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Abstract. In this paper, we study a power control game over a collision
channel. Each player has an energy state. When choosing a higher trans-
mission power, the chances of a successful transmission (in the presence
of other interference) increases at the cost of a larger decrease in the
energy state of the battery. A central feature in these games is that of
the limitation on battery life. Natural questions that arise concern the
behavior of mobile users in the presence of interference. How should a
mobile user behave given his initial energy state? We study this dynamic
game when restricting to simple non dynamic strategies that consist on
choosing a given power level that is maintained during the lifetime of the
battery. We identify a surprising paradox which we call the Hawk and
Dove resource abundance paradox.

Keywords: Evolutionary game theory, Hawk and Dove game, Power
control, Battery life.

1 Introduction

Much research has been devoted to the tradeoff between throughput and power
consumption. Yet little has been done concerning another central challenge: the
limitation on battery life. In this paper we study power control in a way that com-
bines all above-mentioned aspects. We consider a game among a large population
of mobile terminals competing for wireless access. Each terminal attempts trans-
mission. At each attempt, it takes a decision on the transmission power based
on its initial battery energy state or level. Higher transmission power improves
its throughput, but makes the life of the battery shorter. Each player maximizes
his total throughput minus the cost of the transmission over the whole lifetime
of his battery. We consider a CDMA type cellular system in which all mobiles
transmit simultaneously to a common base station. As the competition involves
a large population of mobiles, we find it convenient to model the set of mobiles
as continuum in which actions of an individual have a negligible impact on the
performance of other mobiles. Each mobile has to take into consideration the
initial battery state in the decision.

In this paper, we revisit the power control problem. There is a huge lit-
erature on optimization models for controlling transmission power of wireless
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devices sharing a common medium. See [1] for one of the first distributed power
control algorithms. We can also cite several articles of Mandayam et al. [2] and
references therein that treat the problem of power control considering an energy
efficiency non-cooperative game. We use the classical framework of evolutionary
games, which we extend to a semi-dynamic context (see below). It deals with
large populations in which individuals interact with each other through many
local interactions, each of which involve two randomly selected individuals. This
pairwise interaction paradigm is relevant for situations of sparse mobile net-
works in which one may neglect the possibility of simultaneous interference of
more than two mobiles.

We consider in this paper a semi-dynamic variant of the well known Hawk and
Dove game [3]. The latter game has been introduced to describe the evolution
of aggressive behavior among animals that compete for food. Variants of the
Hawk-Dove (HD) game have been used for various applications in networking.
The medium access game considers competition over the access to a common
channel through the control of the attempt probabilities [4]. The power control
game studies the choice of transmission power over a collision channel [5, 6].
Finally, in congestion control the HD game can be used to study the choice
between versions of TCP (transmission control protocols) to be used over the
Internet [7]. In the HD game, there are two types of individuals: aggressive
(Hawk, denoted by H) and peaceful (Dove, denoted by D). In the MAC problem,
the aggressive behavior corresponds to a high attempt rate. In power control a
Hawk coincides with transmission at a high power, and in the congestion control
it is the choice of an aggressive version of TCP (e.g. scalable TCP or high-speed
TCP). The standard Hawk and Dove game predicts when one type of behavior (H
or D) would dominate in the long run, and when we may expect the coexistence
of aggressive and peaceful individuals. The equilibrium fraction of each type of
behavior is obtained by solving a two-player auxiliary matrix game.

Several authors have studied dynamic variants of this game where individuals
are characterized by their energy state [5–9]. A biological variant of this game
can be found in [10]. Aggressive behavior requires more energy (which is the case
in both the MAC problem as well as in the original HD example). Aggressive
behavior requires more energy (which is the case in both the MAC problem
as well as in the original HD example). The energy reserve of an individual is
defined as the individual state. Thus actions of an individual influence not only
the immediate fitness but also the future state of the individual. The objective
of an individual is to maximize the total expected fitness during its lifetime. In
these dynamic versions of the Hawk and Dove game, the individual strategy is
no more a single choice between H and D, but rather a collection of choices that
prescribes how an individual should behave at each possible state.

We consider in this paper a semi-dynamic framework which inherits some
features from the static framework and some from the dynamic one. As in the
dynamic setting, each player has an individual energy state and the player’s
action determines not only the immediate fitness but also the future state dis-
tribution. Yet in contrast to the dynamic versions of the game, we assume that
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an individual makes state independent choices. The individual chooses i (where
i is H or D) and once the choice is made, the same action i is always used by
this individual at any state. The individual is either always aggressive or always
peaceful. The problem thus resembles the static one in the fact that the indi-
vidual has to choose only once, between D and H. We shall use the two central
concepts of evolutionary games. The first is the concept of an Evolutionary Sta-
ble Strategy (ESS), which is a distribution of (deterministic or mixed) actions
such that, if used, the population is immune against penetration of mutations.
This notion is stronger than that of Nash equilibrium as ESS is robust against
a deviation of a whole fraction of the population where as the Nash equilibrium
is defined with respect to possible deviations of a single player.

The structure of the paper is as follows. In the next Section, we present the
system model. In Section 3, we describe the evolutionary game and address the
properties of the fitness. Section 4 defines the concept of Evolutionary Stable
Strategy. In Section 5, we compute the (pure and mixed) equilibria considering
the case with and without breakdown. Discussions about the Hawk and Dove
resource abundance paradox are provided in Section 6. We conclude the paper
in Section 7.

2 Model

Consider a sparse network that consists of a large population of mobile stations
(MSs). Apart from mobile stations, there are also many fix receivers: throw boxes
or relays or base stations which we refer to as base stations (BSs) in the remain-
der. We focus on the case where MSs only transmit when they are in the trans-
mission range of a BS. That is, the situation in which mobiles themselves forward
packets of other mobiles is explicitly excluded. As multiple MSs may transmit
simultaneously to a BS, interference cannot be avoided. However, assuming that
the network is sparse, we do not consider interference between multiple mobiles.
This property is relevant to the assumption that the mobile network is sparse,
so that one may neglect the possibility of being interfered simultaneously by
more than one other mobile. This brings us to the pairwise interaction paradigm
of evolutionary games. It is assumed that interactions between individuals oc-
cur by some random selection process in which pairs of individuals are selected
independently. We consider further that with some probability, when a mobile
attempts transmission, there is no interference at all.

We consider two types of terminals: one that transmits at a high power and
one that transmits at a low power. We refer to these by Hawks (H) and Doves
(D), respectively, thereby referring to the HD game. A mobile user (player)
decides which terminal to use, and once this choice is made, he sticks to that
choice of terminal for some predetermined time T . Considering only pairwise
interaction, it is assumed that the sequence of types of terminals with which a
given terminal interacts constitutes a sequence of i.i.d. random variables.

We shall consider two distinct models.
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– Model 1 (M1): T is some fix large time, for example two years, which is
approximately the expected time until one changes his/her cellular phone.
We assume that T does not depend on the type of the phone (H or D).

– Model 2 (M2): T is the time until the mobile runs out of battery power. Note
that in this case, T is a function of the choice of type of battery. Indeed, as
H consumes more energy than D, it will drain faster.

Models 1 and 2 above have interesting mathematical properties that guarantee
the existence of an ESS as described at the end of Section 4 and which in turn
facilitate its computation.

We assume that a mobile starts at state N . When the battery is empty, it is
replaced after a time that corresponds to a geometrically distributed number of
transmission opportunities.

We consider in this paper state independent policies, i.e., we consider that
the transmission power of a mobile is fixed to always transmit either at the high
power (H) or at the lower power (D).

Success probability Consider a packet transmission of a terminal and let δ denotes
the probability that no other terminal interferes with the transmission. If this is
not the case, there is interference between two terminals and the probability that
the packet is transmitted successfully is determined by the types of the terminals
involved. Let ps(i, j) denote the success probability of the first terminal assuming
that this terminal plays i while the other plays j (i, j ∈ {H,D}). We have,

ps(i, j) =


0 for (i, j) = (D,H),
p1 for (i, j) = (D,D),
1 for (i, j) = (H,D),
p2 for (i, j) = (H,H).

(1)

Transition probabilities If the energy level of an individual is n and its action
is D, then the energy level decreases to n − 1 with probability q1 or it remains
unchanged with probability q2. We shall have q1+q2 ≤ 1. We shall allow q1+q2 <
1, in which case we assume that there is a positive probability of 1 − q1 − q2
for a breakdown which does not depend on the energy level. A breakdown is
represented as a transition to an energy state zero.

Analogously, if the energy level of an individual is n and its action is H, then
the energy level decreases to n− 1 with probability q3 or it remains unchanged
with probability q4. As for D, we again allow that q3 + q4 < 1 in which case we
shall have a breakdown probability 1− q3 − q4, a breakdown corresponding to a
transition to energy level 0.

Initial energy level In the remainder, we assume that a mobile starts at energy
level ND or NH , depending on the type of mobile. The energy level represents the
number of transmissions the mobile can do. With the desire of fairness between
both populations, we assume that Hawk and Doves have the same amount of
energy. However, as transmission by a Hawk requires more energy, a Dove will be
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able to transmit more times with the same battery, i.e., ND > NH and q1 = q3.
Finally, when the battery is empty, it is immediately replaced.

3 Properties of the fitness

Both Hawks and Doves aim to optimize the amount of data that can be send
during the lifetime of the battery, hence the fitness is defined as follows

Definition 1. The long term fitness of a mobile is defined as the sum of the
expected number of packets sent by that mobile during the lifetime of its battery.
We denote by V (j, i) the long term fitness of a mobile, given that it is of type j,
and that all others are of type i, with i, j ∈ {H,D}.

Definition 2. Assume that at any time, a fraction α of the mobiles use action
D, and the rest use H. We then denote by V (j, α) the corresponding long term
fitness given that the mobile uses j. Moreover, let

V (β, α) = βV (D,α) + (1− β)V (H,α)

be the fitness of a terminal that chooses mobile type D (and always uses it) with
probability β, and otherwise chooses type H (with probability 1− β).

We shall motivate these definitions at the end of Section 4. We now mention
some properties of the fitness.

(i) Throughout, H and D stand both for an action (the power level transmitted
at a given time by a given mobile) and a type. The type of a mobile can
be interpreted as a state independent pure stationary strategy. Here, a pure
stationary strategy is a function that maps states (energy states in our case)
to actions.

(ii) Note that the transition probabilities of a user do not depend on the actions
of the other users it interacts with. Therefore the total time till a battery
drains out is only a function of the mobile’s type and not of the actions or
types of the other mobiles it interacts with.

(iii) For model M1 (see Section 2), V (β, α) can be interpreted as the fitness of
a player that uses the mixed strategy β given that all the rest uses a mixed
strategy α. A mixed strategy is a random decision of which type of mobile
to use (H or D); Once the (random) decision is made, we assume that the
user stays with this terminal during time T .

(iv) The interpretation of (iii) is not valid under assumption M2. Indeed, let Ti
be the time till the battery empties given that it is of type i. Assume that
all but one mobile use a mixed strategy α. Hence each user chooses to use
D until TD with probability α. Then the fraction of mobiles that use at a
given time an action D is given by

g(α) =
αTD

αTD + (1− α)TH
. (2)
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Conversely, if α stands for the fraction of mobiles that use action D, then
the fraction of mobiles that are of type D (i.e. that use strategy D) is given
by

α/TD
α/TD + (1− α)/TH

.

Remark 1. We assume zero-recharging times in the remainder. Nevertheless, for
both models M1 and M2 it is possible to include non-zero recharging times. As
for model M2, this requires us to account for the fact that only a fraction of
the mobiles is active at a time which affects the fraction of mobiles that use
a particular strategy at a time. Again, a function ĝ can be introduced which
relates the fraction α of mobiles that play D to the fraction of active mobiles
ĝ(α) that play D.

4 Evolutionary Stable Strategies

4.1 Nash equilibrium

As usual, a symmetric strategy α is a Nash equilibrium if no player can do
strictly better by a unilateral deviation to some other pure or mixed action β.

– For i = H or i = D, i is a pure Nash equilibrium if V (i, i) ≥ V (j, i) for
j = H,D.

– Assuming model M1, we have that α is a mixed Nash equilibrium if V (α, α) ≥
V (β, α) for all β.

– Assuming model M2, we have that α is a mixed Nash equilibrium if V (α, g(α)) ≥
V (β, g(α)) for all β, where g is defined in (2).

An equilibrium is said to be strict if any deviation by any player results in a
strictly worse fitness to that player.

4.2 Definition of a standard evolutionary game

Suppose that the whole population uses a strategy q and that a small fraction ε
(called ”mutations”) adopts another strategy p. Evolutionary forces are expected
to select against p if

V (q, εp+ (1− ε)q) > V (p, εp+ (1− ε)q) (3)

Definition 3. A strategy q is said to be an Evolutionary Stable Strategy (ESS)
if for every p 6= q there exists some εp > 0 such that (3) holds for all ε ∈ (0, εp).

We shall make use of the following characterization of an ESS [12]:

Theorem 1. A strategy q is an Evolutionary Stable Strategy if and only if ∀p 6=
q the following conditions holds:

V (q, q) ≥ V (p, q), (4)
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and if

V (q, q) = V (p, q) then V (q, p) > V (p, p). (5)

The first condition says that the ESS is a Nash equilibrium in the game that
describes the interaction between two players. Conversely, if q is a strict Nash
equilibrium in that game then it is an ESS in the evolutionary game.

The second condition, referred to as ”Maynard Smith’s second condition” [13]
states that if q is a Nash equilibrium but not a strict Nash equilibrium (i.e. the
fitness of a deviation p from q does as good as q when the rest of the population
uses q), then q can still be an ESS if it has an advantage in that it can invade
the mutants strategy p. In other words, in a population where every one uses p,
a small deviation to q does strictly better than everyone using p.

Let V (p, q) denote the expected fitness (utility) for a player when playing
a mixed policy p and when the fraction of the population that plays each pure
strategy i is given by q(i). The expected fitness is then linear in both p and q

and can be written as pVqT where V is the matrix whose i, jth entry equals
V (i, j), and where p (resp. q) is a row vector whose ith entry is p(i) (resp. q(i)).
Theorem 1 then states that the ESS of an evolutionary game can be characterized
by properties of the equilibria of an auxiliary game. In our case this auxiliary
game is the matrix game V. Note that not every matrix game has an ESS.

4.3 ESS in the semi-dynamic game

Consider the following two pure strategies of a player (i) always play D, and (ii)
always play H. With some abuse of notation we denote these policies by D and
H. When writing the long term fitness of players as a function of the system
parameters, we shall see that the fitness is linear in p and q whereby p are now
probabilities over the strategies H and D and not over the actions H and D.
This means that a mixed strategy is obtained by tossing a coin, and according
to the outcome, the player always uses D or always uses H. Notice that if we
choose between action D and H with some probability q at each time instant,
then the expected fitness need not be linear in q. This bilinear form of semi-
dynamic games allows us to apply directly the standard theory of evolutionary
games to the semi-dynamic case.

Recall that, even though we assume that each individual mobile j always
plays the same action, the sequence of actions that are played by the mobiles
encountered by some tagged mobile are i.i.d.

While working with mixed strategies allows for directly applying much of
the framework of standard evolutionary games, these policies do not allow for
an evolution, as once we perform the initial randomized selection between D and
H, we shall always stick to that choice. Hence, to combine both the flexibility
that allows for evolution together with the linear properties of the auxiliary game
(the matrix game introduced above), we assume that each mobile uses mixed
policies for some limited time T , after which a new choice is made and so on.
Recall that T either corresponds to the lifetime of the battery (M2) or to the
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lifetime of the device (M1). Two ways of choosing are given in model M1 and
M2, respectively (see beginning of Section 2).

The definition of V (see definition 2) is suitable for mixed strategies over an
infinite time as well as for the finite horizon framework M1. Recall however that
for M2 it should be replaced by V (β, g(α)) where g is given in (2).

5 Computing the equilibrium

Let Vn(i, α) denotes the expected fitness of a user who plays i and starts at energy
level n, i, j ∈ {H,D}. In view of this definition we have, V (D,α) = VND

(D,α)
and V (H,α) = VNH

(H,α). We find the following recursions for Vn(i, α),

Vn(D,α) = (δ + (1− δ)αp1) + q1Vn−1(D,α) + q2Vn(D,α) ,

Vn(H,α) = (δ + (1− δ)α) + (1− α)(1− δ)p2 + q3Vn−1(H,α) + q4Vn(H,α) .

The first equation expresses the total expected fitness of a mobile of type D when
starting with n units of energy, till its battery empties. Hence, the equation is
composed of two expressions:

(i) The expected fitness corresponding to the current transmission: with proba-
bility δ there is no interference at all so the fitness is one unit. With proba-
bility (1− δ) there is an interaction with another mobile. The fitness equals
p1 when both mobiles use D which occurs with probability α. Otherwise, it
is zero.

(ii) The expected fitness collected after the transmission: we first note that
with probability q1, the energy level after the transmission equals n − 1,
so the expected fitness to go is q1Vn−1(D,α). With probability q2 the energy
level is unchanged so the expected fitness collected after the transmission is
q2Vn(D,α).

The second equation can be explained following similar lines.

5.1 With Breakdown

Solving the recursions for q1 + q2 < 1 and q3 + q4 < 1 yields,

Vn(D,α) =
δ + αp1δ

1− q1 − q2

(
1−

(
q1

1− q2

)n)
,

Vn(H,α) =
δ + αδ + p2δ(1− α)

1− q3 − q4

(
1−

(
q3

1− q4

)n)
,

with δ = 1 − δ and whereby we assumed V0(D,α) = V0(H,α) = 0. That is, no
fitness can be collected if the battery is empty.
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Lemma 1. Assume that both Hawks and Doves are subjected to breakdowns
(q1 + q2 6= 1 and q3 + q4 6= 1), we have for i ∈ {D,H},

V (i, α) = αV (i,D) + (1− α)V (i,H) , (6)

with,

V (H,H) =
δ + p2(1− δ)
1− q3 − q4

(
1−

(
q3

1− q4

)NH
)
, V (H,D) =

1

1− q3 − q4

(
1−

(
q3

1− q4

)NH
)
,

V (D,H) =
δ

1− q1 − q2

(
q1

1− q2

)ND

, V (D,D) =
δ + p1(1− δ)
1− q1 − q2

(
q1

1− q2

)ND

.

�

This allows us to express the equilibrium as follows.

Corollary 1. Assuming non-zero breakdown probability, the following holds.

(i) D is a pure equilibrium if

1

1− q3 − q4
·
(

q3
1− q4

)NH

+
δ + p1(1− δ)
1− q1 − q2

·
(

q1
1− q2

)ND

>
1

1− q3 − q4

(ii) H is a pure equilibrium if

δ + p2(1− δ)
1− q3 − q4

·
(

q3
1− q4

)NH

+
δ

1− q1 − q2
·
(

q1
1− q2

)ND

<
δ + p2(1− δ)
1− q3 − q4

(iii) Let

α∗ =

θ · δ

1− q1 − q2
− ρ · (δ + p2(1− δ))

1− q3 − q4

θ · ((1− δ)(1− p2))

1− q3 − q4
− ρ · ((1− δ)p1)

1− q1 − q2

where θ =

(
1−

(
q1

1−q2

)ND
)

and ρ =

(
1−

(
q1

1−q2

)NH
)

. If α∗ is in the

interior of the unit interval then it is a mixed ESS. �

5.2 Without Breakdown

Assume now that Hawk and Dove are no more subject to breakdown. We have
then q1 = 1− q2 and q3 = 1− q4, which yields

Vn(D,α) =
αp1(1− δ) + δ

q1
n

Vn(H,α) =
(1− δ) (1− α) p2 + δ + α(1− δ)

q3
n
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We make the observation that the behavior of the system depends on the ratio
NH

ND
and not on ND and NH themselves. Let γ = NH

ND
. This allows us to express

the equilibrium as follows

Lemma 2. In the absence of breakdowns (q1 = 1− q2 and q3 = 1− q4), we have
for i ∈ {D,H},

V (i, α) = αV (i,D) + (1− α)V (i,H) , (7)

with,

V (H,H) =
γ ((1− δ) p2 + δ)

q3
, V (H,D) =

γ

q3
,

V (D,H) =
δ

q1
, V (D,D) =

p1(1− δ) + δ

q1
.

�
This gives us the following equilibria.

Corollary 2. In the absence of breakdowns, the following holds.

(i) D is a pure equilibrium if γ <
q3 (p1(1− δ) + δ)

q1
.

(ii) H is a pure equilibrium if γ >
δ q3

(p2(1− δ) + δ)q1
.

(iii) Let

α∗ =
δ q3 − q1 γ (p2(1− δ) + δ)

(1− δ) (q1 γ(1− p2)− q3p1)

If α∗ is in the interior of the unit interval then it is a mixed ESS.

�

At the equilibrium, Let β = (β, 1 − β) and α = (α, 1 − α) be two row

vectors of probability measures over the available actions D,H. Let V be a
matrix whose (i, j)th entry is given by V (i, j). In accordance with Definition 2,
denote by V (β, α) the expected fitness of a player who always plays strategy D
with probability β and always H with probability 1 − β, while the fraction of
individuals in the population that play D is α. We then make the following key
observation regarding the total expected utility.

Lemma 3. The expected utility for a player that chooses to be D with probability
β given that the fraction of D in the population is α can be written in a vector
form as

V (β, α) = βVαT .

It is thus bilinear. It can therefore be interpreted as the expected fitness for a
player in an equivalent one shot game (a symmetric static evolutionary game)
where the fraction of D in the population is α and where the player chooses D
with probability β. The equilibria given in Lemma 1 and 2 are ESS.

�
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6 The Hawk and Dove resource abundance paradox

Without loss of generality, we consider the case without breakdown (the case of
breakdown is similar). Unless otherwise stated, for all numerical applications,
we use the following variables: p1 = 0.3, p2 = 0.1, q1 = q3 = 0.6.
Figure 1 shows the effect of the parameter of being alone δ on the mixed ESS
equilibrium for several values of γ. We identify a paradox which we call the Hawk
and Dove resource abundance paradox. First, we can see that depending on δ,
we have two different behaviors of the mixed ESS: (i) the saturated region: the
case where δ is smaller than a certain threshold δ∗ ≈ 5%, and (ii) the non-
saturated region: the case where δ > δ∗. In the non-saturated region, as intuition
would suggest, the proportion of Doves at equilibrium increases for increasing
δ, and this happens faster as δ decreases. This can be explained by the fact
that in the non-saturated region (low interference), it is more interesting for
mobiles to transmit at low power (Dove). This is exactly the opposite for the
saturated region where the predominant strategy is Hawk as δ increases. This is
paradoxical since with larger δ, mobiles can get more opportunities to transmit
packets successfully with a low power. However, one can find an advantage of
being aggressive in this region. In fact, in the saturated regime and for a given γ,
mobiles have incentive to be aggressive (Hawk) since resources are made scarce
as the system is highly interfered.
Asymptotically, in a highly interfered system (for δ = 0) the value for which all

the population is Dove (α = 1) is given by γ∗ =
q3 p1
q1

(γ∗ = 0.3 in Figure 1).

This is paradoxical because in a highly interfered system, mobiles should behave
aggressively in order to have opportunity to transmit!
Moreover, a small increase in δ gives more opportunities for mobiles to transmit
(more resources are made available within the system). The proportion of Hawk
at the equilibrium increases faster.

Figure 1 also depicts the fact that for low values of δ, the ratio γ has more
impact on the equilibrium. It means that for a large δ, a change on γ will not
have a big impact on the equilibrium, whereas with a small δ, a tiny change in
γ will have enormous consequences on the equilibrium. In particular, one can
observe that the more the ratio between initial energy states (NH and ND) is
large, the more the equilibrium is sensitive to a small change in δ.

7 Conclusion

We have studied in this paper a semi-dynamic version of the Hawk and Dove
game within the framework of evolutionary games. Specifically, we identify a
surprising paradox in our Hawk-Dove game namely, the Hawk and Dove resource
abundance paradox which offers insights on how mobiles behave in the presence
of interference. In this setting, it is shown that at equilibrium, lower probability
of no interference has bigger impact on the equilibrium of the power control
game.
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Fig. 1. Variation of the mixed ESS α for increasing probability of no interference δ.
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