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Abstract

Evolution in scientific software is often according to a specific pattern of software changes: professional scientists,
who are not professional software developers, need rapid, dynamic, and domain-specific changes of the software
they work this. To address unanticipated software evolution in this field, our objective is to enable these end-users
(here: biologists) to change software from the user interface. An approach is presented that integrates technological
and methodological solutions. We explain why these solutions are complementary, and how they can be integrated
and co-evolved from software design to actual use.

1 Introduction

This paper addresses the issue of software evolution in the context of scientific software. In this field, software tools
must be rapidly adapted to new scientific ideas, situations, and results; software evolution and flexibility thus are
fully inherent to the field. Many software engineering approaches primarily cope with software evolution issues by
iterations of software development or maintenance cycles. In scientific research, however, software tools not only
must adapt to a fast evolving domain, but they also must be very adaptable to different users and their particular
work tasks. As a consequence, the notion of software evolution has to be extended to customization and end-user
programming, or even, as we show later, to full programmability.

We will discuss these issues with practical examples from the biology domain and experiences with our pro-
totype, called biok [13]. On the technological side, the prototype relies on the language XOTcl [22] that provides
dynamic and reflective language functionalities. These proved to be extremely efficient in the design of biok by
enabling us to weave using and programming as two levels of interaction on the user side.

The complex and fundamental aspect of flexibility in scientific software, however, lead us to consider not only
technological solutions for software evolution, but also methodological ones. These enable us to address software
evolution at the design level. Or, to be more precise, we have observed that technical and design approaches benefit
from being used together. Conceptually our approach mainly draws from two fields:

� User-centred design and participatory design methods [7]: These design methods enable users to actively
participate in the early stages of software development. That helps the developers to anticipate both critical
features of the software and dimensions that may be subject to evolution.

� Reflective systems [18] and meta-object protocols [11]: We have explored protocols (both intercessory and
introspective) to open the system and make it a “white box,” as well as meta-constructs for enhancing unan-
ticipated user control inside the functional part of our system.

Methodological and technological parts of our approach are deeply tangled, as we try to explain in this paper.
This does not mean however that the end-user has to understand the meta-level functionalities.

In this paper, we first describe some important characteristics of software development and evolution in biology,
as well as situations where biologists who are not professional programmers may need to change the software



they use. Next, we introduce the idea of programmability, or how to enable programmatic changes for the end-
user within the user interface. We also present the participatory design approach, or how to let the user actively
participate in the design. Next, we describe our prototype biok and the underlying language, XOTcl, and discuss
how their reflective architecture permits a significant range of software evolutions. Finally, we conclude on how
to combine user-centered design and technological approaches to achieve development cycles supporting software
evolution at each design, development, and use step.

2 Scientific Software Evolution

The evolution of a scientific tool, in addition to changes that occur in any software, follows a somewhat specific
pattern. We describe it by firstly indicating some characteristics of software development in biology that might
explain why and how biologists, as opposed to software engineers, are concerned with the activity of software
development. We also discuss some scenarios of programming situations and some fundamental reasons why
biologists should be able to program themselves.

2.1 Software Development in Biology

As we were able to observe by having installed scientific software for several years at the Pasteur Institute, and by
having taught to biologists how to use the scientific software, software development in the field of academic biology
research follows two main lines:

� large-scale projects such as [23], development in important bioinformatics centers such as the US National
Center for Biotechnology Information (NCBI) or the European Bioinformatics Institute (EBI), or research in
algorithmics by researchers in computer science;

� local developments by biologists who have learned some programming but who are not professional devel-
opers (used either to deal with everyday tasks for managing data and analysis results, or to model and test
scientific ideas).

The two lines often merge, since biologists also contribute to open-source projects and distribute the software
they have programmed for their own research in public repositories. We focus on the second type of development
that shows the following characteristics:

� Very dynamic software activity: Scientific ideas need to be put into an “active” model and tested on other
researcher’s data. This sometimes requires a hands-on approach of software development, the researcher
cannot always wait for a professional software developer to produce a prototype or software adaptation first,
before testing new ideas.

� Majority of programs developed by domain experts: Most of the software in the scientific area is not produced
and evolved by professional programmers, but by domain experts, which is a sign that it is the biologist who
needs to program.

� Software production is not the goal: In scientific research, software is created to test new ideas rapidly, thus its
production does not always follow typical software engineering life-cycles. Except for large-scale projects,
programming and building software is very often not the goal of the biologist.

� Domain-specific evolution: Software evolution happens usually rather on a level of domain semantics than
on the level of the internal software structures of the software tool (see also the examples provided in the next
section).

These characteristics indicate that there is a need for programming in everyday biology research but also that
this activity is not central as a professional objective.



2.2 Examples of Programming Situations

Recent increase in the use of biological computing, mainly due to research on genomics, means that biologists have
to manipulate a lot of data and programs to do their research. This leads to problems for biologists who do not
program at all. Below is a list of real programming situation examples required when working with either DNA or
protein sequences (a sequence is a molecule that is very often represented by a character string, composed of either
DNA letters – A, C, T, and G – or amino-acid letters – 20 letters):

� Scripting: search for a protein sequence pattern, then retrieve all the corresponding secondary structures in a
database.

� Parsing: search for the best match in a database similarity search report but relative to each subsection.

� Formatting: renumber one’s sequence positions from � ������� to ��� ��� instead of
�

to
� � ��� .

� Variation: search for patterns in a sequence, except repeated ones.

� Finer control on the computation: control in what order multiple sequences are compared and aligned.

� Simple operations (not available or predefined in the user interface or software tool): search in a DNA
sequence for the characters other than A, C, T, and G.

These examples show that, in spite of the fact that there are already many software systems for biological
computing, unforeseen change requirements may arise at any time. In these situations, programming is needed,
even though all example situations correspond to quite simple programs.

The examples illustrate some fundamental reasons why biologists would need to program; in particular:

� Scientific programs represent ideas that evolve and need to be refutable.

� It is easier to think directly in the medium in which the problem is generally expressed [4].

� There is a critical and general need for flexibility: hence the use of flexible, informal tools such as spread-
sheets and text processors to support data analysis [21].

3 Programming and Using

The majority of biologists do not program, although, as discussed in the previous section, they would really need
it for many of their particular work tasks. There are several ways to address the problems of programming, when
user-specific customizations are required: a biologist can either learn programming or hire a programmer. The
second solution is not always feasible, and both solutions rather have high costs. Regarding the first solution, there
are actually many biologists who have successfully learned how to program, although very few actually do. Our
hypothesis is that it is difficult to program a little, not only in the sense of programming occasionally, but also in
the sense of programming incrementally.

In this section, we discuss end-user programming as an alternative solution with certain limitations regarding
unanticipated changes. Programmability for end-users addresses these limitations.

3.1 End-User Programming

End-User Programming (EUP) approaches [15] basically rely on the idea that, since the user already knows the user
interface, it can be used as an “indirect” programming language. While using the software, the user may define a
kind of program. This “program” can be simple behavior specification that can be reused later on. Or it can be a
more complex software artifact, such as a database request or a grammar rule [16].

The first problem in this approach, although very powerful and not enough applied, lies in its lack of generality.
The elements of the user interface language (like button click, line drawing, typing, selection, etc.) have to be



prepared in a way or another to be used as a means for building the “program.” Any possible kind of change has to
be anticipated by the designer of the user interface language.

The main problem is that these techniques are not really designed for software evolution but rather for end-user
program building. The scope of changes, if any, is often very limited: for instance, in a spreadsheet, you cannot
change the behaviour of the spreadsheet itself. According to [19], the only type of evolution that is dealt with by
EUP approaches is integration, as opposed to extension or modification.

3.2 Programmability for the End-User

What is needed for software development in biology is both software evolution and EUP. Meta-object protocols
(MOP) [11] provide a conceptual framework for modifying the internals of a system. The main idea is that a base-
level component that is subject to evolution should be reified to offer a proper interface for modification, a meta-level
interface. A metaphor that can be used for this is a theater, where on-stage represents the system behaviour, and
back-stage, the place where everything on the scene is defined, i.e. the system definition. A MOP does not only
open the back-stage, but makes it an “on-back-stage” where it is possible to redefine the system behaviour in a
constrained way.

To make software evolution accessible for biologists by opening the back-stage, we have to require several
aspects:

� As in a MOP, the system must contain explicit and documented places that can be subject to change.

� Since the user in our context is not a professional programmer, there is a critical need for tools to help
associate user interface elements with system elements (in the theater metaphor, there must be some threads
between the stage and the back-stage to show what in the back-stage controls the elements on the stage); this
helps to reduce the cognitive distance between the code and the user interface [20].

� The user of our system does not have any particular interest in programming: his or her task is to perform
research in biology. What we want for the biologist is just to have the same situation as for the programmer,
where:

work environment 	 programming environment.

For the biologist, this means that the data analysis environment should be at the same time a programming
environment. This way, no switch from a mode to another is required, programming is just another kind of
using. This is the idea of Programming In The User Interface (PITUI) [8].

These aspects have been explored in the prototype, described in this paper, and are detailed in further sections.
Note that our approach is not to let the user use the MOP functionalities directly. Instead we use the MOP function-
alities in the prototype to enable simple, localized programming for the user. These user-centered software evolution
functionalities are not only embedded technically into the user’s working environment, but also methodologically
(as described in the next section).

Another key idea of MOPs is the idea of a having both a generic and a default behaviour. Unlike frameworks,
systems provided with a MOP are ready-to-use and do not need any specialization in order to be usable. For
end-users, this means that the user should not have to program to be able to use the system. Programming and
customization should be possible, but not required. Furthermore, the available system can be used as a set of
working examples [17]. In Section 7, we describe how the whole system is made available, not just as raw source
code, but in a structured way using the introspection techniques provided in XOTcl (which are described in Section
6).

4 User-centered and Participatory Design

The user-centered and participatory design approaches, described for instance in [7], build on this rather self-
understandable idea that the more you involve the users of the software in the software building process, the more
your system will be adapted to the user’s requirements. But it can be observed that often user meetings do not



Figure 1: Two graphical objects: the shell of the plot object is opened and the user has entered commands to
customize the Tk widget.

provide precise enough information. Thus this approach also suggests that user participation should not only let
the user describe what (s)he wants. Several methods can be applied in order to make the user’s involvement more
active:

� Brainstorming: As opposed to a meeting, brainstorming enables us to explore the design space; in a brain-
storming session, users are asked to be inventive and to suggest infeasible, unrealistic, or even “stupid” ideas.

� Interviews and scenarios: The designer can get a lot of information that the user would have summarized and
idealized in a meeting by being able to observe actual tasks at the user work place. For instance, designers
can observe the use of existing software. Videotaping the screen can provide data for further analysis of the
task. An interview may be an opportunity for the designer to capture a use-scenario that can be used later in
prototyping sessions.

� Mockup prototyping: In a prototyping workshop a fake software is built with paper, pens, tape, etc. That is,
material is used which is both dynamic and familiar to the user (as opposed to programs and abstract dia-
grams). For example, you can play a scenario by moving paper windows or coloring parts of the printed data
without being a professional programmer. The benefit of this approach is to enable the user to show (instead
of describe) what (s)he wants within a realistic scenario. Designers still can detect potential ambiguities.

5 Biok: a Biological Interactive Object Kit

Biok is a prototype of a programmable environment for sequence analysis. It is written in XOTcl using TK as a
graphical toolkit. In biok, the basic building block for both using and programming is a graphical object. Graphical
objects have a name, which acts as a global variable, and an area for application widgets. Object content may be
defined by a formula. For instance, the formula of the plot object in Figure 1 is just defined by a method of the
protein sequence to compute the hydrophobicity. Whenever the sequence is changed, the formula is recalculated
(the user can control this by a switch). Graphical objects are provided with a shell to run methods (see Figure 1).

One of the central tools of biok is a spreadsheet specialized in displaying and editing sequences. This tool pro-
vides visualization mechanisms, as well as the 3D molecule displayer (see Figure 2 and 3). The two objects display
structural features of the protein, such as helices and sheets (this visualization function was recently developed by
a biology student).

As in many other scientific research areas, visualization is really critical in biology. For this reason, several
visualization functionalities are already pre-defined. There is a general tag framework to let the user define relations



Figure 2: A spreadsheet specialized in editing and visualizing sequences: a secondary structure is highlighted.

Figure 3: Molecule viewer: the secondary structure is highlighted accordingly.

between domain values, as well as graphical attributes and positions in the different visualization tools. Tags are
edited in a specialized editor, where the user has to define a method to associate tag values to data positions in a
script. This method is typically either a small script for simple tags, or an invocation of more complex operations
that run analyzes, for instance from a Web Server [14].

A set of tags is already defined at the spreadsheet level (with tags for columns, rows, or cells) and at the biology
level (particularly a tag to highlight parts of sequences). The user can create sub-classes of tags: for instance
in Figure 4 a user wants to highlight specific patterns in front of another visualized tag showing transmembrane
segments. The latter tag has been implemented by a biology student, who had only a programming experience of
(rather unsuccessfully) learning Python for one month.

6 Dynamic Introspection and Interception in XOTcl

Biok uses a language called XOTcl [22]. XOTcl is an object-oriented scripting language. As a Tcl extension, it is a
full-fledged programming language. Scripting languages, such as Tcl, Python, or Perl are often used in the context
of end-user programming and programmability to rapidly handle changes that are hard to anticipate. XOTcl specif-
ically adds some high-level, object-oriented functionalities to enable these tasks. In the remainder of this section,
we explain some of these functionalities of XOTcl with simple examples. The described language functionalities



Figure 4: Tag sub-classing: a tag showing transmembrane segments (in blue and green) is augmented by a sub-tag
highlighting small patterns around them (in red).

are used for enabling end-user programmability in biok and are also used in the internal implementation of biok.

In XOTcl an automatic type conversion system is used to let programmers only see one type (strings) in the
scripts, and they do not have to care for further type conversion issues. XOTcl scripts do only use strings and do not
expose the necessary conversion code. All XOTcl objects and classes are addressable at runtime with string-based
IDs. The IDs are also be converted automatically to the respective class implementing the functionality.

This internal architecture of XOTcl can be used for incremental program manipulation. Classes and objects can
be incrementally defined and modified at runtime because code is treated as data and can be evaluated by XOTcl
dynamically. For instance, we can define a new class at any time by evaluating the following script:

Class C1

To this new class C1 (and to all existing classes) we can dynamically add method definitions at any time, for
instance:

C1 instproc calc {a b} {
expr $a + $b

}

We have added a simple instance method that calculates a sum. Upon a change, we can dynamically change the
method implementation, e.g.:

C1 instproc calc {a b} {
set r [expr $a + $b]
expr [$r - 0.25 * $r]

}

We calculate the same sum but lessen it by 25 per-cent. Dynamically, we have redefined the method, and
whenever an instance of C1 calls the method, the new implementation is invoked.

User-defined scripts (e.g. in the biology domain) are often of similar simplicity as the examples above. In a tool
such as biok we need to connect such scripts to the environment, and the user should not have to understand the
whole biok system in order to provide customizations. Introspection options provide a solution. These enable us
to directly see and dynamically manipulate each of the elements known to the runtime environment (here: XOTcl’s
interpreter). A programmer can not only inspect all language elements, but also manipulate the language and
customize it to the current requirements dynamically. In XOTcl, each introspection option is offered in the info
method. info accepts a number of options. Another method (most often directly corresponding to the option’s
name) allows the programmer to change the option dynamically.

For instance, we can query a class C1 for its superclasses:

C1 info superclass

We can also change this setting at runtime. For instance we can let C1 have an additional superclass:



C1 superclass [concat [C1 info superclass] Plotter]

Now we have added a Plotter class to the existing superclass list of C1. With introspection options a tool like
biok can connect user scripts to existing classes of the system.

Another common example of incremental programming is to adapt the algorithm of a given method. For in-
stance, we can use the info instbody introspection option to retrieve the current body of a method and then
dynamically enhance it with logging functionality, if only this one method should be logged:
C1 instproc calc {a b} [concat \

{puts "C1->calc $a $b"; } \
[C1 info instbody calc]]

Dynamic manipulation together with introspection is important for enabling rapid changeability in scripts with-
out knowing internal details of the surrounding framework that is to be enhanced.

Another important feature for incremental programming is the invocation context. The invocation context is
built from the interpreter’s callstack and allows us to find out the calling context of the current object. Thus for
dealing with rapid changes the current context can be queried and the script can deal, for instance, with different
invocation sources in a context-sensitive way. In XOTcl the invocation context is given by the self command.
In particular, self without arguments returns the current object ID. self class returns the class executing the
current method, and self proc returns the current method name. self callingobject returns the calling
object, self callingclass returns the calling class, and self callingproc returns the calling method. For
message interceptors (see below) there are also options returning the name of the object, method, and class to be
called by the Interceptor.

Customizations performed by a tool should be transparent for the user. This can be reached using message
interceptors. A message interceptor is dynamically added to a computational entity (like an object, a class, a
class hierarchy), and it intercepts all (specified) messages that are sent to this computational entity before, after, or
instead-of the original message dispatch. User-defined functionality can be added to the existing system by using
introspection options and invocation contexts together with message interceptors. In XOTcl there are two kinds of
message interceptors:

� Per-class/per-object mixins are classes that are dynamically attached to or detached from a class or object.
They intercept every message sent to a class or object and can handle the message before/after the original
receiver.

� Per-class/per-object filters are special instance methods which are dynamically registered or de-registered for
a class hierarchy or object. Every time an instance of this class hierarchy or object receives a message, the
filter is invoked automatically and intercepts this message.

Both filters and mixin classes intercept messages sent to an object or a class hierarchy before they reach the original
receiver. The interceptor can adapt the message to another receiver, handle it directly, or decorate it with arbitrary
behavior before/after the original receiver gets it. Filters are used to implement entities and concerns cutting across
an entity as a whole, whereas mixins only intercept certain message calls. Filter and mixin classes can be used to
transparently observe the user’s actions, and perhaps manipulate them. A simple filter example is a logging filter:
Class Logger
Logger instproc loggingFilter args {
puts "called: [self]->[self calledproc]"
next

}

This simple filter uses the invocation context to write the current object and called method to the standard output.
next means that the next filter in the filter chain and finally the original receiver is invoked. A filter method can be
registered for any class or specific object to log the class’ or object’s actions:
C1 instfilter Logger

Now all instances of C1 are logged. Filters handle all methods of a specific class or object. Mixin classes handle
only those methods that are specified on the mixin class. Consider we want to handle all user-defined methods (then
we have to intercept all calls to the method proc):
Class ProcHandler
ProcHanlder instproc proc args {
puts "called: [self]->[self proc]"
# handle proc
# ....
next

}



Figure 5: Programming in biok: the method displayed in the editor computes the length of the alignment. A
breakpoint, set from within the source code, has occurred (small debug window).

This mixin only intercepts the proc method calls of the class or object it is registered for, e.g. only instances of
C1:

C1 instmixin ProcHandler

XOTcl has been chosen to be used in biok for different reasons. First, the scripting capabilities of Tcl (such as
text processing, integration tools, simple syntax) allow users to rapidly learn the language. Many tools, required
for biok’s internal implementation, are available and well-integrated with the language at the script level, including
Tk (as the graphical toolkit), network, and system libraries. XOTcl combines these features with high-level object-
oriented functionalities, such as introspection, language dynamics, and interceptors. In biok these functionalities
are used for incremental program evolution at runtime.

Note that XOTcl is just a technical solution for the concepts presented in this paper. Many other languages
(and language extensions) provide similar means. Often, however, some functionalities of XOTcl would have to be
re-implemented in the other languages, before they could be used for a tool like biok. Aspect-oriented languages,
for instance, provide aspects as a language construct that could be used instead of message interceptors. For the use
in biok a dynamic aspect weaver would be required so that biok can combine (and remove) aspects for the existing
systems dynamically. Languages, such as Smalltalk or Lisp variants, provide language dynamics but high-level
interceptors would have to be implemented and added to these languages (which is even in these languages a non-
trivial task as transparent interceptors require complex callstack manipulations). However, even though some effort
might be required to provide similar functionalities in other languages, we do not see a principal problem in doing
so.

7 Biok Programming Environment

Biok uses the XOTcl features discussed in the previous section to enable programmability for end-users. At any
moment, the user can ask a graphical object for its source code by a menu. In Figure 5, a method editor is shown for
a method of the spreadsheet. The code of the method is found by XOTcl introspection options, and can be redefined
at any time. It can be saved at the user level, in a separate file, that the user can edit independently. This file is
loaded at the start-up of the biok environment, after the system itself is loaded. According to the users of biok, this
simple mechanism helps them to feel more secure: they can make errors and try new things. For instance, a user
can change the code of a method to compute the alignment length differently (there is indeed a variation on this
computation in current tools).
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In Figure 5 sequences are what biologists call ’aligned’, meaning that after comparison, corresponding letters
are put together, and letters without any correspondence are aligned to ’gaps’, represented here as hyphens. The
well-known algorithm, based on dynamic programming, to compute this alignment has been implemented by a
biology student having learned programming for only one year.

The biok editor provides tools for debugging, such as breakpoints or traces on method calls. It also allows you
to run the edited method with parameters. You can also put breakpoints in the code. These display a small box
with a custom message. There is also a tool to spy all the execution (implemented as an XOTcl filter): you can
observe all the methods that are called during a certain time, for instance, to find out which methods are called
when clicking on a specific button. This way, debugging (what is really important in incremental programming), is
available directly in the programming environment (and accessible to end-users) as a first class feature.

8 Algorithmic Evolutions

We describe two variants of what we call “algorithmic flexibility.” The concept draws from Wegner’s concept [25]
that computer algorithms should be more clever and more interactive to take the users’ knowledge into account. First
we describe a meta-protocol to let the biologist modify an algorithm behaviour by adapting an internal structure.
Secondly we describe how to enable user interactions with the graphical interface on top of a meta-protocol.

In both variants, we can use introspection options available in XOTcl to query the current setting of this internal
structure and use interception techniques, particularly mixins, for dealing non-intrusively with unexpected changes
of the internal structures and algorithms. That is, the behaviour can be modified for some parts of the program and
data, not all, and the modification can be dynamically removed by de-registering the mixin.

8.1 MAP: Meta-application Protocols

As illustrated in Figure 6, the idea of a MAP (Meta-application Protocol) is based on the MOP concept. However,
we feel more comfortable with the meta-application term, as “MOP” comes from the specific field of object-oriented
languages – hence “meta-object.” In a meta-application protocol, the meta-model of the application (the internal
representation) corresponds to the meta-object.

Similarly, the application exposes the language visible to the end-user (in biok based on graphic objects). Fi-
nally, the user corresponds to the programmer. As in MOPs, an explicit part of the internal structure that has a key
role in the computation is documented as a meta-level interface to change the system behaviour.
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Figure 7: Interactive protocol to help detect transmembrane segments. Some segments are automatically predicted.
Others (displayed in another color) are indicated by the biologist. Some segments cannot be predicted without user
indications.

Recently a student applied this idea to a dynamic programming algorithm for aligning molecular sequences
(Figure 5). Here the protocol of the MAP is: The heuristic of the algorithm can be expressed in a definite state
automaton. It is both easy to extend (by adding states corresponding to external knowledge) and editable by a
knowledgeable user. Compared to [1] that also expressed dynamic programming algorithms with a definite state au-
tomaton (DFA), the strategy chosen here just adds external knowledge, whereas [1] computes everything internally,
which is more costly.

Although it could seem awkward to let a biologist edit the data structure of a DFA, we have conducted an
interview with a scientist in Pasteur having programmed a graphical simulation environment for living cells. In
this system users can enter differential equations in C++ in a specific part of the code [10]. Having such feature
provided in a software written by a biologist shows that the effort for editing the data structure should not be too
huge.

8.2 Interactive MAP protocols

A promising extension of the MAP concept is to find a way to integrate user’s knowledge in computation neither
as a parameter nor as program but just by interacting. In the example shown in Figure 7, we had noticed that the
heuristic of the algorithm detecting transmembrane segments by their hydrophobicity [9] could fail in situations
difficult to specify in the algorithm, but easy to show by the user. As a solution, we implemented a way for the user
to indicate different starts for the segments. The implementation just adds a message interceptor (mixin) to two
methods:

1. segments: selects the transmembrane segments;

2. result segments: displays the predicted transmembrane segments (user defined segments are displayed in
a different color).

Let us take the sequence alignment example again. We set an interactive mechanism where the user is able to
indicate, by selecting areas in the spreadsheet, which segments should be aligned. This is then taken as input for
the MAP described in 8.1. Constraints specified by the user, acting as external knowledge, just lead to new states in
the DFA.

This way, by interfacing the MAP feature with a small set of interactive actions, the protocol is made available
to biologists not having any knowledge about meta-protocols.
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9 End-User Programming and Participatory Design: a Complementary
Approach

The considerations in this section rely heavily on [24] which describes how MOP and participatory design can be
combined as a way to design software for flexibility.

Let us first see what participatory design contributes when applied without end-user programming. When
adopting user-centered and participatory design, the chance to get an unadapted system really drops down. This
was clearly the case for the spreadsheet tool and the programmable tag system in our prototype. We have conducted
design workshops, and the subjects that are approached during these workshops are generally selected through
either interviews and brainstorming sessions. Not surprisingly, among the 9 participatory workshops organized
over the last 5 years, about 6 of them were focused on pattern searching and sequence features visualization, both
handled by these tools.

The property that is gained is thus design stability, in other words, less need for re-design. However, as we have
observed, evolution is an intrinsic need of biology research software, and participatory design does not necessarily
lead to flexibility: it leads to the properties that are useful in a specific context, and there are contexts where
flexibility is rather prohibited.

But there are benefits of using both programmability and participatory design together. As stated in Section 3.1,
above, end-user programming generally requires a strong anticipation: the software must be instrumented to let
the user program with the user interface. This results in taking heavy design decisions about what should be open
to programming within the tool. On the other hand, we were able to state that general programmability through
introspection, structured in a good programming environment, could help in enabling any part of the software to be
changed. As a general property of the system, you do not have to specify programming features for various system
parts. But there is still a risk that programming remains too difficult for the user, just because the environment does
not provide the required help. We observed that by using the participatory approach:

1. Dimensions of flexibility, i.e. potential unexpected changes, are generally better anticipated. A user-centred
approach let simultaneously show up spots of stability and spots of variability (see [24]), which was con-
firmed by our experiences. In scientific software, for instance, during the interviews and workshops, three
dimensions of flexibility appeared as important (see Figure 8):

� system flexibility: capacity of the system to support change,
� algorithmic flexibility (or interactivity): capacity of the system to be controlled by the user, as illustrated

by the interactive MAP described in Section 8.2, that emerged almost as such during a participatory
workshop, and

� interface flexibility (or integrability): capacity of the system to be combined with others.

2. Programming features and tools are better designed and adapted to the user needs: just having any pro-
gramming environment does not help as such. This environment’s features must be correctly anticipated. For
instance, we observed that “creating new classes” rarely occurs in the tasks of the biologist, whereas method
creation or redefinition is very often used. Actually, users, able to design a class hierarchy, can also do it
outside of biok, as happened with one of our student, who designed the MAP and the DFA (with a little help
from us).
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Similarly, we had not identified the tag creation as being that important for the tool, and, during a prototyping
workshop, it appeared how critical it is to have a well-adapted tool for this. So, we organized an additional
workshop with a pre-built mockup (both a storyboard and a mockup in fact) which is very close to the final
tool, and we played with the data in it.

Thus, it is the combination of general programming capabilities and the user-centered approach which enables
to design for unanticipated evolution by supporting general lines of changes.

10 Summary of the General Approach

In summary, it is important to enable the user to adapt the system or to evolve it over time, and to have a system
properly designed and already adapted to the user’s tasks by using user-centred methods and a participatory design
approach. Both aspects actually belong to the same methodological approach relying on the idea of co-evolution
[2] of design, development, and use of a software system. This leads to software development cycles with evolution
anticipated at every step (see Figure 9):

� involving users at the design step (participatory design),

� including development at the use step (end-user programming), and

� developing a prototyping approach: as augmented in [3], prototyping, i.e. using rapid prototyping tools to
program some of the critical parts of a system can economize a lot of time; in this aspect, the flexibility of the
programming language and tools is important.

We can also situate this framework by comparing it to the USE framework as described in [12]:

� Time of change: design, prototyping, development and software use are supported.

� Type of evolution (sequential or parallel): both sequential evolution, where users developments are re-
integrated in the system (which happened several times), and parallel evolution, where users are allowed
to explore independently, are supported.

� Incrementality: the main granularity of change are object-oriented methods. XOTcl provides ready-to-use
features for incremental method re-definition; furthermore, most of the changes we were able to observe were
either done or to be done at the method level (adapting a functionality). Mixins can be used to bundle and
reuse method re-definitions.

� Automation: none; the integration of the user’s code into the system should be a subject of discussion between
the software engineer and the biologist. Sometimes, the user’s code stands as a kind of “active” specification.



� Change effort: the conceptual framework of cognitive dimensions in [6] provides some tools for checking
this aspect. Viscosity is the term to describe the effort necessary to perform a change, and it is related to
other variables described in this framework. For instance, closeness of mapping describes how the program
or the environment correspond to the problem. Hidden dependencies hinder incremental changes. Premature
commitment may require for the user to anticipate too many things in order to begin a change. In biok,
we decided to map general classes of biological objects (sequences, alignments, 3D molecules) to graphical
objects. Then the user can localise the code more easily. Efforts to undo a change must also be evaluated:
in biok, the user just has to remove the files containing his or her code in order to go back to the system
definitions.

� Openness: basically, the biok system is open for change, and all the source code is available to the user.

The benefits of our approach have been discussed widely in this paper. In summary, the main benefits are that
we provide an approach for co-evolution of the aspects design, development, and use of (scientific) software. We
provided a conceptual integration of technical flexibility functionalities and design methods to enable the user to
easily evolve the software. The user does not have to understand advanced programming concepts or large parts of
the biok framework, but only the graphical objects of the familiar work task. Internally, however, we can use the
MOP, language dynamics, and reflection capabilities to support the desired software evolution non-intrusively.

Of course, in some situations our approach may also incur some liabilities. The approach cannot be used in any
software, but requires a preparation of the scientific software tool to be open for end-user evolution. This requires
some efforts to integrate the MOP, dynamic language, and reflection with the GUI that is used for the scientific
tasks. User-centered and participatory design require some organizational effort, and, as in any quality process, an
approach based on co-evolution has an overhead compared to ad hoc approaches.

11 Conclusion

We have described an approach and a prototype designed for incremental evolution, from the design step to the use
step. The objective of this research is to explore the dimensions of software flexibility that has been observed as
being critical in the field of biology research and is likely to be critical in other scientific research areas as well.

Thus we believe that the approach could be generalized to other software development areas. We have already
applied similar ideas for domain-specific customizations by content editors in the field of interactive television
(see [5]). In particular, user-centered design proved to be a very rich tool to better capture and anticipate software
evolution.

The prototype we have described has been used by several students during a few months. The use by students
both plays a proof-of-concept and a methodological role in this research. We also aimed at exploring the problem
space, more than tried to evaluate a unique technical solution to a well-defined problem.

The flexibility on the technological side (provided by the language XOTcl) played a key role in our approach,
and we hope that our approach illustrates how important flexibility is on the technological side. Technical flexibility
and advanced programming functionalities, however, can also be counter-productive in the end-user realm (if they
only add complexity). Thus we have provided a technical solution for letting users only deal with the graphical
objects associated with the particular work task. These technical solutions are tightly integrated with user-centred
design and participatory design methods to help the end-user deal with the programming task conceptually.
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