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About Moreau-Yosida regularization

of the minimal time crisis problem

Terence Bayen∗† and Alain Rapaport‡,†

June 24, 2016

Abstract

We study an optimal control problem where the cost functional to be minimized represents the so-
called time of crisis, i.e. the time spent by a trajectory solution of a control system outside a given set K.
This functional can be expressed using the characteristic function of K that is discontinuous preventing
the use of the standard Maximum Principle. We consider a regularization scheme of the problem based
on the Moreau-Yosida approximation of the indicator function of K. We prove the convergence of an
optimal sequence for the approximated problem to an optimal solution of the original problem. We then
investigate the convergence of the adjoint vector given by Pontryagin’s Principle when the regularization
parameter goes to zero. Finally, we provide an example illustrating the convergence property and we
compute explicitly an optimal feedback policy and the value function.

Keywords. Optimal control, Pontryagin Maximum Principle, Hybrid Maximum Principle, Regularization.

1 Introduction

We consider the following optimal control problem with state constraints : ẋ = f(x, u) a.e. t ∈ [0, T ],
x(0) = x0,
x(t) ∈ K ∀t ∈ [0, T ],

(1.1)

where x is the state, u is the control, f : Rn × Rm → Rn is the dynamics, and K is a non-empty subset of
Rn. Such state constraints in optimal control problems appear naturally in many fields of applied science such
as in robotics or bio-engineering. Optimal control problems under state constraints such as (1.1) have been
extensively studied in the literature (see e.g. [5, 14, 15, 17, 24] and references therein). One essential feature
is a so-called inward pointing condition on the velocity set :

f(x, U) ∩ TK(x) 6= ∅ ∀x ∈ ∂K, (1.2)

where U ⊂ Rm is the admissible control set and TK(x) denotes the contingent cone to K at x. When this
condition is not satisfied, one may use viability theory and study properties of the viability kernel of K, i.e. the
largest set of initial conditions in K from which there exists a solution of problem (1.1) (see e.g. [1, 2, 3]).

When the set K is not viable by the dynamics f or when x0 is not in the viability kernel of K, one may
be interested in finding a control u for which the time spent by the associated trajectory outside the set K
is minimal. This approach has been developed in [13] using viability theory and consists in minimizing with
respect to (w.r.t., for short) the control u the so-called time crisis function defined by:∫ ∞

0

1Kc(xu(t)) dt, (1.3)
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where xu(·) is a solution of ẋ = f(x, u) starting from K, and 1Kc denotes the characteristic function of the
complement of K, i.e. 1Kc(x) = 1 if x /∈ K and 1Kc(x) = 0 if x ∈ K. The crisis is characterized by the set of
times t ≥ 0 for which the control system violates the state constraint, i.e. x(t) /∈ K. This problem has been
also considered in [6, 7] in the case where the state of the system is governed by a linear parabolic equation.

The objective of this work is to investigate necessary optimality conditions for the time crisis problem
over a finite horizon [0, T ]. As the characteristic function of the complement of the set K is discontinuous at
the boundary of K, the usual Lipschitz regularity assumptions on the data are not satisfied. Therefore, the
application of the Pontryagin Maximum Principle (PMP) to find an optimal control is not straightforward
(see [10, 12, 23, 26]). A possible way to overcome this difficulty is to use the so-called hybrid maximum
principe with the partition of Rn such that Rn = K ∪Kc (see e.g. [18, 19] and references therein). To avoid
Zeno’s phenomena, one usually requires a transverse assumption on a trajectory when crossing K (i.e. optimal
trajectories cannot enter or leave K tangentially).

In this paper, we propose a regularization scheme of the time crisis problem using the Moreau envelope
[20, 21, 4] of the indicator function of K assuming this set to be convex (see e.g. [6, 7] for different regularization
approaches in the PDE setting, and [25] for a similar regularization scheme in the context of reflecting boundary
control problems). As the regularized problem is smooth, we can apply the PMP in a standard way without
assuming a transverse condition on optimal trajectories when crossing K. We first prove that optimal solutions
of the regularized problem converge (up to a sub-sequence) to an optimal solution of the original one. We
then investigate the convergence of solutions of the adjoint system for the regularized problem when the
regularization parameter goes to zero, assuming a transverse condition on optimal trajectories for the limiting
problem. This allows to apply the Hybrid Maximum Principle (HMP) on the time crisis problem. We then
prove the convergence (up to a sub-sequence) of solutions of the adjoint system to a solution of the adjoint
system associated to the original problem.

The paper is organized as follows. In section 2, we state the minimal time crisis problem, and we derive
necessary optimality conditions using the HMP. In section 3, we introduce a regularization scheme via the
Moreau envelope of the indicator function of the set K, and we prove that (up to a sub-sequence) optimal
solutions for the regularized problem converge to an optimal solution of the time crisis problem. In section 4,
we apply the PMP on the regularized problem, and we study the convergence of the adjoint vector associated
to the regularized problem when the regularization parameter goes to zero. Theorem 4.1 is the main result of
the paper and summarizes the aforementioned properties. We provide in the last section an example where
we explicitly compute an optimal control and the value function for the time crisis problem. We illustrate
numerically the convergence of the value function of the regularized problem to the value function of the time
crisis problem.

2 Background and problem statement

2.1 Main assumptions and existence of an optimal control

We consider a dynamical controlled system:
ẋ = f(x, u), (2.1)

where f : Rn × Rm → Rn is the dynamics, x is the state, and u is the control. Given a terminal time T > 0
and a non-empty subset U ⊂ Rm, we define U as the set of admissible control functions that are measurable
w.r.t. t over [0, T ] and take values in U :

U := {u : [0, T ]→ U ; u meas.}.

We then define the extended velocity set associated to f as the set-valued map F : Rn ⇒ Rn given by:

F (x) := {f(x, u) ; u ∈ U}.

We consider a non-empty subset K ⊂ Rn, and we denote by Int(K) its interior, ∂K its boundary, and Kc the
complement of K in Rn. Recall that the characteristic function of the set Kc is defined by:

1Kc(x) :=

{
0, x ∈ K,
1, x /∈ K.
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We recall that 1Kc is lower semi-continuous (l.s.c., for short) whenever K is closed. The minimal time crisis
problem over the finite horizon [0, T ] is the following optimal control problem (see [13]):

inf
u∈U

JT (u) with JT (u) :=

∫ T

0

1Kc(xu(t)) dt, (TC)

where xu is a solution of the Cauchy problem{
ẋ = f(x, u),
x(0) = x0,

(2.2)

defined over [0, T ], for given initial condition x0 and control u. The functional JT is called the time of crisis
function over [0, T ]. In other words, the objective consists in finding an optimal control u ∈ U such that the
time spent by a solution of (2.1) outside the set K is minimal. Next, we make the following assumptions on
the system:

(H1) The set U is a non-empty compact convex set of Rm.

(H2) The dynamics f is continuous w.r.t. (x, u), locally Lipschitz w.r.t. x and satisfies the linear growth
condition: there exist c1 > 0 and c2 > 0 such that for all x ∈ Rn and all u ∈ U , one has:

‖f(x, u)‖ ≤ c1‖x‖+ c2. (2.3)

(H3) For any x ∈ Rn, the set F (x) is a non-empty convex set.

(H4) The set K is a non-empty closed compact convex set of Rn.

Under (H2), one can show that for any x0 ∈ Rn, there exists a unique solution xu of the Cauchy problem
(2.2). Following [13], one can easily verify that there exists an optimal control for problem (TC). For sake of
completeness, we provide a proof of this result.

Proposition 2.1. There exists an optimal control of problem (TC).

Proof. Set α := infu∈U J
T (u) and let un ∈ U be a minimizing sequence, xn the associated solution of (2.2),

and αn := JT (un) so that one has αn → α as n goes to infinity. Let us define the function yn : [0, T ]→ R by

yn(t) :=
∫ t
0
1Kc(xn(s)) ds. So one has ẏn(t) = 1Kc(xn(t)), a.e. t ∈ [0, T ] and yn(0) = 0. Now, consider the

set-valued map G from Rn+1 into the subsets of Rn+1 defined by:

G(z) :=

 f(x, U)× {0} if x ∈ Int(K),
f(x, U)× [0, 1] if x ∈ ∂K,
f(x, U)× {1} if x ∈ Kc,

where z := (x, y) ∈ Rn × R. From (H1) and (H3), we have that G(z) is a non-empty compact convex set of
Rn+1 for any z ∈ Rn+1. Moreover, using the compactness of U and the continuity of f , one can show that G
is upper semi-continuous. Finally, for any w ∈ G(z), one has

‖w‖ ≤ c1‖x‖+ c2 + 1 ≤ c1‖z‖+ c2 + 1.

One has for every n ∈ N, żn ∈ G(zn) a.e., where zn := (xn, yn). Hence, Theorem 1.11 in [12] implies that
there exists a sub-sequence zi = (xi, yi) that converges uniformly over [0, T ] to a solution z? = (x?, y?) of
ż?(t) ∈ G(z?(t)), a.e. t ∈ [0, T ], and whose derivatives converge weakly to ż? in L2([0, T ]). We then obtain

ẋ?(t) ∈ F (x?(t)) for a.e. t ∈ [0, T ], i.e. x? is a solution of (2.1), and moreover yi(T ) =
∫ T
0
1Kc(xi(t)) dt

converges to y?(T ). Let us denote by u? a parametrization of the inclusion ẋ?(t) ∈ F (x?(t)) for a.e. t ∈ [0, T ],

i.e. ẋ?(t) = f(x?(t), u?(t)) for a.e. t ∈ [0, T ]. We then obtain α ≥
∫ T
0
1Kc(x?(t)) dt = JT (u?) by Fatou’s

Lemma and the l.s.c. of 1Kc , thus JT (u?) = α as was to be proved.

Our aim is now to give necessary optimality conditions on optimal trajectories of (TC). As 1Kc is not
continuous over ∂K, one cannot apply directly the PMP on (TC). However, both the dynamics and the cost
are smooth whenever the trajectory is either in Int(K) or in Kc. Therefore, we can treat problem (TC) as an
hybrid control problem.
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2.2 Hybrid Maximum Principle

We now state optimality conditions for the problem (TC) using the Hybrid Maximum Principle by considering
the partition of Rn such that Rn = K ∪Kc (see e.g. [18, 19] and references therein). Let us underline that the
hybrid formulation is used to treat the cost function JT (u) only and does not affect the dynamics f which is
the same in K and Kc. Let us recall the notion of radial cone, tangent cone and normal cone. For x ∈ K, the
radial cone RK(x), the tangent cone TK(x) and the normal cone NK(x) to K at x are defined respectively by:

RK(x) := {h ∈ Rn ; ∃ α s.t. ∀α ∈ [0, α], x+ αh ∈ K} ,

TK(x) := RK(x) ,

NK(x) := {h? ∈ Rn ; h? · (y − x) ≤ 0, for all y ∈ K} ,

where · denotes the scalar product in Rn.
We now apply the Hybrid Maximum Principle as in [11] to state optimality conditions. First, we define

the notion of regular crossing time [19] adapted to our context.

Definition 2.1. We say that a time tc ∈ [0, T ] is a regular crossing time from K into Kc for a solution x of
(2.2) if the following properties hold at time t = tc:

(i) The point x(tc) is in ∂K, and there exists η > 0 such that for any t ∈ [tc − η, tc) (resp. t ∈ (tc, tc + η]),
one has x(t) ∈ K (resp. x(t) ∈ Kc).

(ii) The control u associated to the solution x is left- and right-continuous at tc.

(iii) The trajectory is transverse to K at x(tc), i.e. for any h? ∈ NK(x(tc)) such that there exists h ∈
TK(x(tc))\RK(x(tc)) with h? · h = 0, then one has:

h? · f(x(tc), u(tc)) 6= 0, (2.4)

where u is the control associated to the solution x.

Similarly, we define a regular crossing time tc from Kc into K for a solution x when properties (i’), (ii)
and (iii) hold, with

(i’) The point x(tc) is in ∂K, and there exists η > 0 such that for any t ∈ [tc − η, tc) (resp. t ∈ (tc, tc + η]),
one has x(t) ∈ Kc (resp. x(t) ∈ K).

Remark 2.1. (i) The condition (2.4) means that a trajectory cannot hit K tangentially.
(ii) Let us fix nI ∈ N and m functions gi : Rn → R of class C1. Suppose that the set K is given by
K := {x ∈ Rn gi(x) ≤ 0, 1 ≤ i ≤ nI}. Then, (2.4) is equivalent to write ∇gi(x(tc)) · f(x(tc), u(tc)) 6= 0 for
1 ≤ i ≤ nI such that gi(x(tc)) = 0.

We introduce the following assumption (called transverse condition) that is required to state the Hybrid
Maximum Principle (HMP). It will also be used in section 4.2.

(H’) An optimal trajectory of (TC) has no (m = 0) or a finite number m ≥ 1 of regular crossing times
{t1, · · · , tm} over [0, T ].

The HMP provides the following necessary conditions. Let H : Rn × Rn × R × Rm → R the Hamiltonian
associated to the system defined by:

H(x, p, p0, u) := p · f(x, u) + p0`(x, u).

Let u ∈ U be an optimal control, and suppose that the solution x of (2.2) satisfies (H’). Then, the following
conditions are satisfied:

• There exists p0 ≤ 0 and a piece-wise absolutely continuous map p : [0, T ] → Rn called adjoint vector
(row vector in Rn) such that (p0, p(·)) 6= (0, 0). Moreover, p(·) is absolutely continuous on each interval
(ti, ti+1) (i = 0, · · · ,m) where we posit t0 = 0, tm+1 = T ), and satisfies the adjoint equation:

ṗ(t) = −p(t) ·Dxf(x(t), u(t)) a.e. t ∈ (ti, ti+1) , i = 0, · · · ,m− 1. (2.5)
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• The Hamiltonian satisfies the maximization condition:

u(t) ∈ arg maxα∈Up(t) · f(x(t), α) a.e. t ∈ [0, T ]. (2.6)

• At every regular crossing time tc ∈ {t1, · · · , tm}, one has the jump condition on the adjoint vector p:

∃ h? ∈ NK(x(tc)), p(t+c ) = p(t−c ) +
p(t−c ) · (f(x(tc), u(t−c ))− f(x(tc), u(t+c ))) + σp0

h? · f(x(tc), u(t+c ))
h?, (2.7)

where σ = −1, resp. σ = +1 if tc is a regular crossing time from K into Kc, resp. from Kc into K.

• The adjoint vector satisfies the transversality condition

p(T ) = 0, (2.8)

as x(T ) is free.

As the pair (p0, p(·)) is non-null, we may suppose that p0 = −1 using the transversality condition. We call
extremal trajectory a triple (x(·), p(·), u(·)) satisfying (2.2)-(2.5)-(2.6).

Remark 2.2. (i) Notice that (2.7) follows from the transversality condition in the HMP at the point t = tc
[11] (Theorem 22.20). In fact, this condition implies the constancy of the Hamiltonian H along any extremal
trajectory (using that tc is free in [0, T ] and that the system is autonomous). Moreover, the jump condition
on the adjoint vector p(t+c ) − p(t−c ) ∈ NK(x(tc)) follows also from [11]. The constancy of H and the jump
condition then imply (2.7).
(ii) We can modify (H’) by supposing that the trajectory can enter or leave K tangentially when the number
of crossing times is finite (thus any crossing time is an isolated point excluding Zeno’s phenomena). However,
if a trajectory hits K tangentially at a time tc, then (2.7) should be written p(t+c )− p(t−c ) ∈ NK(x(tc)).

In order to state the HMP, one has to set the number of regular crossing times of an optimal trajectory.
Therefore, it is convenient to introduce a regularized scheme for which we can derive optimality conditions
in a standard way (see [23]), without any a priori knowledge on the number of crossing times. In particular,
hypothesis (H ′) will not be required to state the PMP on the regularized problem.

3 Regularized problem and convergence property

In this section, we introduce the regularized scheme, and we show in Proposition 3.1 that, up to a sub-sequence,
an optimal solution of the regularized problem converges to an optimal solution of (TC).

In the following, we denote by d(·,K) the distance function to the set K defined for x ∈ Rn by d(x,K) :=
infy∈K ‖x− y‖ and let ψK be the indicator function of the set K defined by:

ψK(x) :=

{
0 if x ∈ K,

+∞ if x /∈ K.

Using the hypothesis that K is closed and convex, ψK is a convex and lower semi-continuous function. We
can then consider the Moreau envelope eε(·) of ψK with the parameter ε, defined by (see [20, 21, 4]):

eε(x) :=
1

2ε
d(x,K)2.

As K is a closed convex subset of Rn, x 7−→ eε(x) is of class C1,1 on Rn (see [22]) and for x ∈ Rn, we have
∇eε(x) = 1

ε (x − PK(x)), where PK : Rn → K is the projection onto the set K (PK is well-defined as K is a
closed convex subset of Rn). When ε goes to zero, one has:

lim
ε→0

eε(x) = ψK(x),

for any x ∈ Rn. Now, set γ(v) := 1− e−v so that for any x ∈ Rn, one has:

1Kc(x) = γ(ψK(x)).
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We then consider the regularized optimal control problem:

inf
u∈U

JTε (u), (TCε)

where JTε is defined for u ∈ U by:

JTε (u) :=

∫ T

0

γ(eε(xu(t))) dt,

and xu is the unique solution of (2.2). The proof of existence of an optimal control for (TCε) is a standard
routine using Filipov’s Theorem [9]. In fact, the mapping x 7−→ γ(eε(x)) is continuous over Rn, bounded by
1, and for any x ∈ Rn, the set f(x, U) is compact and convex. Hereafter, we denote by uε a minimizer of
problem (TCε) and xε (in place of xuε) the associated trajectory.

Lemma 3.1. For any control u ∈ U , one has JTε (u)→ JT (u) as ε tends to zero.

Proof. For any t ∈ [0, T ], one has γ(eε(xu(t))) → 1Kc(xu(t)). Moreover, the sequence (γ(eε(xu(·))))ε is
uniformly bounded by 1. The result follows from Lebesgue’s Theorem.

It follows that for each ε > 0, there exists a pair (uε, xε) such that for any u ∈ U :

JTε (uε) ≤ JTε (u). (3.1)

By using Theorem 1.11 in [12], we may assume that there exists a pair (x?, u?) with u? ∈ U that is a solution
of (2.2) and such that (up to a sub-sequence) xε(·) converges uniformly to x?(·) over [0, T ] and ẋε(·) converges
weakly in L2([0, T ]) to ẋ?(·) as ε goes to 0. We now show that x? is a minimum of problem (TC).

Proposition 3.1. The trajectory x? is a minimum of problem (TC).

The proof of Proposition 3.1 relies on Lemma 3.2 given below. Let g : Rn × [0, 1]→ R be defined by:

g(x, v) :=


0 if x ∈ Int(K),

v if x ∈ ∂K,
1 if x /∈ K,

and let us consider two sequences (εi) and (λi) such that εi > 0, λi > 0, εi → 0, λi → 0, and
λ2
i

εi
→ +∞ as i

goes to infinity.

Lemma 3.2. Let x(·) be a solution of (2.1). Then, there exists three measurable functions ai : [0, T ] → Rn,
bi : [0, T ]→ R, and vi : [0, T ]→ [0, 1] such that for any i, one has:

γ (eεi(x(t))) = g(x(t) + ai(t), vi(t)) + bi(t) a.e. t ∈ [0, T ]. (3.2)

Moreover, (ai) and (bi) converge to zero and satisfy the inequalities

0 ≤ ‖ai(t)‖ ≤ λi and 0 ≤ |bi(t)| ≤ e−
λ2i
2εi a.e. t ∈ [0, T ].

Proof. First, if t is such that x(t) ∈ K, then we take ai(t) := 0, bi(t) := 0, and vi(t) := 0, and (3.2) is
straightforward. We denote by B̄(0, λi) the closed ball of center 0 and radius λi, and we consider the set Kλi

defined by:
Kλi := {x ∈ Rn ; x = a+ b, a ∈ K, b ∈ B̄(0, λi)}. (3.3)

Suppose that x(t) /∈ Kλi . We set ai(t) := 0, bi(t) := −e−
1

2εi
d(x(t),K)2

, and vi(t) := 0. Hence, we have

γ
(

1
2εi
d(x(t),K)2

)
= 1Kc(x(t)) − e

− 1
2εi

d(x(t),K)2
= g(x(t) + ai(t), vi(t)) + bi(t) as in (3.2). Moreover, as

d(x(t),K) ≥ λi, we obtain that 0 ≤ |bi(t)| ≤ e−
λ2i
2εi . Now, suppose that x(t) ∈ Kλi\K. Set ai(t) := PK(x(t))−

x(t), bi(t) := 0, and vi(t) := γ
(

1
2εi
d(x(t),K)2

)
. As we have x(t) +ai(t) ∈ ∂K, we have g(x(t) +ai(t), vi(t)) =

vi(t) = γ
(

1
2εi
d(x(t),K)2

)
as was to be proved. Notice that in this case, one has ‖ai(t)‖ ≤ λi. To conclude, the

sets {t ∈ [0, T ] ; x(t) ∈ Int(K)} and {t ∈ [0, T ] ; x(t) ∈ Kλi} are measurable as x(·) is absolutely continuous.
This proves that the sequences ai, bi, and vi are measurable.
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Proof of Proposition 3.1. Let us set ui := uεi so that we have JTεi(ui) ≤ JTεi(u) for any u ∈ U . Without any
loss of generality, up to a sub-sequence, we may assume that xi → x? uniformly over [0, T ] and ẋi ⇀ ẋ? as i
goes to infinity. We can apply Lemma 3.2 with xi, and we get:

γ

(
1

2εi
d(xi(t),K)2

)
= g(xi(t) + ai(t), vi(t)) + bi(t). (3.4)

Notice that the bounds over ai and bi in Lemma 3.2 do not depend on the trajectory x(·). Let us set

ηi :=
∫ T
0
bi(t) dt. As bi is bounded and converges to zero, Lebesgue’s Theorem implies that ηi → 0, as i goes

to infinity. Set fi(t) := g(xi(t) + ai(t), vi(t)) and consider the sets:

A := {t ; x?(t) ∈ Int(K)}, B := {t ; x?(t) ∈ ∂K}, C := {t ; x?(t) /∈ K}.

By integrating (3.4), we obtain:

JTεi(ui) :=

∫
A

fi(t) dt+

∫
B

fi(t) dt+

∫
C

fi(t) dt+ ηi.

First, suppose that t ∈ A. As (ai) converges to zero and xi(t) goes to x?(t) as i goes to infinity, one has
fi(t) = 0 if i is large enough. Thus, fi(·) converges to 1Kc(x?(·)) over the set A. As fi is bounded, we deduce
that

∫
A
fi(t) dt goes to zero as i goes to infinity.

Now, suppose that t ∈ C. If i is large enough, we deduce that xi(t)+ai(t) /∈ K, therefore fi(t) = 1. Hence,
fi(·) converges to 1Kc(x?(·)) over the set C. Therefore, one has

∫
C
fi(t) dt →

∫
C
1Kc(x?(t)) dt = JT (u?).

Recall that we have JTεi(ui) ≤ J
T
εi(u

?) and
∫
B
fi ≥ 0. It follows that:∫

A

fi +

∫
C

fi + ηi ≤ JTεi(ui) ≤ J
T
εi(u

?). (3.5)

When i goes to infinity, we obtain from (3.5) that limi→+∞ JTεi(ui) = JT (u?). To conclude that u? is optimal,
observe that for any u ∈ U , one has:

JTεi(ui) ≤ J
T
εi(u),

which gives JT (u?) ≤ JT (u) (by letting i go to infinity). This ends the proof. �

Remark 3.1. Proposition 3.1 implies straightforwardly that for any 0 ≤ t0 ≤ T and x0 ∈ Rn, the value
function Vε(t0, x0) associated to the regularized problem converges point-wise to the value function V (t0, x0) of
the minimal time crisis problem.

4 Optimality conditions

4.1 Pontryagin Maximum Principle on the regularized problem

In this section, we study the application of the Pontryagin Maximum Principle to the regularized problem
(TCε). To do so, we will consider an auxiliary problem (TC′ε). Let us consider the admissible control set V
defined by:

V := {v : [0, T ]→ K ; v meas.},

and let W := U × V. Next, we call u = (u, v) an element of W. We introduce the augmented system:{
ẋ = f(x, u),
ẏ = γ

(
1
2ε‖x− v‖

2
)
,

(4.1)

with initial conditions x(0) = x0, y(0) = 0, and (u, v) ∈ W. We denote by zu := (xu, yu) the unique solution
of (4.1) associated to the control u such that x(0) = x0 and y(0) = 0. We consider the Mayer problem :

inf
u∈W

yu(T ) (TC′ε)

Lemma 4.1. Problems (TCε) and (TC′ε) are equivalent.

7



Proof. First, suppose that (uε) is an optimal solution of (TCε), and let xε(·) be the associated solution of
(2.2). Then, for any u ∈ U , one has JTε (uε) ≤ JTε (u), therefore we deduce using the convexity of K that for
any function v : [0, T ]→ K one has:∫ T

0

γ

(
1

2ε
d(xε(t),K)2

)
dt ≤ JTε (u) ≤

∫ T

0

γ

(
1

2ε
‖x(t)− v(t)‖2

)
dt,

where x is the solution of (2.2) associated to u. Hence, (uε(·), PK(xε(·)) ∈ W is an optimal solution of (TC′ε).
Suppose now that we are given a solution (uε, vε) ∈ W of (TC′ε), and let xε(·) be the associated trajectory
solution of (2.2). If there exists a set I ⊂ [0, T ] of positive measure such that vε(t) 6= PK(xε(t)) for any t ∈ I,
then we have:

‖xε(t)− PK(xε(t))‖ < ‖xε(t)− vε(t)‖, ∀ t ∈ I,
using the inclusion vε(t) ∈ K. As γ is strictly increasing, we obtain∫ T

0

γ

(
1

2ε
‖xε(t)− PK(xε(t))‖2

)
dt <

∫ T

0

γ

(
1

2ε
‖xε(t)− vε(t)‖2

)
dt,

which is a contradiction with the optimality of (uε, vε). Therefore, one has vε(t) = PK(xε(t)) for a.e. t ∈ [0, T ].
By optimality of (uε, vε), we get:

JTε (uε) ≤
∫ T

0

γ

(
1

2ε
‖x(t)− v(t)‖2

)
dt,

where u ∈ U , v ∈ V and x is the solution of (2.2) associated to u. Let us take v(t) := PK(x(t)) for any
t ∈ [0, T ]. We then obtain JTε (uε) ≤ JTε (u) which proves that uε is a solution of (TCε).

As for (TC)ε, the proof of the existence of an optimal solution for problem (TC′ε) is a straightforward
routine. We are now in position to apply the Pontryagin Maximum Principle on (TC′ε). The Hamiltonian
Hε : Rn+1 × Rn+1 × Rm × Rn → R associated to (4.1) is defined by:

Hε(x, y, p, q, u, v) := p · f(x, u) + qγ

(
1

2ε
‖x− v‖2

)
.

Let an optimal control uε = (uε, vε) ∈ W of (TC′ε) be given, and let zε = (xε, yε) the associated trajectory.
Then, the following conditions are satisfied:

• There exists a constant qε ≤ 0 and an absolutely continuous function pε : [0, T ] → Rn called adjoint
(row) vector such that (pε(t), qε) 6= (0, 0) for any t. Moreover, pε(·) satisfies the adjoint equation:

ṗε(t) = −pε(t) ·Dxf(xε(t), uε(t))−
qε
ε
γ′
(

1

2ε
‖x(t)− vε(t)‖2

)
(xε(t)− vε(t)) a.e. t ∈ [0, T ]. (4.2)

• We have the following maximization condition. For a.e. t ∈ [0, T ] one has:{
uε(t) ∈ arg maxα∈U pε(t) · f(xε(t), α),

vε(t) ∈ arg maxw∈K qεγ
(

1
2ε‖xε(t)− w‖

2
)
.

(4.3)

• We have the transversality condition pε(T ) = 0 and qε = −1.

We call extremal trajectory a triple (zε, pε, uε) satisfying (2.2)-(4.2)-(4.3). In particular any optimal trajectory
corresponds to a normal extremal trajectory (i.e. qε 6= 0). Notice that the transversality condition follows
directly from the condition (pε(·), qε) 6= (0, 0) and the fact that xε(T ) and yε(T ) are free (see [12] p.231).
Using the convexity of K and (4.3), an extremal control vε necessarily satisfies:

vε(t) = PK(xε(t)) ,

for a.e. t ∈ [0, T ]. As the system is autonomous, the value of the Hamiltonian Hε along any extremal trajectory
is conserved. For t = T , one has Hε = −γ

(
1
2ε‖xε(T )− vε(T )‖2

)
, hence we have |Hε| ≤ 1 for any ε > 0.

Remark 4.1. From a numerical point of view, the formulation (TC′ε) can be useful when the quantities
d(xε(t),K) and PK(xε(t)) are not explicit.
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4.2 Convergence for the adjoint system

In this section, we suppose that hypotheses (H1)-(H4) are in force. We show that when the regularization
parameter ε > 0 goes to zero, then an extremal of the regularized problem converges (up to a sub-sequence)
to an extremal of the original problem (see Proposition 4.1 and Theorem 4.1).

For convenience, let us write (un, vn) the solution of (TC′ε) for ε = εn, xn the unique solution of (2.2) for
the control u = un, and pn the unique solution of the Cauchy problem:{

ṗn(t) = −pn(t) ·Dxf(xn(t), un(t)) + 1
εn
γ′
(

1
2εn
‖xn(t)− vn(t)‖2

)
(xn(t)− vn(t)) a.e. t ∈ [0, T ],

pn(T ) = 0.
(4.4)

The next lemma provides a uniform bound in L∞([0, T ]) for the sequence pn and is crucial to show that its
convergence (up to a sub-sequence) to a solution of (2.5)-(2.6)-(2.7)-(2.8). Its proof is rather technical and
follows arguments that are used in the more general context of the regularization of hybrid systems [19]. For
sake of completeness, we provide in the Appendix a proof of Lemma 4.2 adapted to our context.

Lemma 4.2. The sequence (pn) is bounded in L∞([0, T ]) : there exists C ≥ 0 such that for any n ∈ N

‖pn‖L∞([0,T ]) ≤ C. (4.5)

Remark 4.2. (i) The proof of Lemma 4.2 is based on needle variations and regularization of variation vectors
as in the proof of the Hybrid Maximum Principle (see Appendix and [19]). It appears that (4.4) does not provide
enough information on (pn) in order to obtain (4.5).

(ii) Let us introduce the function ϕn : R→ R defined by ϕn(x) := x
εn
e−

x2

2εn . Then, one can immediately check

that
∫ +∞
0

ϕn(x)dx = 1 and supx≥0 ϕn(x) = 1√
εn

(achieved for xn :=
√
εn) for any n ∈ N. Equation (4.4) can

be written:
ṗn(t) = −pn(t) ·Dxf(xn(t), un(t)) + ϕn(‖xn(t)− vn(t)‖) a.e. t ∈ [0, T ].

Hence, we can expect that (pn) is bounded (according to Lemma 4.2), but (ṗn) may be unbounded.

Under hypotheses, (H1)-(H4), we know that there exists a solution x? of (2.2) defined over [0, T ] such that
(up to a sub-sequence) the sequence xn(·) converges uniformly to x?(·) over [0, T ] and ẋn(·) converges weakly
in L2([0, T ]) to ẋ?(·). Next, we assume that x?(·) satisfies (H’), and we denote by (tk)1≤k≤m the regular
crossing times of x? (note that (t2l+1) are crossing times from K into Kc). By convention, we set t0 = 0 and
tm+1 = T . Let η0 > 0 be such that η0 < min1≤k≤n

1
2 (tk+1 − tk). For 0 < η < η0, we denote by Iη the set:

Iη := [0, t1 − η]
⋃

1≤k≤n−1

[tk + η, tk+1 − η]
⋃

[tn + η, T ].

Lemma 4.3. For any η ∈ (0, η0], there exists an absolutely continuous function p?η : Iη → Rn such that up
to a sub-sequence, pn(·) uniformly converges to p?η(·) over Iη and ṗn(·) converges weakly in L2(Iη) to ṗ?η(·).
Moreover, p?η satisfies

ṗ?η(t) = −p?η(t) ·Dxf(x?(t), u?(t)) a.e. t ∈ Iη. (4.6)

Proof. Combining the uniform convergence of xn(·), and the fact that each crossing time is transverse, there
exists N ∈ N and ρη > 0 such that for any n ≥ N one has d(xn(t), ∂K) ≥ ρη for any t ∈ Iη. Using that f
is continuous, that the sequence (xn(·), un(·)) is uniformly bounded over [0, T ], and that K is compact, there
exists A > 0 such that for any t ∈ [0, T ] one has ‖Dxf(xn(t), un(t))‖ ≤ A and ‖xn(t)−PK(xn(t))‖ ≤ A. Now,
for t ∈ Iη and n ≥ N , one has:

‖ṗn(t)‖ ≤ A‖pn(t)‖,

if xn(t) ∈ K, and

‖ṗn(t)‖ ≤ A‖pn(t)‖+
A

εn
γ′
(

1

2εn
ρη

)
,

if xn(t) /∈ K. The sequence (ξn) defined by ξn := A
εn
γ′
(

1
2εn

ρη

)
clearly goes to zero as n goes to infinity.

Therefore, we obtain for any n ≥ N :

‖ṗn(t)‖ ≤ A‖pn(t)‖+ ξn a.e. t ∈ Iη. (4.7)
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By Lemma 4.2, we conclude that the sequence (pn) is uniformly Lipschitz continuous. By Arzelà-Ascoli
Theorem, there exists a function p?η : Iη → Rn such that up to a sub-sequence pn(·) uniformly converges to p?(·).
As ṗn(·) is bounded in L2(Iη), the weak convergence is straightforward. Now (4.6) follows from Theorem 1.11

in [12] using that the mapping t 7−→ rn(t) := 1
εn
γ′
(

1
2εn
‖xn(t)− vn(t)‖2

)
(xn(t)− vn(t)) uniformly converges

to 0 over Iη.

Proposition 4.1. There exists a function p? : [0, T ]\{t1, ..., tm} → Rn satisfying the following properties :
(i) Up to a sub-sequence, one has pn(t)→ p?(t) a.e. t ∈ [0, T ] when n goes to infinity.
(ii) The function p? is (locally) absolutely continuous on each interval (ti, ti+1), 0 ≤ i ≤ m (where tm+1 = T ).
(iii) The function p? is bounded over [0, T ] and satisfies :{

ṗ?(t) = −p?(t) ·Dxf(x?(t), u?(t)) a.e. t ∈ [0, T ],
p?(T ) = 0.

(4.8)

Proof. To prove (i), we argue first that if η′ < η ≤ η0, then we have p?η′(t) = p?η(t) for any t ∈ Iη. Indeed,
Lemma 4.3 ensures the existence of a sequence (pϕ1(n)) such that we have pϕ1(n) → p?η uniformly over Iη and
pϕ1(n) ⇀ p?η weakly in L2(Iη). Now, given η′ < η, there exists a sub-sequence (pϕ1◦ϕ2(n)) such that we have
pϕ1◦ϕ2(n) → p?η uniformly over Iη′ and pϕ1◦ϕ2(n) ⇀ p?η weakly. The result then follows using that Iη ⊂ Iη′ .
Consider now a decreasing sequence ηn toward 0 such that for all n ∈ N we have ηn ∈ Q and ηn < η0. By
repeating the application of Lemma 4.3 on each set Iηn , we can consider an extraction ϕn : N → N and a
diagonal sub-sequence pϕ1◦···◦ϕn(n)(·) which by construction converges uniformly to p?ηk(·) on each interval Iηk ,
k ∈ N. We then define p? as the uniform limit of (pϕ1◦···◦ϕn(n)) on each interval interval Iηk which concludes
the proof.

Let us now prove (ii) and (iii). First, we write pn := pϕ1◦···◦ϕn(n). From Lemma 4.3, the function p?

coincides with p?η on Iη, therefore it satisfies (4.6) on each set Iη. We then obtain (4.8) using that η > 0 is
arbitrary and pn(T ) = 0 for all n. Now, similarly as for (4.7), one obtains:

‖ṗ?(t)‖ ≤ A‖p?(t)‖ a.e. t ∈ [0, T ]. (4.9)

By Gronwall’s Lemma, one obtains ‖p?(t)‖ ≤ ‖p?(τi)‖eAT for any 1 ≤ i ≤ m− 1 and any t ∈ (ti, ti+1), where
τi ∈ (ti, ti+1). This shows that p? is bounded over [0, T ].

Proposition 4.2. Let tc be a regular crossing time. The following properties hold true.
(i) Let (t1n) and (t2n) be two sequences such that for any n, one has t1n < tc and t2n > tc. Suppose in addition
that t1n → tc and t2n → tc as n goes to infinity. Then, we have:

lim
n→+∞

(pn(t2n)− pn(t1n)) ∈ NK(x?(tc)).

(ii) Adjoint vectors p?(t+c ) and p?(t−c ) exist and satisfy:

p?(t+c )− p?(t−c ) ∈ NK(x?(tc)). (4.10)

(iii) The function p? satisfies (2.7) at each crossing time.

Proof. Let us take η < η0. As xn(·) uniformly converges to x? over [0, T ] as n goes to infinity, there exists
t̃n ∈ [tc − η, tc + η] such that xn(t̃n) ∈ ∂K (without any loss of generality, we can suppose that t̃n is the first
time t ∈ [tc − η, tc + η] such that xn(t̃n) ∈ ∂K). It follows that t̃n → tc as n goes to infinity. For n ∈ N, let ζn
be defined by

ζn :=

∫ t2n

t1n

−pn(t)Dxf(xn(t), un(t)) dt.

Lemma 4.2 implies that ζn → 0 as n goes to infinity. By integrating (4.4) over [t1n, t
2
n], one has:

pn(t2n)− pn(t1n) = ζn +
1

εn

∫ t2n

t1n

γ′
(

1

2εn
‖xn(t)− vn(t)‖2

)
(xn(t)− vn(t)) dt.
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It follows that there exists t̂n ∈ (t1n, t
2
n) such that

pn(t2n)− pn(t1n) = ζn +
t2n − t1n
εn

γ′
(

1

2εn
‖xn(t̂n)− vn(t̂n)‖2

)
(xn(t̂n)− vn(t̂n)). (4.11)

Let us set ρn :=
t2n−t

1
n

εn
γ′
(

1
2εn
‖xn(t̂n)− vn(t̂n)‖2

)
‖xn(t̂n) − vn(t̂n)‖ and wn := xn(t̂n)−vn(t̂n)

‖xn(t̂n)−vn(t̂n)‖
so that (4.11)

can be written:
pn(t2n)− pn(t1n) = ζn + ρnwn.

The left member of the previous inequality is bounded, so the sequence (ρnwn) is bounded. As wn ∈ Sn−1
(where Sn−1 denotes the unit sphere in Rn−1), there exists w ∈ Sn−1 such that (up to a sub-sequence)
wn → w. By taking again a sub-sequence, we can assume that there exists ρ ≥ 0 such that ρn → ρ as n goes
to infinity. Recall now that vn(t) = PK(xn(t)) for any t so that for any y ∈ K one has:

wn · (y − PK(xn(t̂n)) ≤ 0.

By letting n go to infinity, we find that w · (y−PK(x?(tc))) ≤ 0 which shows that w ∈ NK(x?(t1)). The result
follows.

To prove (ii), we know from the previous proposition that ṗ? is bounded over [0, T ]\{t1, ..., tm}. Therefore,
there exists C ≥ 0 such that for any 0 ≤ i ≤ m−1, we have ‖p?(t)−p?(t′)‖ ≤ C|t− t′| for any (t, t′) ∈ [ti, ti+1].
Hence, p? satisfies the Cauchy criterion at the point t−c , which proves that limt→t−c p

?(t) exists. Similarly
limt→t+c p

?(t) exists and property (4.10) is fulfilled as n goes to infinity.
Finally, let us prove (iii). As the system is autonomous, the Hamiltonian Hn is constant along any

extremal solution of (TC′εn). Hence, we may assume (by taking a sub-sequence) that there exists h ∈ R such
that Hn → h as n goes to infinity. Now, consider two times t, t′ such that t < tc < t′. If n is large enough,
one has (using the uniform convergence of xn(·) to x?(·)):

pn(t) · f(xn(t), un(t)) = pn(t′) · f(xn(t′), un(t′))− γ(xn(t′)).

If we let n→∞, we find p?(t−c ) · f(x?(tc), u
?(t−c )) = p?(t+c ) · f(x?(tc), u

?(t+c ))− 1, and the result follows from
(4.10).

The next Theorem is a rephrasing of Propositions 3.1, 4.1, and 4.2.

Theorem 4.1. Suppose that (H1)-(H4) hold true. Let (εn) ↓ 0, (xn, un) a solution of (TC′εn), and pn the
unique solution of (4.4). Then, up to a sub-sequence, the following properties are satisfied:
(i) There exists a solution (x?, u?) of (TC) such that xn(·) uniformly converges to x?(·) over [0, T ], and ẋn(·)
weakly converges to ẋ?(·) in L2([0, T ]).
(ii) The value function associated to (TC′εn) converges point-wise on [0, T ]×Rn to the value function of (TC).
(iii) If in addition x? satisfies (H’), then there exists a function p? : [0, T ]\{t1, ..., tm} 7→ Rn satisfying (2.5)-
(2.6)-(2.7)-(2.8) such that pn(·) converges to p?(·) a.e in [0, T ]. This convergence is uniform on every compact
set C of [0, T ] not containing a crossing time of x?, and ṗn(·) weakly converges to ṗ?(·) in L2(C).

5 Illustration of an optimal synthesis for the time crisis problem

In this section, we consider an example for which we explicit an optimal control policy for both the original and
the regularized problem. We also illustrate Proposition 3.1 (see also Remark 3.1) by depicting numerically
the convergence of the value function of the regularized problem to the original one. Consider the planar
dynamics: {

ẋ1 = −x2(2 + u),
ẋ2 = x1(2 + u),

(5.1)

where u : [0, T ] → [−1, 1] is a measurable control function. We shall consider (5.1) on the compact domain
defined as a disk:

D :=
{
x ∈ R2 ; x21 + x22 ≤ R2

}
,

that is clearly invariant by (5.1), and the compact convex subset K is defined by :

K := {x ∈ D ; x2 ≥ 0} .
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The minimal time crisis problem (from t0 < T to T ) then becomes :

inf
u(·)

∫ T

t0

1D\K(xu(t)) dt, (5.2)

where xu(·) is a solution of (5.1) starting from x0 ∈ D at time t0. Straightforwardly, trajectories lie on circles
centered on the origin of radius r, whatever is the control u(·). The control u acts on the angular velocity of
the trajectories. Therefore, system (5.1) can be equivalently written in polar coordinates (r, θ) with

θ̇ = r(2 + u), (5.3)

and r := ‖x0‖ =
√
x21 + x22 constant.

Hereafter, the notation u[·] denotes a feedback control (depending on the state), while the notation u(·)
denotes the open-loop control (as a function of time). Consider the feedback um[·] that consists in minimizing
the angular velocity when the state x belongs to K and on the contrary maximizing it outside :

um[x] :=

∣∣∣∣ −1 if x ∈ K,
1 if x /∈ K, (5.4)

that we shall called the myopic strategy. Given the angle θ0 ∈ [0, 2π) of the initial condition x0 and T > 0,
let us now define θm(·) as the unique solution of{

θ̇m(t) = 2 + um(t) a.e. t ∈ [0, T ],
θ(0) = θ0,

with um(t) := um[x(t)]. We will prove hereafter that this intuitive strategy is optimal for (5.2) (but non-
unique).

5.1 Study of the original problem (5.2)

In this part, we compute an optimal control for (5.2) using the Hybrid Maximum Principle. It will be
convenient to introduce the two subsets A,B of R defined by:

A :=
⋃
k∈Z

[2kπ, (2k + 1)π] and B := R\A.

Hereafter, we suppose that t0 = 0, r = 1. Let us fix θ0 ∈ [0, 2π) and a measurable control u : [0, T ]→ [−1, 1],
and denote by θu the unique solution of θ̇ = 2 + u(t) on [0, T ] such that θ(0) = θ0.

Proposition 5.1. Let u? be an optimal control for (5.2) and x? the unique solution of (5.1) starting from
x0. Then, the following results hold :

(1) If x?(T ) ∈ K, then:

u?(t) =

{
v ∈ [−1, 1] if θu?(t) ∈ A,

1 if θu?(t) ∈ B. (5.5)

(2) If x?(T ) ∈ Kc, then:

u?(t) =

{
−1 if θu?(t) ∈ A,

v ∈ [−1, 1] if θu?(t) ∈ B. (5.6)

Proof. The Hamiltonian H : R× R× R→ R associated to the system is defined by:

H = H(θ, λ, u) := λ(2 + u)− 1B(θ).

Let u be an optimal control and let us denote by θu the associated trajectory. According to the Hybrid
Maximum Principle, there exists a piece-wise absolutely continuous function λ : [0, T ]→ R satisfying λ(T ) = 0
and the adjoint equation λ̇(t) = 0 for a.e. t ∈ [0, T ]. Moreover, we have the following maximization condition:
u = +1, resp. u = −1 whenever λ > 0, resp. λ < 0. If λ(t) = 0, then one has u(t) ∈ [−1, 1]. From [11,
Theorem 22.20], the Hamiltonian H is constant along any extremal trajectory. As we have θ̇ ≥ 1 for any time
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t, the number of crossing times (from K to Kc or from Kc to K) is finite and each crossing time is transverse.
Therefore, Hypothesis (H’) is fulfilled. The Hybrid Maximum Principle then implies that λ has a discontinuity
at a crossing time tc and that λ(t+c )− λ(t−c ) is finite.

First case : suppose that θu(T ) ∈ A. Using λ(T ) = 0, we obtain that H = 0. Whenever θu(t) /∈ A, we have
H = 0 = 2λ + |λ| − 1, therefore, the only possibility is to have λ = 1/3. Now, if θu(t) ∈ A, then λ = 0. We
deduce that u(t) = 1 whenever θu(t) ∈ B and u(t) ∈ [−1, 1] whenever θu(t) ∈ A which proves (1) and (5.5).

Second case : suppose that θu(T ) ∈ B. Using λ(T ) = 0, we obtain that H < 0. Whenever θu(t) ∈ A, one
has H = 2λ+ |λ|, hence the only possibility is to have λ < 0. We deduce that λ = H < 0 whenever θu(t) ∈ A
and u(t) = −1. On the other hand, suppose that θu(t) ∈ B. We then have H = 2λ + |λ| − 1 implying that
λ is constant in B with λ ≥ 0. Indeed, suppose that λ < 0 in B. As λ is constant in B, we then obtain
λ = H + 1 < 0. Hence, we would have a contradiction with λ(T ) = 0 as we should have λ < 0 for any time
t ∈ [0, T ]. Now, as λ ≥ 0, we have two sub-cases depending if λ = 0 or not in B. Suppose that λ = 0 in B.
We then have u(t) ∈ [−1, 1] in B. If now λ > 0, then we have u(t) = 1 in B. This proves (2) and (5.6).

We then obtain the following optimality result for the myopic strategy.

Corollary 5.1. Consider a control u satisfying (5.5) or (5.6) and such that θu(0) = θ0. Then, one has:

JT (u) ≥ JT (um) . (5.7)

Therefore the myopic strategy (5.4) is optimal for any initial condition.

Proof. As dθm/dt ≥ 1 there is a one-to-one correspondence between time t and θ = θm(t). One can then
change t into θ and obtain straightforwardly

JT (um) =

∫ T

0

1B(θm(t)) dt =
1

3

∫ θm(T )

θ0

1B(θ) dθ.

Suppose first that θu(·) ends in A. Thus, we are in case (1) of Proposition 5.1 and u is given by (5.5). Similarly

as for um, we get JT (u) = 1
3

∫ θu(T )

θ0
1B(θ) dθ. It follows that:

JT (u)− JT (um) =
1

3

∫ θu(T )

θm(T )

1B(θ) dθ.

Now, it can be easily verified that θu(t) ≥ θm(t) for any t ∈ [0, T ] (as θu(0) = θm(0) = θ0 and when both
trajectories are in A, resp. in B, one has θ̇u − θ̇m ≥ 0, resp. θ̇u = θ̇m = 3). Thus we have θu(T ) ≥ θ?(T ) ≥ 0
and the result follows.

Suppose now that θu(·) ends in B. Thus, we are in case (2) of Proposition 5.1 and u is given by (5.6). As
t 7−→ θu(t) is one-to-one from [0, T ] into [θ0, θu(T )], we can change t into θ and we obtain:

θm(t)− θu(t) =

∫ t

t0

(um(s)− u(s)) ds =

∫ θu(t)

θ0

um(θ−1u (θ))− u(θ−1u (θ))

2 + u(θ−1u (θ))
dθ.

Therefore, we deduce using (5.6) that:

θm(t)− θu(t) =

∫ θu(t)

θ0

1B(θ)

(
3

2 + u(θ−1u (θ))
− 1

)
dθ.

It follows that the cost JT (u) can be written :

JT (u) =
1

3

(
θm(T )− θu(T ) +

∫ θu(T )

θ0

1B(θ) dθ

)
.

We then obtain using JT (um) = 1
3

∫ θm(T )

θ0
1B(θ) dθ:

JT (u) = JT (um) +
1

3

(
θm(T )− θu(T )−

∫ θm(T )

θu(T )

1B(θ) dθ

)
. (5.8)
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As in the first case, we can check that θu(t) ≤ θm(t) for any t ∈ [0, T ] (as θu(0) = θm(0) = θ0 and when both
trajectories are in A, resp. in B, one has θ̇u = θ̇m = −1, resp. θ̇u − θ̇m ≤ 0). It follows that JT (u) ≥ JT (um)
which ends the proof.

Remark 5.1. Optimal trajectories for problem (5.2) are non-unique. If the trajectory ends in Kc or in Int(K),
then the cost is unchanged whatever is the control u(·) in a neighborhood of t = T . For instance, if θu(T )
is close to θm(T ) ∈ B, then (5.8) implies straightforwardly that JT (u) = JT (um) as 1B(θ) = 1 for θ ∈ B.
Nevertheless, the feedback control (5.4) is still optimal.

5.2 Study of the regularized problem

We use Pontryagin’s Principle to tackle the regularized optimal control problem. As before, we shall consider
without any loss of generality r = 1. In view of the definition of K, one has d(x(t),K) = −min(sin θ(t), 0),
therefore the regularized control problem becomes :

inf
u(·)

JTε (u) :=

∫ T

0

1− e−
min(sin θu(t),0)2

2ε dt, (5.9)

where u : [0, T ] → [−1, 1] is a measurable control and θu is the unique solution of θ̇ = 2 + u(t) on [0, T ] such
that θ(0) = θ0 with θ0 ∈ R. Given θ1 ∈ (0, π/2], we define two subsets Aθ1 , Bθ1 of R as:

Aθ1 :=
⋃
k∈Z

[2kπ − θ1, (2k + 1)π + θ1] and Bθ1 := R \Bθ1 ,

and the stretched myopic strategy as

uθ1 [θ] :=

{
−1 if θ ∈ Aθ1 ,

1 if θ ∈ Bθ1 .
(5.10)

The next proposition provides optimality conditions for the regularized control problem (5.9).

Proposition 5.2. Let xε be an optimal solution for (5.9). Then, the following results hold :

(1) If xε(T ) ∈ K, then the optimal control satisfies the condition (5.5).

(2) If xε(T ) ∈ Kc, then the optimal control is given by the stretched myopic strategy (5.10) for a unique
θε1 ∈ (0, π/2].

Proof. The Hamiltonian Hε : R× R× R→ R associated to the system can be written :

Hε = Hε(θ, λ, u) = λ(2 + u)−
(

1− e−
min(sin θ,0)2

2ε

)
,

where λ ∈ R is the adjoint vector. Let uε(·) an optimal control and θuε(·) the unique solution of θ̇ = 2 + uε
such that θ(0) = θ0. Then, there exists an absolutely continuous function λε : [0, T ]→ R satisfying the adjoint
equation :

λ̇ε(t) =
1

ε
e−

min(sin θuε (t),0)2

2ε min(sin θuε(t), 0) cos θuε(t) a.e. t ∈ [0, T ].

The maximization condition provides the following control law. One has uε(t) = 1 if λε(t) > 0 and uε(t) = −1
if λε(t) < 0. Moreover, if λε(t) = 0, then uε(t) ∈ [−1, 1]. The function t 7−→ λε(t) plays the role of the
switching function and the transversality condition implies λε(T ) = 0. Notice also that λε(·) is increasing,
resp. decreasing whenever θε(·) goes from π to 3π/2 (mod. 2π), resp. from 3π/2 to 2π (mod. 2π).

As the Hamiltonian is constant along an extremal trajectory, one has:

Hε = 2λε + |λε| −
(

1− e−
min(sin θε,0)

2

2ε

)
. (5.11)

First case. Suppose that θuε(T ) ∈ A. Using that λε(T ) = 0, we obtain Hε = 0. If for t ∈ [0, T ], one has
λε(t) > 0 or λε(t) < 0 whenever θuε(t) ∈ A, then we obtain a contradiction from (5.11) (as one has Hε = 0).
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Thus, the only possibility is to have λε(t) = 0 for any t ∈ [0, T ] such that θuε(t) ∈ A. In this case, the optimal
control uε(t) can take any value in [−1, 1]. Similarly, we necessarily have λε(t) > 0 for any t ∈ [0, T ] such that
θuε(t) /∈ A, and thus u(t) = 1. This proves (1).

Second case. Suppose that θuε(T ) /∈ A. Using (5.11) and the transversality condition, we have that Hε < 0.
Moreover, it is straightforward to check that whenever θuε(t) ∈ A, then λε(t) is constant and λε(t) < 0
(otherwise we would have a contradiction with Hε < 0). Therefore we have uε(t) = −1 for any time t ∈ [0, T ]
such that θuε(t) ∈ A and λε(t) = Hε. At the terminal time we have λε(T ) = 0 and θuε(T ) /∈ A, hence,

Hε = −(1 − exp(− sin2 θε(T )
2ε )). This implies that 1 + Hε > 0. Thus, there exists a unique θε1 ∈ (0, π/2] such

that :
sin(π + θε1) := −

√
−2ε ln(1 +Hε).

From the expression of the Hamiltonian, we have that Hε is unchanged if θ is replaced by π − θ. We deduce
that for any k ∈ Z, the function t 7−→ λε(t) admits exactly two zeros θε1 + (2k + 1)π < (2k + 1)π + π/2 − θε1
on [(2k + 1)π, 2(k + 1)π] (otherwise we would have λ < 0 for any time t and a contradiction with the
transversality condition). At the terminal time, we necessarily have θuε(T ) = θε1 + (2k + 1)π, k ∈ Z or
θuε(T ) = π/2 − θε1 + (2k′ + 1)π, k′ ∈ Z. Using the monotonicity of λε, we deduce that uε(t) = −1 whenever
θuε(t) ∈ [(2k + 1)π, θε1 + (2k + 1)π), and uε(t) = +1 whenever θuε(t) ∈ (θε1 + (2k + 1)π, (2k + 1)π + π/2].
By symmetry w.r.t. 3π/2, we have the same property for uε whenever the trajectory is such that θuε(t) ∈
[3π/2 + 2kπ, 2(k + 1)π]. This proves (2).

Remark 5.2. It is interesting to notice that the optimal controls in case (1) of Propositions 5.2 and 5.1 are
the same.

In case (1) of Proposition 5.2, we can prove that the myopic strategy is optimal for (5.9).

Corollary 5.2. Consider an initial condition with angle θ0 and a control uε satisfying (5.5) with θuε(0) = θ0.
Then one has :

JTε (uε) ≥ JTε (um) . (5.12)

Therefore the myopic strategy (5.4) is optimal for such an initial condition.

Proof. As θuε(·) ends in A, the control uε is given by (5.5) (see Proposition 5.2) and a similar computation as
in the proof of Corollary 5.1 shows that

JTε (uε)− JTε (um) =
1

3

∫ θuε (T )

θm(T )

1B(θ)
(

1− e− sin2 θ
2ε

)
dθ.

Using that θm(t) ≤ θuε(t) for any time t ∈ [0, T ] (see Corollary 5.1), the previous equality implies straightfor-
wardly (5.12).

Remark 5.3. In case (2) of Proposition 5.2, the structure of the optimal control (5.10) slightly differs with
(5.6) as we can have uε = −1 in B. A natural question is to know if the feedback (5.10) converges to (5.4) as ε
goes to zero, or equivalently if θε1 goes to zero (recall that θε1 necessarily converges as ε ↓ 0 as θuε(·) uniformly
converges to an optimal solution of (5.2)). However, this is not true in general as optimal trajectories of (5.2)
are non-unique (see Remark 5.1).

5.3 Numerical computation

In this section we compute the value function of problems (5.2) and (5.9) provided by (5.4) whenever the
optimal trajectory for (5.2) ends in K. We illustrate numerically the convergence property of the value
function (Proposition 3.1 and Remark 3.1).

We denote by A(x0) the angle between a point x0 ∈ R2 and the horizontal axis, by E(x) ∈ Z, resp. Fr(x)
the integer part of a real x, resp. the fractional part of x such that E(x) ≤ x < E(x) + 1 and Fr(x) = x−E(x).
For x ∈ R, we write x− := min(x, 0) and x+ := max(x, 0).

Lemma 5.1. The value function associated to criterion (5.2) on D \ {0} is given by the following expression:

V (t0, x0) = W

(
t0 + π −A(x0)− 2[π −A(x0)]−

3

)
+

[π −A(x0)]−

3
,
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where the function W (·) is defined as follows

W (t) =
π

3

[
E

(
3[T − t]+

4π

)
+ min

(
4Fr

(
3[T − t]+

4π

)
, 1

)]
.

Proof. The value function associated to the criterion (5.2) can be first computed when A(x0) = π. In order
to show that V (t0, x0) = W (t0), we notice that the number of times the trajectory turns around the circle of

radius r (at angular velocity 3 in Kc and 1 in K) between t = t0 and t = T is exactly E
(

3[T−t0]+
4π

)
. This gives

the first part in the expression of W . Next, we obtain the second part in W by discussing if the trajectory
ends in K or in Kc.

Now, suppose that A(x0) 6= π. Then, we obtain the expression of V as follows. When 0 < A(x0) < π,
resp. π < A(x0) < 2π, we have to change t0 into t0 + π −A(x0), resp. t0 into t0 − (A(x0)− π) to obtain the
desired expression.

In order to compute the value function of (5.9) in case 1 of Proposition 5.2, we define the function

ζε(r, θ) =
1

3

∫ θ

0

(
1− e−

r2 sin2(π+s))
2ε

)
ds.

Lemma 5.2. The value function on D \ {0} associated to criterion (5.9) in case 1 (for which the strategy
(5.4) is optimal) is given by the following expression:

Vε(t0, x0) = Wε

(
‖x0‖ , t0 + π −A(x0)− 2[π −A(x0)]−

3

)
− ζε(‖x0‖, [A(x0)− π]+),

with

Wε(r, t) = E

(
3[T − t]+

4π

)
ζε(r, π) + ζε

(
r,min

(
4Fr

(
3[T − t]+

4π

)
, 1

)
π

)
Proof. The same argumentation than for the computation of the function V in the previous Lemma leads to
the computation of Vε.

Remark 5.4. Recall that when ε goes to zero, θuε(·) uniformly converges to θ?(·) on [0, T ] (up to a sub-
sequence). It follows from Corollary 5.2 that if θ?(T ) ∈ Int(A), an optimal control uε for problem (5.9) is
given by (5.4) provided that ε is small enough.

Straightforwardly, one can check ζε(r, θ)→ θ
3 for any θ ∈ R as ε ↓ 0, hence, we verify that

Vε(t0, x0)→ V (t0, x0),

as ε goes to zero as in Proposition 3.1. Notice also that given 0 ≤ t0 ≤ T , the mapping θ0 7−→ Ṽ (t0, θ0) :=
V (t0, x0) and θ0 7−→ Ṽε(t0, θ0) := Vε(t0, x0) (where θ0 := A(x0)) are periodic of period 2π.

Fig. 5.3 depicts the value function V (t0, x0) as a function of t0 ∈ [0, T ] for a fixed value of A(x0) (picture
left) and as a function of A(x0) for a fixed value of t0 ∈ [0, T ]. Fig. 5.3 depicts the convergence of Vε to V
on [t0, T ] for a fixed value of A(x0) (picture left), and the convergence of Vε to V when A(x0) ∈ [0, 2π] for a
fixed value of t0. On this picture the convergence toward the function V is observed whatever are initial t0,
θ0 i.e. for both cases 1 and 2 (although Vε is not the value function of the regularized problem in case 2).

6 Conclusions and Perspectives

We have proposed a regularization scheme for the problem of minimizing a discontinuous functional given
by the characteristic function of a convex set K. Our main result is that an extremal of the regularized
problem converges (up to a sub-sequence) to an extremal of the original problem. This regularization allows
the application of the Pontryagin’s Maximum Principle, without requiring an apriori knowledge of the number
of switching times for the original problem. Several points could deserve further studies. First, it could be
interesting to study the case when K is no longer convex (for instance if K is the union of convex sets),
and to address the question of the finite number of crossing times (to exclude Zeno’s phenomena). One other
objective would be to find a class of controlled systems (such as in [16]) for which we can determine an optimal
feedback control for the time crisis model based on the myopic strategy which consists in minimizing the time
spent outside K and maximizing it outside. These points are out of the scope of the paper.
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Figure 1: Picture left : value function as function of t0 ∈ [0, T ]. Picture right : value function as function of
A(x0) ∈ [0, 2π].

Figure 2: Picture left : convergence of Vε to V for a fixed value of A(x0). Picture right : convergence of Vε to
V for a fixed value of t0.

7 Appendix

In this section, we prove Lemma 4.2 following the proof of Pontryagin’s Principle (see e.g. [8, 19]). Let τ1 ∈
[0, T ] and u1 ∈ U . The extended dynamics f̃ associated to the system is defined by f̃(x, u) := (f(x, u), γ(x))
and the variation vector ṽn = (vn, v

0
n) : [0, T ] → Rn+1 for the regularized problem (TC′εn) as the unique

solution of the Cauchy problem :{
˙̃vn(t) = ∂f̃

∂x (xn(t), un(t))ṽn(t) a.e. t ∈ [0, T ],

ṽn(t1) = f̃(xn(t1), u1)− f̃(xn(t1), un(t1)).

17



We then obtain for a.e. t ∈ [0, T ]: {
v̇n(t) = ∂f

∂x (xn(t), un(t))vn(t),

v̇0n(t) = ∇γ(xn(t)) · vn(t),
(7.1)

together with the initial conditions vn(τ1) = f(xn(τ1), u1) − f(xn(τ1), un(τ1)) and v0n(τ1) = 0 (in fact recall
that f̃n+1 does not depend on the control). Using that xn(·) is uniformly bounded over [0, T ] and the continuity
of f , we easily obtain that the sequence vn(·) is uniformly bounded over [0, T ] by a constant C. Let A ≥ 0 be
such that for all n ∈ N, ‖xn(t)− PK(xn(t))‖ ≤ A for any t ∈ [0, T ].

Let us now prove that v0n(·) is uniformly bounded over [0, T ]. Suppose that t1n is a crossing time for xn(·)
(i.e. xn(t1n) ∈ ∂K) and that t1n → t1 where t1 is the first crossing time for x?(·). As t1 is an isolated crossing
time for x?, we may assume without any loss of generality that xn(t) ∈ K for 0 ≤ t ≤ t1n and xn(t) /∈ K for
t > t1n, t close to t1n. Let t ∈ [t1n, t

1
n + εn]. By integrating the second equation of (7.1) over [t1n, t], we find that:

v0n(t) =
1

εn

∫ t

t1n

e−
‖xn(t)−PK (xn(t))‖2

2εn (xn(t)− PK(xn(t))) · vn(t) dt.

As t ∈ [t1n, t
1
n + εn], we find that |v0n(t)| ≤ AC, and thus v0n(·) is bounded in a neighborhood of the first

crossing time t1 of x?. We prove similarly that vn(·) is bounded near each crossing time of x?. Now, v0n(·) is
also bounded on each compact interval I that does not contain a crossing time for x?. Indeed, given such a
time interval there exists γI > 0 such that for any t ∈ I one has d(xn(t),K) ≥ γI if n is large enough. We

then obtain v̇0n(t) ≤ AC
εn
e−

γ2I
2εn for a.e. t ∈ I if n is large enough, and we obtain the result by integration.

To prove that pn(·) is bounded, we consider the mapping t 7−→ pn(t) · vn(t). By differentiating w.r.t t,
one obtains d

dt (pn(t) · vn(t)) = ∇γ(xn(t)) · vn(t) = v0n(t) for a.e. t ∈ [0, T ]. By integrating and using that
pn(T ) = 0, we find that:

pn(t) · vn(t) = v0n(t)− v0n(T ). (7.2)

As v0n(·) is uniformly bounded over [0, T ], we obtain that the sequence t 7−→ pn(t) · vn(t) is uniformly bounded
over [0, T ].

Now, for t ∈ [0, T ], the Pontryagin’s cone K(t) ⊂ Rn is defined as the smallest cone that contains all
variation vectors v(t) (corresponding to needle-like variations of the control un) for all Lebesgue points 0 <
τ1 < t. Using that (xn(·), pn(·), u(·)) is a normal extremal, Lemma 2.6 of [19] implies that K(t) = Rn for any
t ∈ [0, T ]. We deduce that pn(·) is uniformly bounded. Otherwise, there would exist a sequence of time (t′n)
such that ‖pn(t′n)‖ → +∞. By taking a normalized variation vector that is co-linear to pn(t′n), we would get
a contradiction as the right member of (7.2) is uniformly bounded. This ends the proof.
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