, {l x = e m(e); s}, q) a → ob(o, a, {l ′ s ′ ; (f ′ )}, q ∪ {l f ; x = f. ; s}) fut(f, ) (Return) v = [[e]] A (a+l) f = l(destiny) ob(o, a, {l e; s}, q) fut(f, ) a → ob(o, a, , q) fut(f, v) (Rem-Sync-Call) o ′ = [[e]] A (a+l) f = fresh( ) a(cog) ≠ a ′ (cog) ob(o, a, {l x = e m(e); s}, q) ob(o ′ , a ′ , p, q ′ ) a → ob(o, a, {l f = e m(e); x = f. ; s}, q) ob(o ′ , a ′ , p, q ′ ) (Self-Sync-Return-Sched) f = l ′ (destiny) ob(o, a, {l (f )}, q ∪ {l ′ s}) a → ob(o, a, {l ′ s}, q)
Fig. 10: Semantics of core ABS(2).

informative theorem: the proof that all ABS executions with FIFO policy and rendez-vous based communications are simulated by Multiasp executions. For the second proof, stating that a Multiasp translation corresponds to a valid ABS execution, we expose the di↵erences and similarities compared to the first theorem proof and conclude.

C.1 Restrictions

Before simulating the semantics of ABS and Multiasp, we define here three specific restrictions. First, Multiasp ensures causal ordering of communications with a rendez-vous preceding all asynchronous method calls: the request is dropped in the remote request queue synchronously. This brief synchronisation does not exist in ABS where requests can arrive in any order. We will reason on a →, the ABS semantics with rendez-vous communications, i.e. the semantics taken from [4] where the message sending and reception rule is replaced by:

[4] E. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Ste↵en. ABS: A core language for abstract behavioral specification. In FMCO'12. Springer, 2012.

Serve ready(q, p, Rq) q = (f, m, v) bind(o↵, m, v) = {` s} act(↵, o↵, , p, Rq ∶∶ q ∶∶ Rq') → act(↵, o↵, , {q {`s}} p, Rq ∶∶ Rq')

Assign-Local x ∈ dom(`) v = [[e]] ( +`) act(↵, o↵, , {q {` x = e; s} ∶∶ F} p, Rq) → act(↵, o↵, , {q {`[x v] s} ∶∶ F} p, Rq) Assign-Field `(this) = o x∈dom( (o)) x ∉dom(`) ′ = [o ( (o)[x [[e]] ( +`) ])]
act(↵, o↵, , {q {` x = e; s} ∶∶ F} p, Rq) → act(↵, o↵, ′ , {q {` s} ∶∶ F} p, Rq) 

New-Object fields(C) = x o fresh ′ = ∪ {o [ ⇀ x = v]} [[e]] ( +`) = v act(↵, o↵, , {q {` x = new C(e); s} ∶∶ F} p, Rq) → act(↵, o↵, ′ , {q {` x = o; s} ∶∶ F} p, Rq) New-Active fields(C) = x o, fresh ′ = {o [ ⇀ x = v]} ∪ serialise(v, ) [ [e]] ( +`) = v act(↵, o↵, , {q {` x = newActive C(e); s} ∶∶ F} p, Rq) → act(↵, o↵, , {q {` x = ; s} ∶∶ F} p, Rq) act( , o, ′ , , ) Invk-Active [[e]] ( +`) = [[e]] ( +`) =v f, o fresh 1 = ∪ {o f } (vr, r ) =rename ′ (v, serialise(v, )) ′′ = ′ ∪
2 ∃v, p ′ , q.ob(i ↵, ⇀ x v, p ′ , q) ∈Cn i↵ ∃o, v ′ . (o) =[cog ↵, myId i, ⇀ x v ′ ] with 3 v ≈ Cn v ′ ∧ 4 ∃l, s. p ′ = {ls} i↵ ∃f, i, m, v ′′ , `′, s ′ , `′′ , s ′′ . (f, execute, i, m, v ′′ ) A {`′s ′ } ∶∶ {`′ ′ s ′′ } ∈ p ∧ `′(this) = o with ∀x ∈ dom(l)destiny. l(x) ≈ Cn `′(x) ∧ l(destiny) = f ) ∧ s ≈ Cn +`′ s ′ ∧ 5 ∀f. ∃l, s.({ls} ∈ q ∧ l(destiny) = f ) i↵ ∃i, m, v ′′ , `′, s ′ , `′′ , s ′′ . (f, execute, i, m, v ′′ ) P {`′s ′ } ∶∶ {`′ ′ s ′′ } ∈ p ∧ `′(this) = o ∨ (f, execute, i, m, v ′′ ) ∈ Rq ∧ o↵.retrieve(i) =o ∧ bind(o, m, v ′′ ) = {`′s ′ } with (∀x ∈ dom(l)destiny. l(x) ≈ Cn `′(x)) ∧ s ≈ Cn +`′ s ′ 6 fut(f, v) ∈ Cn i↵ ∃v ′ , . (fut(f, v ′ , ) ∈ Cn ∧ Method(f ) = execute) with v ≈ Cn v ′ 7 fut(f, ) ∈ Cn i↵ fut(f, ) ∈ Cn ∧ Method(f ) = execute
Fig. 12: Equivalence condition of two configurations 7, 8 Rendez-vous-Comm fresh(f

) i ′ = JeK A a+l v = JeK A a+l p ′′ = bind(i ′ , f, m, v, class(o ′ )) ob(i ↵, a, {lx = e!m(e); s}, q) ob(i ′ , a ′ , p ′ , q ′ ) a → ob(i ↵, a, {lx = f ; s}, q) ob(i ′ , a ′ , p ′ , q ′ ∪ p ′′ ) fut(f, )
where JK A is the expression evaluation in ABS. Another rule has to be added in case of a message to the same object. Secondly, in Multiasp, while thread activation can happen in any order, the order in which requests are served is FIFO by default instead of the non-deterministic activation of a thread featured by ABS semantics. In both the existing Java backend for ABS and the developed ProActive backend, activation and request service are FIFO, although multiactive objects support the definition of di↵erent policies [3] . Consequently, we only reason on executions with a FIFO policy, i.e. executions that serve requests and restore them in a FIFO order. Finally, the proof does not deal with local synchronous method invocations; indeed this would make the proofs more entangled and would bring no particular insight on the translation because this part is similar to the existing Java backend for ABS.

C.2 Equivalence

We define an equivalence relation R between Multiasp and ABS terms. We then prove that any single step of one calculus can be simulated by a sequence of steps 7 We use the following notation: ∃y. P i↵ ∃x. Q with R means (∃y. P i↵ ∃x. Q) ∧ ∀x, y. P ∧ Q ⇒ R. This allows R to refer to x and y.

8 Method(f ) returns the method of the request corresponding to future f in the other. This is similar to the proof in [1] ; we use the same observation notion: processes are observed based on remote method invocations.

Definition 1 (Equivalence Relation R). ≈ Cn is an equivalence between values (or between a value and a storable) in the context of a Multiasp store and an ABS configuration Cn:

v ≈ Cn v f≈ Cn f i↵ ≈ Cn [cog ↵, Id i, x v ′ ] v ≈ (o) v ≈ Cn o fut(f, v ′ ) ∈ Cn v ′ ≈ Cn v f ≈ Cn v
Runtime values in ABS are either (global) object references, future references or primitive values. Equivalence ≈ Cn specifies that two identical values or futures are equivalent if they are the same. Otherwise, an object is characterised by its identifier and its cog name. The two last cases are more interesting and are necessary because of the di↵erence between the future update mechanisms of ABS and Multiasp. First, the equivalence can follow as many local indirections in the store as necessary. Second, the equivalence can also follow future references in ABS: a future might have been updated transparently in Multiasp while in ABS the explicit future read has not been performed yet. Furthermore, we have an equivalence on statements:

s ≈ Cn ( +`′) s ′ i↵ -either JsK = s ′ -or s = (x = v; s 1 ) ∧ s ′ = (x = e; Js 1 K) with v ≈ Cn JeK ( +`′)
In words, two statements are equivalent if one is the translation of the other. Or, two statements are also equivalent if both statements start with an assignment of equivalent values to the same variable, followed by equivalent statements.

Finally, ABS configuration Cn and Multiasp configuration Cn are equivalent, written Cn R Cn, i↵ the condition on Figure 12 holds. The equivalence condition of Figure 12 considers three cases: -The first five lines deal with equivalence of cog. This case compares both activity content and activity requests on the ABS and Multiasp sides:

• To compare activity content, we rely on the fact that activities have the same name in ABS and in Multiasp. Each ABS object ob must correspond to one equivalent Multiasp object in the equivalent activity ↵. The object equivalent to ob must be in the store, must reference ↵ as its cog, must have i as identifier 9 , and must have other fields equivalent to the ones of ob. • To compare activity requests, we need to compare the tasks that exist in ABS ob terms to the tasks that exist in the corresponding Multiasp act terms. We consider again two cases: 1. Either the task is active, the single active task of ob (in p ′ ) must have exactly one equivalent active task in Multiasp (in p). In Multiasp, this 9 Recall that the corresponding ABS identifier is i ↵.

[1] M. Dam and K. Palmskog. Location independent routing in process network overlays. In PDP'14. IEEE, 2014.

task must have two elements in the current stack10 : the call to the cog (the execute call) and the redirected call to the targeted object o, where o is equivalent to ob. In addition, values of local variables must be equivalent, except destiny that must correspond to the future of the Multiasp request. Finally, the current thread of the two tasks must be equivalent according to the equivalence on statement. 2. Otherwise the task is inactive, and two cases are possible. Either the task has already started and has been interrupted: in this case the comparison is similar to the active task comparison above. Or the task has not started yet: there must be a corresponding task in the request queue Rq of the Multiasp active object ↵, and we check that (i) the future is equivalent, (ii) the invoked object o is equivalent to ob, and (iii) the method body retrieved by the bind predicate is equivalent to the ABS task. -Line 6 deals with equivalence of resolved futures. A future's value in Multiasp refers to its local store. Two resolved futures are equivalent if their values are equivalent. In Multiasp, only futures from execute method calls are considered. -Line 7 deals with equivalence of unresolved futures. In that case, both futures must be unresolved to ensure equivalence.

C.3 Preliminary lemmas

In order to establish a proper link between ABS and Multiasp semantics, we first identify activity names of Multiasp with cog names (ranged over by ↵, ). Object locations are valid only locally in Multiasp and globally in ABS, their equivalent global reference is the pair (activity name, Id fields). We suppose that each object name in ABS is of the form i ↵ where ↵ is the name of the cog where the object is created, and i is unique locally in ↵. The semantics then allows us to choose Id and i so that they are equal. By convention, Cn ranges over ABS configurations and Cn over Multiasp ones.

Secondly, we have the following property which says that in an ABS configuration, if an object ob has an active request that is not , then there exists a cog in which ob is the current active object:

Lemma 1. ob(i ↵, ⇀ x v, p, q) ∈Cn ∧ p ≠ idle ⇒ cog(↵, i ↵) ∈ Cn
Proof. By induction on the ABS reduction rules.

We also rely on the following lemmas for equivalence of ABS and Multiasp configurations. The first lemma below mentions equivalence of values (Lemma 2). The next lemma is a prerequisite for assessing equivalence of expression evaluation (Lemma 3). The last lemma relates equivalence of values with serialization and renaming; these aspects are indeed essential in a distributed context (Lemma 4).

Lemma 2 (Equivalence of values).

v ≈ Cn v ′ ⇒ v ≈ Cn Jv ′ K
Proof. We prove this lemma by recurrence on the proof of v ≈ Cn v ′ (Definition 1 of R). This corresponds to a recurrence on the number of indirections of references that are followed to evaluate v ′ . If v is a primitive value then v ′ = v and the equivalence v

≈ Cn v is direct because v = JvK. Otherwise 11 , the rule v ≈ Cn (o) v ≈ Cn o is used, v ′ = o,
and v ≈ Cn (o), and we need to handle three cases:

-(o) = f . In this case, since JoK = o by the evaluation function of Figure 6,

then v ≈ Cn o. -(o) = [ ⇀ xv]. In this case, the evaluation of [x v] is equal to [x v] (J[xv]K = [xv]
), so we also have v ≈ Cn o = JoK. -Else (o) = v ′′ . In this case, since v ≈ Cn v ′′ , we have v ≈ Cn Jv ′′ K by recurrence hypothesis. Then v ≈ Cn JoK = J (o)K = Jv ′′ K (by the evaluation function of Figure 6).

Lemma 3 (Equivalence of Eval functions).

Let Cn be an ABS configuration and suppose Cn R Cn.

Let ob(o ↵, a, {ls}, q) ∈ Cn. By definition of R, there exists a single activity

act(↵, o ↵ , , p, Rq) ∈ Cn, with (o)=[cog ↵, myId i, a ′ ] and (f, execute, i, m, v ′′ ) A {`′s ′ } ∶∶ {`′ ′ s ′′ } ∈ p ∧ `′(this) = o.
For any ABS expression e we have:

JeK A a+l ≈ Cn JeK +`′
Proof. We only consider here the case where x is a variable, because the other cases are not di↵erent from the original translation from ABS to Java (not di↵erent from the original Java backend). In particular, the evaluation of arithmetic expressions relies on the equivalence of variables and the fact that the evaluation of the arithmetic expression itself is the same. We prove the equivalence of evaluation functions on variables by case analysis. -Either the variable belongs to the fields of the object ob(o ↵, a, {ls}, q), and not to the local variables: a(x) = v ∧ v ∉ dom(l). In this case we have ob(o ↵, a, {ls}, q) ∈ Cn with x v ∈ a and, by definition of equivalence, act(↵, o ↵ , , p, -Or the variable belongs to local variables: l(x) = v. In this case we have ob(o ↵, a, {ls}, q) ∈ Cn with l(x) = v and, by definition of equivalence, act(↵, o ↵ , , p, Rq) ∈ Cn, ∃(f, execute, i, m, v ′′ ) A {`′s ′ } ∈ p with, ∀x ∈ dom(l)destiny, l(x) = v ≈ Cn `′(x) = v ′ by line 8 of equivalence condition. Finally, JxK A a+l ≈ Cn `′(x) and by Lemma 2 JxK A a+l ≈ Cn J`′(x)K +`′ .

Rq) ∈ Cn, ∃(f, execute, i, m, v ′′ ) A {`′s ′ } ∈ p with, ∀x ∈ dom(l)destiny, l(x) = v ≈ Cn `′(x) = v ′
Also, serialization, together with the related renaming of local references, are crucial points of di↵erence between ABS and Multiasp; we need the following lemma to deal with this aspect.

Lemma 4 (Serialization and equivalence).

v ≈ Cn v ′ ∧ ′ = serialise( , v ′ ) ⇒ v ≈ Cn v ′ v ≈ Cn v ′ ∧ (v ′′ , ′ ) = rename (v ′ , ) ⇒ v ≈ Cn ′ v ′′
Proof. The proof relies mostly on the definition of equivalence R. Concerning serialization, the main di↵erence is the fact that we check the equivalence in a smaller (or equal) store, however this store is self-contained and every reference that could be followed by the equivalence still exist in the serialized store. Concerning renaming, the proof is trivial as only the case where referenced are followed is changed and the renaming ensures the equivalence of the reached values.

Finally, to deal with the proof of Theorem 3 we rely on the fact that all ABS objects are locally registered in their cog: Invariant Reg. For every activity ↵ such that o ↵ is the location of the active object of activity ↵ in its store ↵ . If the current task consists in an invocation to o ↵ .retrieve(i), then this invocation succeeds, because the object has been registered first; the invocation returns some object o ′ such that i ↵ ≈ Cn o ′ . Proof. To prove the Invariant Reg we will be relying on the translational semantics provided in Figure 8. Suppose that a call to o ↵ .retrieve(i) is performed; we want to show that this call succeeds and returns an object equivalent to i ↵. If we have such a call, it means that we are in the body of an execute(id, m, parameters) call, with id = i. Since the execute method is reserved, we know that we ran a remote method call, corresponding to an expression e.m(parameters) with e.cog() = ↵ and e.myId() = id. Also, we have e such that

[[e]] +`= o and (o) = [cog ↵, myId id, ].
Additionally, we know that we cannot have method calls on the temporary variable no, that is used to temporarily store a newly created object until it is registered to its cog, because this variable is only known in the instantiation thread and no method call is performed on it. Thus, since e cannot be no, it is necessarily a variable x that has been assigned after a call to t.register(no), where t ↵, that makes the cog t aware of the new object referenced by no (we also use the fact that a pointer could not be forged).

Consequently, the call to register precedes the remote call e.m(parameters). Now, we have two cases.

-Either the register call is local because it comes along with a new local object instantiation (a call to ). In this case, since the register call is synchronous, it is necessarily finished before e.m(parameters) is invoked, so the later o ↵ .retrieve(i) succeeds naturally.

-Or the register call is remote because it comes along with a new remote object instantiation (a call to ). In this case, since the register call is asynchronous, it may happen that the register and the execute requests are both awaiting in the queue. However, thanks to the rendez-vous communication ordering and the FIFO service policy, we know that the register request is in queue before the execute request, and the register request will be served first. Now, considering the multiactive compatibilities defined for the groups of register and execute, we see that an incompatibility is raised between the two requests because they access the same identifier. Therefore, the o ↵ .retrieve(i) request cannot be served before the register request finishes, and thus, the o ↵ .retrieve(i) of the later execute request succeeds. In both cases one can notice that i ↵ ≈ Cn o ′ .

C.4 Core Proof of Theorem 3 -From ABS to Multiasp

We first aim at proving that Multiasp semantics simulates any ABS execution. Let P = IC { x ; s } be an ABS program, let Cn0 be the initial ABS configuration corresponding to this program: ob(start, , p, ), where the process p corresponds to the activation of the program's main block: p = {ls}. The initial Multiasp configuration corresponding to program JP K is act(↵0, o, 0[o ], q0 {lJsK}, ) . It is easy to see that this initial configuration has the same behaviour as act(↵0, o, 0[o , start ], (f, execute, start, m) {lJsK} ∶∶ {x = •}, ). We denote this new Multiasp initial configuration Cn0, and → * denotes the transitive closure of →.

Theorem 3. The translation simulates all ABS executions with FIFO policy and rendez-vous communications:

Cn0 a → * Cn with a FIFO policy ∧f, f ′ . fut(f, f ′ ) ∈Cn ⇒ ∃Cn. Cn0 → * Cn ∧ Cn R Cn
Because of the simulation technique, what matters is to decide which actions are observable. Preceding works use the sending of requests as an observable. In our case, we show in the proof that request sending is simulated exactly, as well as method return, object creation, and field assignment. Assignment to local variables is trickier because of the existence of temporary variables created by the translation. Consequently, assignments to ABS local variables can be observed exactly, but it is not the case for assignments to Multiasp local variables. The most striking example of an observable reduction in ABS that is not observable in Multiasp is the case of future's value update. Indeed, transparency of futures and of future updates create an intrinsic di↵erence between the two languages. This is why, in the theorem, we exclude the possibility to have a future's value being a future in the configuration. In Multiasp, there is no process able to detect whether the first future has been updated or not: in ABS the configurations (a) fut(f, f ′ ) fut(f ′ , ) and the configuration (b) fut(f, ) are observationally di↵erent, whereas in Multiasp they are not. However, this example is purely artificial as no information is stored in the first future of configuration (a). Indeed, any access the value stored in a future will have to follow indirections and eventually access the future f ′ . Eliminating syntactically such programs is not possible, thus we only reason on reductions for which the value of a future is not a future; this is not a major restriction on expressiveness because it is always possible to have a future value that is an object containing a future. The identification of observability di↵erences in active object languages is a major result: it gives a significant insight on the design of programming languages. Besides, we could make this observation because we chose a faithful translation that matches one to one as much as possible requests, objects and futures of ABS to the equivalent notions in Multiasp.

Proof. Theorem 3 is proved by induction on the ABS reduction. It relies on the definition of equivalence R on Figure 12 and on the following induction step:

If Cn0 a → * Cn, Cn R Cn, Cn a → Cn ′ with a FIFO policy, and f, f ′ . fut(f, f ′ ) ∈ Cn ′ , then ∃Cn ′ . Cn → * Cn ′ ∧ Cn ′ R Cn ′ .
The proof is done by case analysis on the ABS reduction rules applied, each of which is detailed hereafter. First note that, in the definition of equivalence between values and between statements (≈ Cn ), the ABS configuration Cn is only used to track futures, and thus in all the cases except Return, ≈ Cn and ≈ Cn ′ are the same. Each case is concluded by argumnents on observability. We are interested in observing remote method invocations, return of asynchronous calls, assignments to field variables, assignment to local variables that were not created by the translation into Multiasp. Other reductions are considered to be non-observable and will be used transparently and can be as many times as necessary and to simulate any ABS reduction.

• Case of [ ] rule

We first consider Assign-Local rule, to show that the translation of this rule through the ProActive backend is correct, i.e. we can observe equivalent configurations on ABS and Multiasp side after reduction. In this rule, a particular ABS configuration Cn leads to a configuration Cn ′ , noted Cn a → Cn ′ , as follows:

x ∈ dom(l) v = [[e]] A (a+l) ob(i ↵, a, {l x = e; s}, q) a → ob(i ↵, a, {l[x v] s}, q)
Suppose that Cn is also related to a Multiasp configuration Cn by the definition of equivalence, noted Cn R Cn. Then, we want to show that a configuration Cn ′ , equivalent to Cn ′ , can be obtained by Multiasp semantics from Cn. In the case of Assign-Local rule, it means that a local variable x must exist in Cn ′ and that its value after assignment must be equivalent to the value assigned to it in ABS.

To begin with, by Lemma 1 there must be a cog in the ABS starting configuration where i ↵ is the current active object: ∃cog(↵, i ↵) ∈ Cn. Then, by definition of the equivalence relation R, we have the following key points:

-First, there exists a corresponding Multiasp activity in the Multiasp starting configuration: ∃o ↵ , , p, Rq.act(↵, o ↵ , , p, Rq) ∈ Cn.

-Second, this activity has an active request initiated from an execute method call, and maps to a current statement to execute:

∃f, i, m, v ′′ , `′, s ′ , `′′ , s ′′ .((f, execute, i, m, v ′′ ) A {`′s ′ } ∶∶ {`′ ′ s ′′ } ∈ p with (x = e; s) ≈ Cn s ′
and ∀x ∈ dom(l) destiny.l(x) ≈ Cn `(x). Thus, by the definition of equivalence between statements, either s ′ = (x = e; JsK), we denote e ′ = e; or e = v (because ABS statement is x = v; s) and

s ′ = (x = e ′ ; JsK) with v ≈ Cn Je ′ K +`′ .
Those key points allow us to find the starting Multiasp configuration Cn and to apply the Multiasp Assign-Local reduction rule:

x ∈ dom(`′) v ′ = [[e ′ ]] ( +`′) act(↵, o↵, , p, Rq) → act(↵, o↵, , {q A {`′[x v ′ ] JsK} ∶∶ {`′ ′ s ′′ }} p ′ , Rq)
We have now to verify that the obtained Multiasp configuration Cn ′ is in relation R with the ABS configuration Cn ′ .

First, we must have at least as many corresponding terms in Multiasp as in ABS. And indeed, we have cog(↵, i ↵) ∈ Cn ′ on one hand, and act(↵, o ↵ , , p ′′ , Rq) ∈ Cn ′ on the other hand. We only consider the terms that changed in the reduction, not all terms of the configurations.

Second, we must check equivalence of each element by checking the equivalence of their content. We have on the ABS side the term ob(i ↵, a, {l[x v]s}, q) and on the Multiasp side the activity ↵ which has in particular q A {`′[x v ′ ]JsK} ∶∶ {`′ ′ s ′′ } in the method execution stack, with v ′ = Je ′ K +`′ . Then, to have v ≈ Cn ′ v ′ we must have v ≈ Cn ′ Je ′ K +`′ . Now, we have two cases: 

x ∈ dom(a) dom(l) v = [[e]] A (a+l) ob(i ↵, a, {l x = e; s}, q) a → ob(i ↵, a[x v], {l s}, q)
With the same strategy as the previous case, namely by having first Cn R Cn, then Cn → Cn ′ and finally Cn ′ RCn ′ , we want to show that an object field x exists in Cn ′ and that its value after assignment is equivalent to the value assigned to it in ABS. First, we have again by Lemma 1, ∃cog(↵, i ↵) ∈ Cn. Second, by definition of the equivalence relation R, we have:

-A corresponding Multiasp activity: ∃o ↵ , , p, Rq.act(↵, o ↵ , , p, Rq) ∈ Cn.

-Values in the store that are equivalent to the values contained in a:

∃o, v ′ . (o) = [cog ↵, myId i, ⇀ xv ′ ] where v ≈ Cn v ′ and ⇀ x v = a. Consequently x ∈ dom( (o)) because x ∈ dom(a).
-A statement currently executed that belongs to the current active request of the activity: ∃f, i, m, v ′′ , `′, s ′ , `′′ , s ′′ such that:

(f, execute, i, m, v ′′ ) A {`′s ′ } ∶∶ {`′ ′ s ′′ } ∈ p and `′(this) = o with (x = e; s) ≈ Cn s ′ .
As the previous case here, either s ′ = (x = e; JsK) and e ′ = e, or e = v and

s ′ = (x = e ′ ; JsK) with v ≈ Cn Je ′ K +`′ .
Then, this leads to the following Multiasp Assign-Field rule:

`′(this) = o x∈dom( (o)) x ∉dom(`′) ′ = [o ( (o)[x [[e ′ ]] ( +`′) ])] act(↵, o↵, , p, Rq) → act(↵, o↵, ′ , {q A {`′ JsK} ∶∶ {`′ ′ s ′′ }} p ′ , Rq)
As in the previous case, we must now check that Cn ′ R Cn ′ . First, we have cog(↵, i ↵) ∈ Cn ′ and act(↵, o ↵ , ′ , p ′′ , Rq) ∈ Cn ′ which are equivalent terms. Second, we have to compare the content of ob(i ↵, a[x v], {l s}, q) on one hand, and of activity ↵ on the other hand with 

(o) = [cog ↵, myId i, ⇀ xv[x [[e ′ ]] +`′ ]]. Then, we should have v ≈ Cn ′ v ′ ,
f = [[x]] A (a+l) v ≠ ob(i ↵, a, {l x ; s}, q) fut(f, v) a → ob(i ↵, a, {l s}, q) fut(f, v)
From the configuration Cn, we know that, by Lemma 1, there exists ↵ such that cog(↵, i ↵) ∈ Cn. We also know, by equivalence relation R and by translational semantics, that there are o ↵ , , p, Rq such that act(↵, o ↵ , , p, Rq) ∈ Cn.

Besides, there exist `′, s ′ , `′′ , s ′′ such that, by translational semantics: {q A {`′ w = x.get(); JsK} ∶∶ {`′ ′ s ′′ }} ∈ p. Also, we know that there are v ′ , ′ such that fut(f, v ′ , ′ ) ∈ Cn, with v ≈ Cn ′ v ′ . Thus, we have the following Multiasp configuration Cn such that Cn R Cn:

act(↵, o↵, , {q A {`′ w = x.get(); [[s]]} ∶∶ {`′ ′ s ′′ }} p ′ , Rq) fut(f, v ′ , ′ )
By Lemma 3, we have -In the first case, where o points to a future, we first perform a future update on the Multiasp configuration Cn (the point is to catch up with the ABS execution). Thus, we have Cn → Cn ′ where in Cn ′ activity ↵ is:

[[x]] A (a+l) ≈ Cn [[x]] ( +`′) ,
act(↵, o ↵ , ′′ , {q A {`′ w = x.get(); [[s]]} ∶∶ {`′ ′ s ′′ }} p ′ , Rq) with ′′ = [o v r ] ∪ r and (v r , r ) = rename (v ′ , ′ ).
After that, the current local method call, equals to f.get(), can be performed. Consequently, after local invocation and local assignment, we have a Multiasp configuration Cn ′′ , such that Cn ′ → * Cn ′′ , as follows:

act(↵, o↵, ′′ , {q A {`′[w vr] [[s]]} ∶∶ {`′ ′ s ′′ }} p ′ , Rq) fut(f, v ′ , ′ )
Now, we must compare Cn ′ and Cn ′′ to prove that they are equivalent. The only change concerns the value pointed to by the variable x. Suppose x is a field of the current object (the case where x is a local variable is similar). To prove the line 3 of the definition of equivalence (Figure 12), we must ensure that f ≈ Cn ′ ′′ v r . Indeed, by definition of ≈ Cn ′ ′′ , we need to have

(o) = v r and v ≈ Cn ′ ′′ v r , which is true because first, v ≈ Cn ′ ′ v ′ and second, because by Lemma 4 we have v ≈ Cn ′ ′ v ′ ∧ (v r , r ) = rename ′ (v ′ , ′ ) ⇒ v ≈ Cn ′ r v r with r ⊆ ′′ .
Concerning activity ↵, the elements to be considered are local variables and statements; the other elements did not change. Multiasp configuration Cn ′ contains an additional local variable w that comes from the get invocation; this local variable is not used. The other local variables did not change, which preserves equivalence. Finally, the remaining statements in ABS and in Multiasp are guaranteed to be equivalent by the fact that s ≈ Cn ′ ′′ +`′ [[s]], according to the definition of equivalence R.

-In the second case, where o points to a value, the future has already been updated in the past. Consequently, no preliminary future update is necessary and the last steps of the previous case can be performed in the same way, but directly with Cn instead of Cn' and with v f instead of v r . The same arguments in favour of equivalence of Cn ′ and Cn ′ can be applied.

• Case of [ ] rule

We start from the ABS Await-False reduction rule, where Cn

a → Cn ′ : f = [[x]] A (a+l) ob(i ↵, a, {l x ; s}, q) fut(f, ) a → ob(i ↵, a, , q ∪ {l x ; s}) fut(f, )
By Lemma 1, we know that there exists ↵ such that cog(↵, i ↵) ∈ Cn. By the definition of equivalence R, we also know that there exist o ↵ , , p, Rq such that act(↵, o ↵ , , p, Rq) ∈ Cn and that we have fut(f, ) ∈ Cn. In addition, we have by translational semantics:

∃`′, `′′ , s ′′ .{q A {`′ w = [[x]].get(); [[s]]} ∶∶ {`′ ′ s ′′ }} ∈ p.
Thus, we have the following Multiasp configuration Cn, such that Cn R Cn:

act(↵, o↵, , {q A {`′ w = x.get(); [[s]]} ∶∶ {`′ ′ s ′′ }} p ′ , Rq) fut(f, ) By Lemma 3, we have [[x]] A (a+l) ≈ Cn [[x]] ( +`′)
. By case analysis on the definition of ≈ Cn , we have [[x]] ( +`′) = o. Then, only one case is possible in Multiasp:

(o) = f according to the 4th and 2nd case of the definition of ≈ Cn (no other case is possible because the future has not been resolved yet). Thus, the current statement of activity ↵ is in fact a local method call to x.get() where (o) = f . Since f has not been resolved yet in Multiasp, the current request of activity ↵ switches to passive mode q P by rule Invk-Future (recall that the objects are in soft-limit by default):

[[x]] ( +`) = o (o) = f act(↵, o↵, , {q A {` w = x.get(); JsK} ∶∶ {`′ ′ s ′′ }} p ′ , Rq) S → act(↵, o↵, , {q P {` w = x.get(); JsK} ∶∶ {`′ ′ s ′′ }} p ′ , Rq) S
Thus we have the following Multiasp configuration Cn ′ , such that Cn → Cn ′ : act(↵, o↵, , {q P {`′ w = x.get();

[[s]]} ∶∶ {`′ ′ s ′′ }} p ′ , Rq) fut(f, )
Now we have to prove Cn ′ R Cn ′ . In Multiasp, the only element that changed in activity ↵ is the status of the current request, from q A to q P which corresponds to the fact that the current task became in ABS. Indeed, in the definition of equivalence Figure 12, as soon as there is a term {l s} in p there must be a corresponding active thread in Multiasp (line 4). Similarly, passive threads in Multiasp correspond to some of the requests in the queue in ABS. The passivation of the thread correspond exactly to the transfer of the task to the request queue in ABS. The exact equivalence of the two tasks is then trivial (because await x; s ≈ Cn ′ w = x.get(); [[s]]).

• Case of [ ] rule

We have the following ABS reduction Cn a → Cn ′ with the Release-Cog rule:

ob(i ↵, a, , q) cog(↵, i ↵) a → ob(i ↵, a, , q) cog(↵, ✏)
From configuration Cn, by definition of equivalence R, we know that there exist o ↵ , , p, Rq such that act(↵, o ↵ , , p, Rq) is in a corresponding Multiasp configuration Cn, where Cn R Cn. Since in Cn the current task is and all other objects in cog ↵ are too (we know that by Lemma 1), there are no

f, i, m, v ′′ , `′, s ′ , `′′ , s ′′ such that (f, execute, i, m, v ′′ ) A {`′ s ′ } ∶∶ {`′ ′ s ′′ } ∈ p, i.e.
there is no active execute request in the set p of executed requests of activity ↵. In this case, we have Cn ′ R Cn as the cog is the only term that changed from Cn to Cn ′ and the state of cogs is not relevant in the definition of equivalence.

• Case of [ ] rule

We have the following ABS reduction Cn a → Cn ′ with the Activate rule:

↵ = a(cog) ob(i ↵, a, , q ∪ {l s}) cog(↵, ✏) a → ob(i ↵, a, {l s}, q) cog(↵, i ↵)
From configuration Cn, by definition of equivalence R, we know that there exist o ↵ , , p, Rq such that act(↵, o ↵ , , p, Rq) is in a corresponding Multiasp configuration Cn, where Cn R Cn. We also know that there is no active execute request in the set p of executed requests of activity ↵, because in the ABS configuration Cn the current task is . As the {l s} request belongs to the pending requests of the ABS object i ↵, we have, by definition of equivalence R (Figure 12, line 5, passive requests case), two possible cases (for the two sides of the disjunction of line 5):

-Either a corresponding passive request in Multiasp is in the set of executed requests:

∃f, i, m, v ′′ , `′, s ′ , `′′ , s ′′ .(f, execute, i, m, v ′′ ) P {`′s ′ } ∶∶ {`′ ′ s ′′ } ∈ p ∧ `′(this) = o.
The requests involved in this case can only be execute requests. Additionally, we have group(execute) = g 2 and L g2 = 1 (see end of Section 5), which basically means that only one execute request can be active at a time. Thus, as no other request is active in p, we have the condition: Active(p g2 ) < L g2 that is verified. Consequently, we can perform an Activate-Thread Multiasp reduction to fall in configuration Cn ′ , where Cn → Cn ′ :

Group(q ′ ) = g2 Active(p g 2 ) < Lg 2 act(↵, o↵, , {q ′ P {`′s ′ } ∶∶ {`′ ′ s ′′ }} p ′′ , Rq) S → act(↵, o↵, , {q ′ A {`′s ′ } ∶∶ {`′ ′ s ′′ }} p ′′ , Rq) S with q ′ = (f, execute, i, m, v ′′ ).
We now have to prove that Cn ′ R Cn ′ . The only alteration takes place in the set of executed requests: there is one less (execute) request that is passive (one less request to be matched in line 5 of R in Figure 12) but one more (execute) request that is active: we must compare it with the current task in ABS in line 4 of R (Figure 12). Proving the condition of line 4 from the first case of the disjunction of line 5 is trivial: all the elements perfectly match. -Or a corresponding request on the Multiasp side is in the queue of activity ↵:

∃`′, s ′ , i, m, . (f, execute, i, m, v ′′ ) ∈ Rq ∧ o ↵ .retrieve(i)=o ∧ bind(o, m, v ′′ ) = {`′s ′ } with (∀x ∈ dom(l)destiny. l(x) ≈ Cn `′(x)) ∧ s ≈ Cn +`′ s ′ Let q ′ = (f, execute, i, m, v ′′ ) and Rq = Rq 0 ∶∶ q ′ ∶∶ Rq 1 .
In this case, as no other request is active and as execute requests are compatible with all other requests (they are declared to safely run in parallel), this request is ready to be served because the predicate ready(q ′ , p, Rq 0 ) is true. Thus, we can apply the Multiasp Serve reduction rule 12 to fall in configuration Cn ′ , where Cn → Cn ′ :

ready(q ′ , p, Rq 0 ) q ′ = (f, execute, i, m, v ′′ ) bind(o↵, execute, v ′′ ) = {`′ ′ s ′′ } act(↵, o↵, , p, Rq 0 ∶∶ q ′ ∶∶ Rq1) → act(↵, o↵, , {q ′ A {`′ ′ s ′′ }} p ′′ , Rq 0 ∶∶ Rq 1 )
where s ′′ is the body of the execute method: s ′′ = (w = this.retrieve(i); x = w.m(params); return x). Furthermore, we also have o ↵ .retrieve(i) = o and thus, after a local method call to retrieve and a local assignment, we can perform the main local method call m to object o. We can then obtain a configuration Cn ′′ , where Cn ′ → * Cn ′′ and the Multiasp Invk-Passive reduction rule is the last step:

[[w]] ( +`′ ′ ) = o [[params]] ( +`′ ′ ) = v ′′ bind(o, m, v ′′ ) = {`′ s ′ } act(↵, o↵, , {q ′ A {`′ ′ x = w.m(params); return x}} p ′′ , Rq) → act(↵, o↵, , {q ′ A {`′ s ′ } ∶∶ {`′ ′ x = •; return x}} p ′′ , Rq)
Finally, in this case also, we can prove that Cn ′ R Cn ′′ . Indeed, there is one less request to match in the second case of the disjunction of line 5 of R, but the new one is to be compared in line 4 of R (Figure 12): This final configuration is similar to one of the case above. The only difference is that no future update was needed and thus the local store is unchanged. Otherwise, we can prove Cn ′ R Cn ′′ similarly to the case above.

• Case of [ ] rule

We start from the New-Object rule in which Cn a → Cn ′ as follows:

i ′ ↵ = fresh(C) fields(C) = x v = [[e]] A (a+l) a ′ = [x v, cog ↵] ob(i ↵, a, {l x = C(e); s}, q) cog(↵, i ↵) a → ob(i ↵, a, {l x = i ′ ↵; s}, q) cog(↵, i ↵)ob(i ′ ↵, a ′ , , )
By definition of equivalence R, there is a Multiasp activity in Cn corresponding to cog(↵, i ↵): ∃o ↵ , , p ′ , Rq.act(↵, o ↵ , , p ′ , Rq).

By translational semantics, p ′ contains the statements that create an equivalent new object in Multiasp: Then, Cn can be reduced by evaluating all local reductions of ↵ until a configuration Cn ′ has the object creation as current statement; these reduction steps only execute local assignment and local (synchronous) method calls fetching the cog and the identifier of the invoked object. In particular, we aim at Cn → * Cn ′ where Cn ′ contains the activity ↵ with the active thread executing the object creation: q A {`′ no = new C(e, t, id); z = t.register(no, id); x = no;

p ′ = {q A {` t = this.cog
[[s]]}, with `′ = `[t ↵, id i ′ ] 14 .
This configuration Cn ′ can be straightforwardly reduced to a configuration Cn ′′ , such that Cn ′ → Cn ′′ by the Multiasp New-Object rule as follows:

fields(C) = x o ′ fresh ′ = ∪ {o ′ [cog ↵, myId i ′ , ⇀ x = v ′′ ]} [[e]] ( +`′) = v ′′ Cn ′ → act(↵, o↵, ′ , {q A {`′ no = o ′ ; z = t.register(no, id); x = no; [[s]]} ∶∶ E} p ′′ , Rq)
The configuration Cn ′′ has now the activity ↵ that contains the new object. By now, this object has a proper identifier and points to the right activity ↵. The register instruction is then evaluated but we do not have to reason on it here as we already showed that the Invariant Reg is verified.

This leads us to the final configuration Cn ′′′ such that Cn ′′ → * Cn ′′′ , which contains the term:

act(↵, o↵, ′ , {q A {`′ ′ x = no; JsK} ∶∶ E} p ′′ , Rq)
where `′′ = `′[no o ′ ]. Now we can compare Cn ′ and Cn ′′′ to see if equivalence of the two configurations can be met. Typically, we have two objects of the same cog a↵ected in ABS and one activity a↵ected in Multiasp. Overall two objects are involved, the currently active object (i ↵) and the newly created one (i ′ ↵).

First consider i ′ ↵. We have a fresh object i ′ ↵ in ABS that must be equivalent to the fresh object o ′ in the store of ↵ in Multiasp. By Definition 1 of R, line 2, already additional fields pointing to the cog ↵ and to the identifier 

f = fresh( ) i ′ = JeK A (a+l) v = JeK A (a+l) p ′′ = bind(i ′ , f, m, v, class(i ′ ))
ob(i ↵, a, {l x = e m(e); s}, q) ob(i ′ , a ′ , p ′ , q ′ ) a → ob(i ↵, a, {l x = f ; s}, q) ob(i ′ , a ′ , p ′ , q ′ ∪ p ′′ ) fut(f, )

In the following, we only deal with the case where the communication is not performed on the caller itself, i.e. where ↵ ≠ (↵ = is similar but requires a specific proof instance). with an object equivalent to i ′ in Multiasp resulting from the evaluation of e in activity ↵. This object has two copies: one in activity ↵ and one in activity , but the value of its fields in ↵ are meaningless. Indeed, the copy of this object in ↵ acts as a proxy to its meaningful counterpart in . More formally, we have:

o ′ [cog , myId i ′ , [ ⇀ x v ′ ]] ∈ ↵ with JeK +`= o ′ o ′′ [cog , myId i ′ , [ ⇀ x v ′′ ]] ∈ with a ′ ≈ [ ⇀ x v ′′ ]
17 Recall that it is the instance of the parameters hosted in that are meaningful.

-The transmitted parameters v r are the copies of the method parameters in ABS. Ensuring equivalence between request parameters in this case is handled by Lemma 3 for obtaining the equivalence of the emitted values, and by Lemma 4 to ensure that, once values have been copied to and renamed, equivalence is still ensured. To begin with, we have: -By Lemma 1, ∃cog(↵, i ↵) ∈ Cn.

-By definition of equivalence R:

• ∃o ↵ , , p, Rq such that act(↵, o ↵ , , p, Rq) ∈ Cn.

• ∃f, i, m, v ′′ , `′, s ′ , `′′ , s ′′ such that (f, execute, i, m, v ′′ ) A {`′ s ′ } ∶∶ {l ′′ s ′′ } ∈ p, and e; s ≈ Cn +`′ s ′ . By definition of equivalence between statements, we have s ′ = ( e; JsK) since the first statement is not in the form of x = e; s.

• by line 7, we also have fut(f, ) ∈ Cn.

Furthermore, we know that in our translation, a method call on an object is always wrapped in an execute method call on an active object.

Therefore, we have s ′′ = (x = •; x). Thus, we find the following Multiasp configuration Cn such that CnRCn: From Cn, we can apply the Return-Local Multiasp reduction rule to have configuration Cn ′ such that Cn → Cn ′ :

v ′ = JeK +`′ Cn → act(↵, o↵, , {q A {`′ ′ x = v ′ ; x}} p ′ , Rq) fut(f, )
Then, after applying the Assign-Local Multiasp reduction rule on Cn ′ , we fall in configuration Cn ′′ such that Cn ′ → Cn ′′ as follows:

act(↵, o↵, , {q A {`′ ′ [x v ′ ] x}} p ′ , Rq) fut(f, )
We now denote `3 = `′′ [x v ′ ]. From Cn ′′ , we can apply the Return Multiasp reduction rule to end up in configuration Cn ′′′ such that Cn ′′ → Cn ′′′ :

JxK +`3 = v ′ Cn ′′ → act(↵, o↵, , p ′ , Rq) fut(f, v ′ , serialise(v ′ , ))
We further denote s = serialise(v ′ , ). Recall JeK +`′ = v ′ . Now, we have to check Cn ′ R Cn ′′′ . Concerning the resolved future, we have the future term f in both ABS and Multiasp configurations. We have to ensure that v ≈ Cn ′ s v ′ , and for that we have to ensure that v ≈ Cn ′ JeK +`′ . Indeed, by Lemma 3, we have JeK A a+l ≈ Cn ′ JeK +`′ and thus v ≈ Cn ′ v ′ and thus by Lemma 4 v ≈ Cn ′ s v ′ . Concerning activity ↵, the request corresponding to future f is no more existing, which matches with the fact that the ABS current task becomes : in the definition of equivalence, there is one less request that is to be compared on line 4 of Figure 12.

The other elements of the activity did not change, thus preserving their equivalence.

• Case of [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ] and [

] rules To finish, none of those rules above are considered in the proof of Theorem 3, for di↵erent reasons. We review the reasons for not treating each of them below.

Firstly, Skip, Cond-True, Cond-False and Context rules are kept unchanged from the translation provided by the original Java backend for ABS. Consequently, they are already supposed to be sound and correct, and their proof is anyway trivial. Furthermore, the statement on conjunctive guards and boolean expressions are not handled here. In fact, they do not raise a particular di culty because they only involve local computation.

Secondly, all the rules dealing with local synchronous method calls, namely Cog-Sync-Call, Self-Sync-Call, Cog-Sync-Return-Sched and Self-Sync-Return-Sched are not considered in the proof. Indeed, those rules send back the current task in queue and schedule it right away with the continuation statement to fake a synchronous treatment. Instead, we rely on a traditional stack of method calls and avoid considering the keyword. Besides, these rules make use of statements that are treated in other cases, like and . Consequently, considering these rules would be redundant and would not bring any particular insight on the correctness of the translation. Additionally, the practical translation of those aspects is again unchanged from the original Java backend for ABS.

Thirdly, in the case of the rule for remote synchronous method calls, Rem-Sync-Call, the ABS rule is a composition of a remote asynchronous method call and a future read; in the translation, we directly inline this composition. Thus, the proof for this rule simply inlines the two proofs for Rendez-vous-Comm and Read-Fut rules.

In conclusion, all reduction rules of ABS ensure that an equivalent final configuration is reachable in Multiasp, which completes the proof of Theorem 3.

Overall, although equivalence of ABS and Multiasp configurations is achieved for all ABS reduction rules, it is impossible to have strong simulation here, because of the intrinsic di↵erences between the two languages. We must consider some of the ABS and some of the Multiasp rules as silent actions. In particular, we have indeed some ABS reduction rules that are strictly associated to one Multiasp reduction rule, like for strong simulation. For some other ABS reduction rules, there is an associated Multiasp one, but additional silent rules are also needed to reach the correct simulation. On the other hand, some ABS reduction rules cannot be simulated by Multiasp ones, or more precisely, they strictly correspond to no Multiasp rule and either equivalence is just maintained, or some non-observable transitions must be achieved. We denote those cases asin Table 1 that summarises our results on simulation. The / character indicates an option depending on a criteria detailed in the proof but not in the table.

Further comments can be made about this table. First, we can note that additional Invk-Passive and Assign-Local-Tmp Multiasp rules are quite omnipresent. Indeed, we exhibited before that our translation introduces additional communications and temporary variables. We can notice that, if we ignore the introduction of those harmless rules, most of the important ABS rules can be simulated by a single Multiasp one. Second, we can simulate Await-False ABS rule with Invk-Future Multiasp rule, but the Await-True rule has no Multiasp equivalent, then it might have been more coherent to consider Await-False as silent too. Third, New-Object and New-Cog-Object are simulated by New-Object Multiasp rule but we can distinguish the two cases. Indeed, the New-Object Multiasp rule should distinguish whether the cog is empty or not. More precisely, New-Cog-Object ABS rule is simulated by a New-Object Multiasp on an empty cog, while New-Object ABS rule is simulated by a New-Object Multiasp rule on a non-empty cog. There is thus no ambiguity in the simulation. From another point of view, New-Active Multiasp rule could be the visible rule to simulate New-Cog-Object ABS rule instead of New-Object Multiasp rule, but doing so would mean that we create an (active) object in Multiasp that has no equivalent object in ABS; thus we prefer tracing New-Object rules on Multiasp side. Also for this simulation, note that the additional Invk-Active-Meta on Multiasp side is invisible because it only applies to meta-requests that do not exist in ABS, such as register and freshId. Symmetrically, the visible Invk-Active Multiasp rule for simulating Rendez-vous-Comm ABS rule only corresponds to execute requests which are the ones that are visible in ABS. Again, we can easily distinguish request of Invk-Active rules, so there is no ambiguity in the simulation.

Silent Multiasp actions. Finally, we can now easily list the Multiasp reduction rules that are not visible in the simulation: New-Active, Serve, Invk-Passive, Return-Local, Update, Activate-Thread, Set-Hard-Limit, Set-Soft-Limit Invk-Active on a method that is not execute (Invk-Active-Meta), Assign-Local on an intermediate variable introduced by the translation (Assign-Local-Tmp). The other Multiasp reduction rules are the ones that are observable in the simulation. This gives a particular insight on the construction of active object-based languages and highlight possible shortcomings in language designs.

Silent ABS actions. As shown by the table, the silent ABS rules are: Await-True, Release-Cog, Activate, Read-Fut. It is interesting to note that those rules concern part of the future manipulation, as highlighted above, and some part of the thread manipulation that is handled in a di↵erent way in the ABS semantics. For example, a single Multiasp rule is necessary for an object to release a thread whether two rules are necessary in ABS.

C.5 Core Proof of Theorem 4 -From Multiasp to ABS

In this section, we prove Theorem 4, namely that Multiasp translation corresponds to a valid ABS execution. In this direction, the main di culty is that we introduced additional steps in the reduction. On the other hand, the languages have only few concurrent rules (method invocation and future awaiting) and, as there can be a single active thread at a time, it prevents any local concurrency. Thus, the sequence of additional actions never performs a wait-by-necessity, it runs until the end without any observable interruption. Only thread activation, thread passivation, method invocation, and future update can create interleavings.

Proving this direction is a little trickier as the translated code is more operational; we can be in intermediate states in Multiasp that must be attached to the right state in ABS. Here, one should first observe that the translation of an ABS primitive mostly involves a single action that impacts the state of the equivalent ABS program. For example, for remote invocations, solely the call to execute impacts the request queue of the destination and has an e↵ect on the equivalence relation. The global idea is to see only those actions and to enable statement translation to do the same. In the case of execute, assignments to intermediate variables are ignored in the equivalence, and all the states that precede the execution of the remote method invocation are considered equivalent to the same ABS state. This is mostly handled by ignoring adequately assignments to variables that are not part of the ABS code. Also one should notice that there is an intermediate state when the request is served but the associated ABS method is not started yet, one should also consider this case in the notion of equivalence: such a just started request is similar to the case when the request still is in the queue. It is also important to notice that the theorem needs no restriction on futures which value is a future because when a future access is possible in Multiasp it can be faithfully simulated in ABS: ABS allows more control on the status of futures.

The goal here is not to do the exhaustive simulation proof mostly because the technical details will be massively redundant with the proof of Theorem 3. However, what is important to show here is that the translation ensures that no additional behaviour can be introduced by the Multiasp semantics. We provide a summary of the most important points of the proofs, i.e. the refinement of the equivalence relation presented in the paper, and a summary of the equivalence between reductions.

Adapting the equivalence relation To prove that all the Multiasp executions faithfully respect the ABS semantics, the equivalence relation needs to be refined, mostly to account for the fact that several statements are used in Multiasp to simulate a single ABS statement. In practice, it is easy to identify one statement that will trigger the same rule on both sides whilie the others are sintermediate steps generally preparing the main statement (e.g. fetching the identifier and cog of the target object of an invocation). We thus define a new equivalence relation on statements in Figure 13.

The first and the last rule are unchanged, but additional rules allow to discard setLimitHard instructions (the thread having just performed a setLimitHard is considered as still in the same state even if one statement is missing). Similarly, assignment to temporary variables can be added or removed, but when removing an assignment to a temporary variable one can use the value assigned if it is a Two other modifications are to be made concerning the equivalence on configurations (Figure 12 of the paper):

-When considering the case from ABS to Multiasp, we had as many cog as active objects. However, in ABS, when a cog is created, it is populated with at least one object, whereas in the translation of new, the instruction creating an active object (newActive) is separated from the creation of the new object populating the cog in ABS. Even if, in any case, the thread cannot be interrupted when doing those steps, this creates a point where the equivalence relation is not verified anymore. Such a situation is ruled out by considering, in line 1 of Figure 12, only activities that have at least one object inside. In other words, activities only populated with a cog active object are considered not to be part of the configuration yet. This can easily be formulated by looking at the content of the local store of the activity: if only contain the cog object and no object corresponding to an ABS object, then the activity should not be considered in the equivalence. More formally: Line 1 of Figure 12 is modified as follows: act(↵, o ↵ , , p, Rq) ∈ Cn should be added the side condition: has more than one entry. -There is an intermediate state where the request has been served in Multiasp but the ABS method has not yet started to be executed (i.e. when the stack corresponding to this request has a single entry). In this case the corresponding thread is necessarily the active one. This should be considered similarly to requests still in queue: In Line 4 of of Figure 12, one more case is necessary: (f, execute, i, m, v ′′ ) A {`′s ′ } ∶∶ {`′ ′ s ′′ } ∈ p ∧ `′(this) = o should be replaced by (f, execute, i, m, v ′′ ) A {`′s ′ } ∶∶ {`′ ′ s ′′ } ∈ p ∧ `′(this) = o ∨ (f, execute, i, m, v ′′ ) A {`′ ′ s ′′ } ∈ p ∧ o ↵ .retrieve(i)=o ∧ bind(o, m, v ′′ ) = {`′s ′ } Modulo those minor changes, the proof is similar to the case before, though a little more tedious. We only provide the summarising table of the reductions with comments.

Proof principles Like in the situation where we go from ABS to Multiasp, a notion of observability is to be defined, to focus on what is meaningful to consider for equivalence. In our sense, the most important step to be observable is request emission. Indeed, it characterises by its own the available objects and the available cog, the communication and the variables and statements that allowed to perform it. Let us first recall the theorem: Theorem Cn ∧ Cn R Cn Note that we do not need a restriction like f, f ′ . fut(f, f ′ ) ∈ Cn ′ in this direction because fetching the value of a future which is itself a future is possible in ABS but would block in ASP. Some ABS reductions could not be matched in ASP and potentially lead to a blocked state, but when the reduction is possible in Multiasp it can be faithfully simulated in ABS, even in this case.

Table 2 summarises our results on how the Multiasp translated program can be simulated by a valid ABS execution. Further comments can be made on the rules. First Assign-Local and Assign-Field raise no particular comment, except for the assignment of intermediate variables introduced by the translation that can be safely ignored.

Invk-Future only activates if the current limit is soft, which only happens in the translation of the await statement and if the future is not yet resolved. Indeed, no additional future can be awaited in the code corresponding to the translation. The cog is additionally released.

In the case of Invk-Passive, two cases are possible. The corresponding ABS rule can be Read-Fut if the invoked method is get and the current limit is a hard limit; or, it is Await-True if the invoked method is get and the current limit is a soft limit. It is silent for all invocations of methods that are internal to the translation (remember that the passive method invocation in ABS is not considered in the proof).

Distinction between Activate-Thread and Serve is made depending on the status of the request (whether it has started to be served or not) in Multiasp. Such a distinction does not exist in ABS. that is not execute (Invk-Active-Meta), Assign-Local on an intermediate variable introduced by the translation (Assign-Local-Tmp). Except Invk-Passive none of them needs any reduction on the ABS side: the reduced configuration is still equivalent to the same original ABS configuration.

D Experimental Evaluation

In order to test the ProActive backend, we first use four example programs given in the ABS tool suite. These examples are: a Bank account program that consists of 167 lines of ABS and that creates 3 cog; a Leader election algorithm over a ring (62 lines, 4 cog); a Chat application (324 lines, 5 cog), and a Deadlock example that hangs by circular dependencies between activities (69 lines, 2 cog). For all examples, we observe that the behavior of the program translated with the ProActive backend is the same as the one translated with the Java backend. Thus, the scheduling policy enforced in ProActive faithfully respects the one of the reference implementation. These examples run in a few milliseconds; they are inadequate for performance analysis but they allow us to check that the ProActive backend behaves correctly.

We have also conducted an experimental performance evaluation of an ABS distributed application translated with the ProActive backend and distributed on a cluster. We compare it to the performance of the same ABS application translated with the Java backend, run on a single machine. The considered use case is the pattern matching of a DNA sequence using the MapReduce programming model Map instances (workers) are created in their own cog to make them work in parallel. We consider a searched pattern of 250 bytes, and a database of 5 MB of DNA sequences. Each map searches for the maximum matching sequence of a chunk. Then, a reducer outputs the global maximum matching sequence. We compute the execution time of the whole use case when varying the number of workers for both generated applications. In the case of ProActive translation, the number of workers is twice the number of physical machines used (two workers run on each machine). In the case of the Java translation, all workers run in parallel on a single machine (no support for distribution). All used machines have 2 dual core CPUs at 2.6GHz, and 8 GB of RAM 18 .

Figure 14a shows execution time of both ProActive and Java translations of the ABS application from 2 to 50 workers, therefore using from 1 to 25 physical machines with ProActive. The execution time of the application stemming from the ProActive backend is sharply decreasing for the first added machines and then decreases at a slower rate. On the other hand, the application stemming from the Java backend has an optimal degree of parallelism of 4 workers (which actually is the number of cores of the machine) and then cannot benefit from higher parallelism; execution time even increases afterwards due to context switching overhead. On the opposite, increasing the degree of parallelism for the application stemming from the ProActive backend gives a linear speedup, because it balances the load between machines. Figure 14b compares now the performance of the generated ProActive code to a hand-written version. In the generated program, we have manually replaced the translation of functional ABS types (integers, booleans, lists, maps) with corresponding standard Java types. Indeed, our point is to evaluate the additional communication cost of our translation, not the performance of ABS types compared to standard Java types In this context, we can see that the overhead introduced by the ProActive backend is rather low since it is generally kept under 10%. At the biggest stage, the application translated with the ProActive backend starts to have a higher overhead because it involves too much communication. In conclusion, thanks to the ProActive backend, we were able to turn a local ABS application into a high-performance distributed application. In addition, the code generated by the ProActive backend maintains a low overhead compared to a native solution.

Acknowledgements. Experiments presented in this paper were carried out using the Grid'5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).
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 1 Fig. 1: Class-based syntax of the concurrent object layer of ABS. Field access is restricted to current object (this).
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 2 Figure 2 pictures an ABS configuration with a request sending between cogs.Requests are scheduled in a cooperative manner thanks to the await keyword,
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 6 Fig. 6: Evaluation function The following auxiliary functions are used in the semantic rules: [[e]] ( +`) returns the value of e by computing the arithmetic and boolean expressions and by retrieving the values stored in or `; the evaluation function is displayed in Figure 6. If the value of e is a reference to a location in the store, it follows references recursively; it only returns a location if the location points to an object or a future. [[e]] ( +`) returns the tuple of values of e. fields(C) returns fields as defined in the class declaration C. bind initialises method execution: bind(o, m, v ′ ) = { ⇀ y v ′ , ⇀ z null, this o s},where the arguments of method m, typed in the class of o, are y, and where the method body is {z; s}. ready is a predicate deciding whether a request q in the queue Rq is ready to be served: ready(q, p, Rq) is true if q is compatible with all requests in p (requests currently served by the activity) and with older requests in Rq. Serialisation reflects the communication style happening in Java RMI; it ensures that each activity has a single entry point: the active object. Consequently, all references to passive objects are serialised when communicated between activities, so that they are always handled locally. serialise(o, ) marks and copies the objects referenced from o to deeply serialise, recursively; it returns a new store made of all the objects that are referenced by o. serialise is defined as the mapping verifying the constraints of Figure5. rename (v, ′ ) renames the object locations appearing in v and ′ , making them disjoint from the object locations of ; it returns a renamed set of values v ′ and a store ′′ .
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 7 Fig. 7: Semantics of Multiasp asynchronous remote method invocation on an active object. It creates a fresh future with undefined value. The arguments of the invocation are serialised and put in the store of the invoked activity, possibly renaming locations to avoid clashes. The special case ↵ = requires a trivial adaptation of this rule (not shown here). Return is triggered when a request finishes. It stores the value computed by the request as a future value. Serialisation is necessary to pack the objects referenced by the future value. Update updates a future reference with a resolved value. This is performed at any time when a future is referenced and the future value is resolved. Finally, the main e↵ect of the missing rules is to modify the local store (New-Object and Assign-Field) and to a↵ect the execution context (Invk-Passive and Return-Local).

  execute(UUID objectID, String methodName, Object[] args) {..

  register(Object x, UUID id) Object retrieve(UUID id) Object execute(UUID id, MethodName m, params) {w= .retrieve(id); x=w.m(params); x} }
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 11 Figure 11 recalls the semantics of Multiasp, with the Assign-Local, New-Object, Invk-Passive, and Return-Local rules.
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 11 Fig. 11: Semantics of Multiasp
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by line 8

 8 of equivalence condition, and (o) = [mycog ↵, myId i, a ′ ] by line 2. Also by definition of equivalence, a ′ (x) = v ′ and v ≈ Cn v ′ (because is the store of ↵). We have JxK +`′ = Jv ′ K by the definition of the evaluation function of Figure6, with `′(this) = o by the equivalence condition of figure12(because x ∉ dom(l) and hence, x ∉ dom(`′)). Thus we have v ≈ Cn JxK +`′ = Jv ′ K +`′ by Lemma 2.

1 .

 1 either e ′ = e by definition and therefore, by Lemma 3: [[e]] A a+l ≈ Cn ′ [[e]] +`′ . 2. or v ≈ Cn ′ JeK +`′ and Je ′ K +`′ = v ′ . The rest of the elements of the activity are unchanged except the remaining statements, but in this case we have s ≈ Cn ′ +`′ [[s]] by definition of equivalence. • Case of [ ] rule Like the previous case, suppose Cn a → Cn ′ with the Assign-Field rule:

  which is unchanged except for the particular value v that must be equivalent to the evaluation of e ′ . Then, similarly to the Assign-Local case, we have again v ≈ Cn ′ [[e ′ ]] +`′ . Finally, we have s ≈ Cn ′ +`′ [[s]] by the definition of equivalence R. • Case of [ ] rule We start from the ABS Await-True reduction rule, in which Cn a → Cn ′ :

  and, by case analysis on the definition of ≈ Cn (Definition 1), we have [[x]] ( +`′) = o. Then, two cases are possible in Multiasp: either (o) = f (4th case and 2nd case of the definition of ≈ Cn ), or (o) = v f where v ≈ Cn v f (4th case and 5th case of the definition of ≈ Cn ).

  ∃l, s. p ′ = {ls} i↵ ∃f, i, m, v ′′ , `′, s ′ , `′′ , s ′′ . (f, execute, i, m, v ′′ ) A {`′s ′ } ∶∶ {`′ ′ s ′′ } ∈ p ∧ `′(this) = o with ∀x ∈ dom(l)destiny. l(x)≈ Cn `′(x) ∧ l(destiny) = f ) ∧ s ≈ Cn +`′ s ′Indeed, we constructed a request matching those conditions: each condition is either a direct consequence of the applied reduction rules or was ensured by the initial conditions on the request in queue. Besides, note that by definition of bind, bind(o, m, v ′′ ) = {`′ s ′ } implies `′(this) = o, which confirms the last condition above.• Case of [ ] ruleWe have the following ABS reduction Cn a → Cn ′ with the Read-Fut rule:f = JeK A (a+l) v ≠ ob(i ↵, a, {l x = e.; s}, q) fut(f, v)a → ob(i ↵, a, {l x = v; s}, q) fut(f, v)To begin with, from the ABS configuration Cn, we know that, byLemma 1, there exists ↵ such that cog(↵, i ↵) ∈ Cn. By the definition of equivalence R, there are o ↵ , , p ′ , Rq such that act(↵, o ↵ , , p ′ , Rq) ∈ Cn. There also exist `′, s ′ , `′′ , s ′′ such that {q A {`′ s ′ } ∶∶ {`′ ′ s ′′ }} ∈ p ′ . By definition of equivalence on statements, we have (x = e. ; s) ≈ Cn s ′ . By translational semantics, we have s ′ = Jx = e. ; sK, so we have s ′ = (setLimitHard; w = e.get(); setLimitSoft; x = e); JsK). Thus, we have the following Multiasp configuration Cn where Cn R Cn: act(↵, o↵, , {q A {`setLimitHard; w = e.get(); setLimitSoft; x = e; JsK} ∶∶ {`′ ′ s ′′ }} p, Rq) fut(f, v ′ , ′ ) with v ≈ Cn ′ v ′ by definition of equivalence R, and where JeK A a+l ≈ Cn JeK +`b y Lemma 3. Now, we can reduce configuration Cn to consume the setLimitHard statement with the Multiasp Set-Hard-Limit rule, and fall in configuration Cn ′ , where Cn → Cn ′ , as follows: act(↵, o↵, , {q A {` setLimitHard; w = e.get(); setLimitSoft; x = e; JsK} ∶∶ {`′ ′ s ′′ }} p, Rq) S → act(↵, o↵, , {q A {` w = e.get(); setLimitSoft; x = e; JsK} ∶∶ {`′ ′ s ′′ }} p, Rq) H Now, we have JeK A a+l = f and JeK A a+l ≈ Cn JeK +`, so two cases are possible:

  (); id = t.freshId(); no = new C(e, t, id); z = t.register(no, id); x = no; [[s]]} ∶∶ E p ′′ } By definition of equivalence R, there is a Multiasp object in Cn corresponding to ob(i ↵, a, ): ∃o, v ′ . (o) = [cog ↵, myId i, ⇀ x v ′ ], and this object maps to the current local variable this: `(this) = o. So we have the following Multiasp configuration Cn such that CnRCn: act(↵, o↵, [o [cog ↵, myId i, ⇀ x v ′ ]], {q A {`[this o] t = this.cog(); id = t.freshId(); no = new C(e, t, id); z = t.register(no, id); x = no; [[s]]} ∶∶ E p ′′ }, Rq)

i 3 v 2 .

 32 ′ correspond to the ABS identifier i ′ ↵. Equivalence of other parameters of the 40 we have: s abs = (x = i ′ ; s) ∧ s Multiasp = (x = no; JsK) with i ′ ≈ Cn ′ ′′ JnoK ( ′′ +`4) . Since [[no]] ( ′′ +`4) = o and since we showed before that o is equivalent to i ′ , we can conclude that remaining statements are equivalent. Then, we have a new activity in Multiasp which corresponds to the fresh cog in ABS. The content of this activity reflects the freshly created object o ′ . Concerning the object value, we must prove equivalence of object parameters other than cog and myId 17 . We have v = [[e]] A (a+l) and (v 2 , 3 ) = rename ′ ([[e]] ( ′′ +`4) , serialise([[e]] ( ′′ +`4) , ′′ )). By Lemma 3 and Lemma 4 we have v ≈ Cn ′ This ensures line 3 of definition of R. In ABS, the new object is with no pending request. Line 4 and 5 of definition of equivalence R is verified for them because no request is currently served in ABS, and in Multiasp no execute request is currently served. Finally, we have two additional futures in Multiasp concerning freshId and register, but they are not considered in the equivalence as they do not correspond to an execute request. • Case of [ ] rule We start from the following ABS Rendez-vous-Comm reduction rule, where Cn a → Cn ′ :

  First of all, by Lemma 1, ∃ ↵ . cog(↵, i ↵) ∈ Cn and ∃ . cog( , i ′ ) ∈ Cn. By definition of equivalence R and of translational semantics, there exist o ↵ , ↵ , p, Rq, `, `′′ , s ′′ , o , , p ′ , Rq such that the following terms belong to Cn, where Cn R Cn: act(↵, o↵, ↵, {q A {`t = e.cog(); id = e.myId(); x = t.execute(id, m, e); JsK} ∶∶ {`′ ′ s ′′ }} p, Rq) act( , o , , p ′ , Rq ′ )

•

  Case of [ ] ruleWe start from the following Return ABS reduction rule, such that Cna → Cn ′ : v = [[e]] A (a+l) f = l(destiny)ob(i ↵, a, {l e; s}, q) fut(f, ) a → ob(i ↵, a, , q) fut(f, v)

  act(↵, o↵, , {q A {`′ e; JsK} ∶∶ {`′ ′ x = •; x}} p ′ , Rq) fut(f, )

Theorem 4 .

 4 Any reduction of the Multiasp translation corresponds to a valid ABS execution:Cn0 → * Cn ⇒ ∃Cn. Cn0 a → * Cn ∧ Cn R Cn

Fig. 13 :

 13 Fig. 13: New equivalence on statements for Multiasp to ABS proof
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 4 Any reduction of the Multiasp translation corresponds to a valid ABS execution: Cn 0 → * Cn ⇒ ∃Cn. Cn 0 a → *

Fig. 14 :

 14 Fig. 14: Execution time of DNA-matching ABS application 19

  Rq) act( , o , ′ , p ′ , Rq ′ ) → act(↵, o↵, 1, {q {` x = o; s} ∶∶ F} p, Rq) act( , o , ′′ , p

o↵, , {q {` x = e.m(e); s} ∶∶ F} p, ′ , Rq ′ ∶∶ (f, m, vr)) fut(f, )

  Lg act(↵, o↵, , {q P F} p, Rq) sh → act(↵, o↵, , {q A F} p, Rq)

	sh
	-There are two additional rules for switching the kind of limit, we show one
	hereafter (Set-Soft-Limit is the reverse):
	Set-Hard-Limit act(↵, o↵, , {q

A {` setLimitHard; s} ∶∶ F} p, Rq) sh → act(↵, o↵, , {q A {` s} ∶∶ F} p, Rq) H

  To this end, in the translation, we introduce a class COG for representing ABS cogs; only objects of the COG class are active objects in the ProActive translation. We translate the ABS new statement that creates a new object in a new cog: This instruction is translated into ProActive by the ProActive backend:

	ABS. Server server =	Server();		
	Server server =	Server();		
	COG cog = PAActiveObject.newActive(COG.	,	Object[]{Server.	}, node);
	server.setCog(cog);			
	cog.registerObject(server);		
		o↵, , {q A {` x = e.m(e); s} ∶∶ F} p, Rq) S → act(↵, o↵, , {q P {` x = e.m(e); s} ∶∶ F} p, Rq) S
	4 Example-Driven Translation Principles
	In this section, we informally present the ProActive backend for ABS, that trans-
	lates ABS programs into ProActive code. Basically, this section shows how the
	formal translation that will be defined in Section 5 is instantiated in practice
	in ProActive. This backend is based on the existing Java backend for ABS. We
	keep the translation of the functional layer unchanged and provide a translation
	of the object and concurrency layers.		
	Object Addressing and Invocation. To handle the di↵erences between two active
	object languages, one needs first to define what happens when a new object
	(active or not) is created. As translating each ABS object into a ProActive
	active object is not a viable solution (because it is not scalable and because it
	requires a complex synchronisation of processes), we put several objects under
	the control of one active object, which fits the active object group model of

Table 1 :

 1 Summary table of ABS to Multiasp simulation. Assign-Local-Tmp means Assign-Local on a variable introduced by the translation whether other Assign-Local labels means assignmetns that target ABS local variables. Invk-Active-NE means Invk-Active on a method that is not execute whether other Invk-Active labels means invocation of an execute request.

  (tmp =z; s ′ ) tmp is a local variable introduced by the translation s ≈ Cn ( +`) s ′ s ≈ Cn ( +`) s ′ tmp is a local variable introduced by the translation s ≈ Cn ( +`) (tmp =z; s ′ ) s ≈ Cn ( +`+(tmpJeK ( +`) )) s ′ tmp is a local variable introduced by the translation s ≈ Cn ( +`) (tmp =e; s ′ )

	s ≈ Cn ( +`) JsK	s ≈ Cn ( +`) (setLimitHard; s ′ ) s ≈ Cn ( +`) s ′
	s ≈ Cn ( +`)	

s = (x = v; s1) s ′ = (x = e; Js1K) v ≈ Cn JeK ( +`) s ≈ Cn ( +`) s ′

http://akka.io

http://proactive.inria.fr/

http://abs-models.org/

Formalised in Isabelle/HOL: www-sop.inria.fr/members/Ludovic.Henrio/misc.html

Wait-by-necessity occurs only in case of method invocation on a future since field access is only allowed on the current object.

The step in which the cog of the new object is set in ProActive is directly encoded in the object constructor in Multiasp.

Recall that we only deal with asynchronous method calls in the proof.

The other cases are not applicable here, e.g. a future f is not a valid Multiasp value.

Here, we use the fact that we restricted ABS to the FIFO activation of requests: if a request in Rq 0 could be served it would be served first.

act(↵, o↵, , {q A {`′x = e; JsK} ∶∶ {`′ ′ s ′′ }} p, Rq) fut(f, v ′ , ′ )

Recall that we excluded the particular execution where the value of a future is a future

Note that i ′ , the same identifier as the fresh id allocated by ABS, can be chosen as a fresh identifier by the method freshId. This is due to the definition of equivalence between objects: if i ′ was not fresh in ↵, i ′ ↵ would already be an existing ABS object and could not be chosen as a fresh ABS object identifier.

We use a cluster of Grid5000 platform: http://grid5000.fr

Each measurement is an average of five executions.

Jx = e!m(e)K t = e.cog(); id = e.myId(); x = t.execute(id, m, e) Jawait x?K w = x.get() Jawait g ∧ g ′ K Jawait gK; Jawait -Either the future has not been updated yet, and JeK +`= o and (o) = f . Then, a future update occurs through the Multiasp Update reduction rule, and we fall in configuration Cn ′′ , where Cn ′ → Cn ′′ , as follows:

where p ′ = {`w = e.get(); setLimitSoft; x = e; JsK} ∶∶ {`′ ′ s ′′ } p. At this point, the get() method call on object o can be performed and succeeds because the future has been updated. Additionally, thanks to Lemma 4, v ≈ Cn ′ v ′ implies v ≈ Cn ′′ v r : the value of the future after serialization is preserved. Moreover, we can note that v is not a future 13 , thus neither v ′ nor v r can point to a future. Finally, after applying some local reduction rules: local method invocation, local assignment (changing `to `′) and a limit switch, we end up in the following Multiasp configuration Cn 3 , where Cn ′′ → * Cn 3 :

From here, we can prove that Cn ′ R Cn 3 . Indeed, we have v

Finally, the other elements need not being considered because they did not change.

-Or the future has already been updated, and JeK +`= v ′ . By Lemma 3, we have f ≈ Cn v ′ . Then, performing get on e has no visible e↵ect, and after applying several local Multiasp reduction rules, we end up in a configuration Cn ′′ , where Cn ′ → Cn ′′ , as follows:

fresh objects is obtained by Lemma 3. The newly created object is with no pending request in ABS; line 4 and 5 of Definition 1 are trivially verified.

Second, consider i ↵. Only the currently served request has changed and only line 4 of Definition 1 has to be checked. The set of local variables did not change except in Multiasp where the set of local variables contains more variables. Finally, we have to check equivalence of the remaining statements. We fall in the second case of the definition of statement equivalence:

The current statement in ABS and in Multiasp indeed fits with the requirement above. Additionally, JnoK ( ′ +`′ ′ ) = o ′ and we have showed before equivalence of i ′ ↵ and o ′ .

• Case of [ ] rule

We start from the New-Cog-Object rule where Cn a → Cn ′ as follows:

From the ABS configuration Cn, we know that: We can apply New-Active Multiasp reduction rule to fall into configuration Cn ′ , such that 15 Cn → Cn ′ : 15 Note that we can pick as a fresh activity name because, by definition of R, as is free in ABS , it is also free in Multiasp

Now, we can reduce Cn ′ to a configuration Cn ′′ by two local assignments and a remote invocation (to get a fresh identifier), until the current statement is the new object creation:

where

Then, it is possible to reduce the configuration until a fresh identifier is found and returned, and the future has been updated in ↵: Cn ′′ → * Cn 3 such that the following elements are in the configuration 16 :

with `′′′ (id) = i ′ . We can apply the New-Object Multiasp reduction rule to end up in a configuration Cn 4 such that Cn 3 → Cn 4 by applying the following reduction:

Then, the final steps consist in reducing the local assignment and evaluating the register remote method invocation. This brings us to the final configuration Cn 5 , where Cn 4 → * Cn 5 , which contains the following terms:

is the serialisation of o. Now, we can compare configuration Cn ′ and Cn 5 to prove that Cn ′ R Cn 5 . To begin with, the oldest activity, ↵, that corresponds to cog ↵ (cog ↵ exists by Lemma 1), contains now in its store a copy of the new object o corresponding to object i ′ in ABS. Objects o and i ′ are equivalent because first, o contains the required additional fields: cog that points the new activity , and myId with value i ′ ; other fields are only meaningful in . Concerning the current request, first, the local variables in Multiasp contain two more variables, but the existing ones did not change over the process. Second, the remaining statements fall in the second case of the definition of statement equivalence. Like the previous case, Multiasp configuration Cn can be reduced using local rules until a configuration Cn ′ contains the execute remote method invocation as current statement. More formally, we have Cn → * Cn ′ , where the active thread of activity ↵ in Cn ′ is: {`′x = t.execute(id, m, e); JsK} ∶∶ {`′ ′ s ′′ }, with `′ = `[t , id i ′ ]. Then, we can reduce Cn ′ to a configuration Cn ′′ , Cn ′ → Cn ′′ , by the Multiasp Invk-Active rule:

We finally have to prove that Cn ′ R Cn ′′ . First, we have as many terms that changed in Cn ′ as in Cn ′′ : there are two ob and act terms and one added future in configurations of both side.

Concerning the fresh future, it is the same in the two configurations: we conclude by line 6 of the definition of equivalence R.

Concerning activity ↵; the local variables remain unchanged except temporary variables. The element that actually changed is the current statement. We have

We conclude the equivalence between activities ↵ using line 4 of the definition of equivalence R.

Concerning activity , a new pending request is created in Multiasp configuration Cn ′′ , corresponding to the new inactive thread in the ABS configuration Cn ′ . According to line 5 of the definition of equivalence R, we have {ls} ∈ q ′ ∧ l(destiny) = f with {ls} = bind(i ′ , f, m, v, class(i ′ )); there is only one case to consider because we know that the request is not served yet. Thus, we have to prove: Invk-Active reductions that send an execute request exactly match the Rendez-vous-Comm rule. Note that here, the preliminary steps and additional steps performed in the translation are handled by the equivalence relation, those steps also ensure that the object exist in ABS and can be accessed through its cog. Of course, Invk-Active reduction for other methods (labeled Invk-Active-Meta) have no corresponding reduction in ABS.

Object creation New-Object can either correspond to the creation of an object in the same cog (New-Object) or in a new cog if the store of the activity where the object is created is empty (only contains the cog object).

Assignment of a result to a future (Return rule) is matched exactly except that the request in Multiasp is an "execute" request.