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STABILITY AND VIBRATIONS OF ELASTIC THICK-WALLED CYLINDRICAL AND SPHERICAL SHELLS SUBJECTED TO PRESSURE

Theoretical and experimental studies of the free vibrations and the loss of stability of thick-walled cylindrical and spherical shells subjected to external pressure are presented. General equations for the oscillations of the shell under pressure are formulated on the basis of a rigorous theory of finite elasticity. Loss of stability is determined when the fundamental natural frequency of the prestressed shell ceases to be real-valued. Numerical solutions are obtained by solving the specialized equations that are applicable to neo-Hookean materials. Experiments using specimens made of silicone rubber closely verify the theoretical results.

INTRODUCTION

STABILilY of thin elastic shells subjected to external pressure has been an important engineering problem of long standing. Several theories are now available for predicting the critical pressure and stresses [ 1]. It is known, however, that values of the critical pressure measured experimentally are usually lower than those found from theory. Continuous efforts have been made to explain this discrepancy since the first works of von Karman and Tsien [2,[START_REF] Tsien | A theory for the buckling of thin shells[END_REF].

Energy arguments and the concept of geometrical imperfection have usually been used to study the problem within the context of either linear or non-linear thin shell theories (see Nash [START_REF] Nash | Instability oftbin shells[END_REF]). In recent years various numerical techniques have been developed for shells of revolution [5]. Since in all thin shell theories, linear or non-linear, idealization is made that the thickness of the shell is small compared to its radius of curvature, it has been conjectured that the phenomenon of instability for shells of finite thickness could not be adequately described within the thin shell assumptions. This has led to numerous investigations on the stability of shells of arbitrary thickness. In 1955, Wilkes [START_REF] Wilkes | On the stability of a circular tube under end thrust[END_REF] studied the axial symmetric buckling of an elastic thick-walled tube under uniform end thrust. Thick-walled cylindrical and sphtolrical shells subjected to external pressure were investigated by Lubkin [START_REF] Lubkin | Determination of buckling criteria by minimization of total energy, lnst[END_REF] in 1957. Sensenig [START_REF] Sensenig | Instability of thick elastic shells[END_REF] re-considered thesetwo problems again in 1964. In all these studies, a minimization of energy procedure was used in conjunction with an extended form of Hooke's law for the material. But such an energy approach, as applied to non-linear problems may be considered only approximate in nature [START_REF] >of | The non-linear field theories of mechanics[END_REF].

As far as could be traced, only a few problems which deal with the instability of thickwalled shells are solved on the basis of a rigorous theory of elasticity. Most notable, however, are the recent works of Wesolowski [START_REF] Wesolowski | Stability of an elastic thick-wall spherical shell loaded by an external pressure[END_REF] and Nowinski and Shahinpoor [11]. In the former, a thick-walled spherical shell subjected to an external pressure was analyzed by means of a theory advanced by Green, Rivlin and Shield [START_REF] Green | General theory of small elastic deformation superposed on finite elastic deformlitions[END_REF]. Specifically, the shell undergoes first a finite initial static deformation caused by an external pressure, and is afterwards exposed to a secondary static deformation. Instability of the initially deformed configuration is determined when uniqueness of equilibrium ceases. Such a stability criterion is based on Kirchhoff's uniqueness theorem and is generally referred to as adjacent equilibria or the equilibrium bifurcation. For conservative systems, investigations made by Ziegler [START_REF] Ziegler | On the concept of elastic stability[END_REF], Guo and Urbanowski [START_REF] Guo | Stability of non-conservative systems in the theory of elasticity of finite deformations[END_REF] and others indicate that the equilibrium criterion is synonymous with the kinematical criterion.

In Wesolowski's paper, the secondary deformation of the shell was expressed in a series of spherical harmonics, and the complex equations of equilibrium governing the secondary state of deformation were reduced to a single fourth-order ordinary differential equation. By requiring the vanishing of the surface tractions in the secondary state, the entire problem reduces to one of a boundary-value type. With the help of a finite-difference procedure, explicit results for shells made of rubber-like materials were obtained. These numerical solutions however, are incomplete, in that only a single spherical harmonic (n = 2) was considered. As a result, a singularity was encountered for relatively thin shells, where the critical pressure of the shell is indeterminate. An experiment was also carried out by Wesolowsk~ but the findings were quite remote from his analytical predictions.

Following a similar approach, Nowinski and Shahinpoor [11] studied the buckling of a long thick-walled tube subjected to a uniform radial pressure. In this case, the final boundary-value equations were solved using a Frobenius series. Probably because only two terms of the series were kept in the calculations, their numerical results appeared to over estimate a true solution. In particular, a singularity similar to that encountered in [START_REF] Wesolowski | Stability of an elastic thick-wall spherical shell loaded by an external pressure[END_REF] was also found in the numerical solutions. Despite the unfavorable numerical results reported in these two papers, it is believed that the basic theory employed is essentially rigorous and should yield good solutions.

The present paper is, to some extent, a continuation of the works initiated in [START_REF] Wesolowski | Stability of an elastic thick-wall spherical shell loaded by an external pressure[END_REF] and [11]. However, the formulation of the problems and the scope of the investigation have been more generalized. Specifically, the present work employs the same theory as that presented by Green et al. [START_REF] Green | General theory of small elastic deformation superposed on finite elastic deformlitions[END_REF], but the superposed secondary displacements are now dynamical. We seek the frequencies of free vibrations of the initially deformed shells. The oscillatory characteristics, whether the shell softens or hardens under load, are explicitly determined by the prestressed state of the shell. Instability occurs when the superposed secondary motions cease to be periodic. This approach not only provides a stability criterion, but also the stress state and the vibration behavior of the shell prior to the occurence of instability.

Numerical solutions are obtained for cylindrical and spherical shells made of a rubberlike material which is assumed incompressible (the theory and the method of solution however do not preclude elastic compressible materials). The respective boundary value equations are solved numerically by the method of finite-differences.

An experimental study has also been carried out. The experiments are limited only to specimens having cylindrical geometry, since thick-walled spherical shells were already tested by Wesolowski [START_REF] Wesolowski | Stability of an elastic thick-wall spherical shell loaded by an external pressure[END_REF]. Tubes of various thicknesses were made using a type of silicone rubber, which is quite elastic and virtually incompressible. The uniform radial pressure is applied by subjecting the inner cavity of the tube to a vacuum; but for thicker shells for which the atmospheric pressure is not sufficient to cause instability, the specimen is then placed in a pressurized, transparent chamber, together with the vacuuming accessories. Buckling modes and the corresponding pressure are then compared with those obtained analytically. Good agreement has been reached almost uniformly.

FORMULATION OF THE PROBLEMS

The cylindrical shell

Consider a long, circular cylindrical shell made of perfectly elastic and isotropic material. The inner and outer radii of the shell are denoted respectively by A 1 and A 2 (we follow the notation adopted in [11]). The shell is subjected to a uniform pressure q1 on the interior surface and q 2 on the exterior surface. The pressure differences q = q 2 q 1 produces an axially symmetric deformation with the new inner and the outer radii given by (1) where f.l 1 and f1 2 are constants depending on q and the material property. For simplicity, we assume the material incompressible.'! Hence,

(2)

Let R be the material radial coordinate of the undeformed shelL and r be that of the deformed shell; I, II be the first and the second strain invariants, and W(I, II) be the strain energy density function of the (incompressible) material. The pressure necessary to produce the prescribed deformation is given by [ 1 (Jl~ -J12) J q = ( 4> + 1/1) 2 f1i Jl~ 1 -Ln (f.lti f.l2~. [START_REF] Nash | Instability oftbin shells[END_REF] From equations (2H4) we can determine f.it and f.l 2 for any given q, if a stable axially symmetric deformed state of the shell exists.

We now consider a state of free, infinitesimal vibrations by superposing onto the deformed shell displacements w 1 = u(r, fJ, t), w 2 = rv(r, fJ, t~ w 3 = 0. The equations of motion governing this secondary dynamic displacements are given by

(5) (6) 
where -]The theory does not preclude compressible materials. Formulations for the present problem using Hooke's material are contained in Ref. [15]. and p'(r, 8, t) is an unknown pressure associated with the secondary deformations. In obtaining the above, we have assumed for definiteness that the material is of the neo-Hookean type"! and its strain energy density function has the form

w = C 1 (I-3)
where cl is a material constant.

The incompressibility condition associated with the secondary state (see equation 1.31, Re [ [ 11 ]) yields the relation,

I u u,. + -v,0 + -= 0. (7) 
r r

Equations ( 5), ( 6) and ( 7) govern the unknown functions u, v and p' of the secondary (dynamic) state of the shell. These functions must satisfy the boundary conditions that the secondary surface tractions vanish (see equation 1.33, [11 ]),

4C 1 Q 2 u,. + p' = 0 (8) u,0 + rv,. -v = 0
Equations (5H8) are linear. We seek their steady-state solutions by proposing

i:f.) u(r, 8, t) = I R 1 n(r) cos n8 exp (iwnt) n=O 'X v(r, 8, t) = I R 2 n(r) sin n() exp (iwntl (9) n= 0 X p'(r, 8, t) = I R 3n(r) cos n() exp (iwnt).
n=O Substitution of equation ( 9) into equations (5H7) and the subsequent elimination of the variables R 2 n and R 3 n yield, for each n, the single ordinary differential equation,

~~2-~ R"" + 2 3_t:_z_ + k R'" + [pw?,rz -_!_z_ -~~--5rz -r2j-~l R" n2 In rn2 ln 2Cin2 r2 + k n2r r In [ pw 2 r r 2 -k r r 2 -3k 2kr k -r 2 l + 3 ~_ n_ -2 ------------------------------R' 2Cln2 r3 rz + k n2r3 (rz + k)z r3 In + [ pw?, -pw_?. + __ n_z_---_1_ -_1_ (rz -3k + 3~ -rz)l R = 0 (10) 2Cinz 2CI rz+k rz+k r4 nz In where k = Ai(l -pi).
The corresponding boundary conditions (8) reduce to,

•:•We used in the experiments a neo-Hookean material.

(12)

The spherical shell

In this section, we consider a spherical shell whose undeformed inner and outer radii are again denoted, respectively, by A 1 and A 2 • An internal pressure q 1 and an external pressure q2 are then applied to produce a spherically symmetric deformation with the new inner and outer radii a1 = 11 1 At. and a 2 = 11 2 A 2 • The constants 11 1 and liz are related to the incompressibility of the material by [START_REF] Ziegler | On the concept of elastic stability[END_REF] For a neo-Hookean material, we have (

Thus, for every given q we determine from equations ( 13) and ( 14) the values of 11 1 and 11 2 , if a state of stable radial deformation as prescribed exists.

A secondary dynamic displacement field, w;(r, (), ¢, t1 i = 1, 2, 3, is now superposed onto the initially deformed shell. The equations governing the motions are given by:

4 4 4 1 -2 2 -2 1 -2 Q wl•rr + -(2Q-Q -zQ )wl•r----zQ W1 + ---zQ (wt.oo + W1,ocot() r r r 2 ()) 2 Q-2( () 2 ())
p'.. p + wt>.p.p esc -3 w2,9 + w2 cot + w3 ,q, esc + -2 = -w 1,tt r

C 1 2C 1 (15) -2 2 4 -2 4 4 4 2 -Q Wl•rO + -(2Q-Q -Q )wl•O + Q Wz,rr + -(Q-Q )wz,, + -i r r r x (3Q 4 + Q-2 -4Q)w2 + Q-2 csc 2 ()(w 2,q,.p-W3,o.p) + ;~9 1 = 2 ~1 • Wzm (16) 2 1 -(2Q-Q 4 -Q-2 )w 1 ,q,-Q-2 w 1 ,,q,-2 Q-2 (wz,oq,-w 2 ,q,cot()-w 3 , 99 + wNcot()) r r
where

P = 2Cl(2Q -!Q 4 -2111 1 -t.u1 4 ) -ql
and p'(r, (), ¢, t) is an unknown secondary pressure. The associated incompressibility condition yields (cf. equation 2.12, Ref. [START_REF] Wesolowski | Stability of an elastic thick-wall spherical shell loaded by an external pressure[END_REF]),

1 2 wi•r + 2 (wz,o +esc () w3•4> + 2rwl + cot ewz) = 0. r ( 18 
)
The four equations (15H18) govern the four unknown functions w; and p'. These functions must satisfY the boundary conditions that the secondary surface tractions vanish (cf. equation 3.15, Ref. [START_REF] Wesolowski | Stability of an elastic thick-wall spherical shell loaded by an external pressure[END_REF]),

4C 1 Q 4 w 1., + p' 0 2 w 2 = 0 r (19)
Again, we seek the steady-state solutions to the system of equations (l5H 19). The solutions may be expressed in terms of the spherical harmonic functions

•x 7 WI= L L R 1 .v(r)Y • .(0,¢)exp(iwt) n::::: v v = 1
where the spherical function Y.v satisfies the identity [START_REF] Dettman | Mathematical Methods in Physics and Engineering[END_REF] [ : ; 2 + cotO :o + csc 2 0 0 (; 2 + n(n + t)J Y ... = 0 for every 11, v = 1, 2, 3, .... XJ.

(20) [START_REF] Kraus | Thin Elastic Shells[END_REF] Since the spherical functions constitute a complete set of orthogonal functions in the domain 0::::; 0 ::::; n, 0 : : : : ; _ 4> : : : : ; _ 2n, and the system governed by equations (15}-( 19) is homogeneous, each term in (20} may therefore be considered separately. To simplifY the notation, the indices n and v will be hereafter omitted in all expressions.

By substituting the solutions in (20) into the system of equations ( 15H 19), and by making use of the identity (21), we obtain a set of three simultaneous ordinary differential equations:

4 2 4 _? [pw; 2 _ 2 n(n + I )J Q Rlw + r (4Q-2Q Q -)Rl,r + 2Ct-;zQ r2Q2 ___ Rl [ pw; 2 4 _ 2 J + --+ ---(3Q + Q -4Q) R 2 + R4 = 0 2C 1 r 2 (23) 2 n(n + 1) Rt~r + -;: Rt - ,.z Rz = 0 (24)
with the boundary conditions

4C 1 Q 4 Rp, + R 4 = 0 (25)
It is noted that in deriving the above, the identity that R 2 nv = R 3 nv was used, the proof of which is contained in Ref. [START_REF] Wesolowski | Stability of an elastic thick-wall spherical shell loaded by an external pressure[END_REF].

When the variables R 2 and R 4 are eliminated from the expressions in (22H24), we obtain a single ordinary differential equation governing R 1 ;

R/IU + ~ Q_ 3 R'" + [J!_' }J;. _ n 2 + n + 10 + ~. + ~-=-n 2 -n] R" 1 r 1 2 c 1 Q4 7 2Q3 7 2Q6 1 [ 2pc.o; 16 -4n 2 -4n 20 + 2n 2 + 2n 4n 2 + 4n + 32 2n 2 + 2n 4] + ~-+ + - + ----,~-- c 1 rQ4 r3Q6 r3 r3Q3 r3Q9 x R' + [~w 2 (2-n 2 -n) + lO(n 2 ~-n -----~ + n 4 + 2n 3 + n 2 -n t 2Clr2Q4 r4 !~(2 -n 2 -n) 4(n 2 + n -2)] _ + r4Q3 + r4Q9 R 1 -0. (26) 
The corresponding boundary conditions become,

R ,, 2 R' nz + n 2 R 0 ) + r t + rz t = ' r = at, az ( 27 
Q 4R'" + ~Q(2 + Q3) R" + [pw: 4Q4 + 8~ + ~-nz =.!:-2Q4~: + n)J R' I r I 2C 1 r2 r2 r2Q2 r2 I [ pw; 4Q+ 4Q(n 2 + n -2) 2(2 -n 2 -n) 2Q 4 (n 2 + n)J R _ 0 _ + -C + -3 + 3 + 3Qz - 3 1 -,r-at,az. 1 r r r r r (28) 
SOLUTIONS TO THE PROBLEMS 1. Exact solution for n = 0; pure radial vibrations.

Closed form solutions for the frequency of oscillations corresponding to n = 0 may be obtained by solving the systems (10H12) and (26H28). Thus, for the cylindrical shell, we have

2 4C1 [ 2Ai -k 2A; -k ]/ (A; -k) wo = p (Af -k)z -(A; -k)z Ln Ai -k (29)
and for the spherical shell 'i'

t The breathing mode of vibrations for inhomogeneous thick-walled spherical shells has recently been studied

by Nowinski et at. [START_REF] Nowinski | Radial oscillations of a thick-walled spherical highly stressed nonhomogeneous shell[END_REF]. Equation (30) here compares with Equation 42, Ref. [START_REF] Nowinski | Radial oscillations of a thick-walled spherical highly stressed nonhomogeneous shell[END_REF] when the material is assumed to be neo-Hookean.

w 2 = 4C 1 • 2[a;(ai + k) 4 -a;(a~ + k) 4 ] -[a;(ai + W -ai(a; + k)+Jk 0 6 6( ) p a 1 a 2 a 2 -a 1 ( 30 
)
where k = Ai(l -f.li) in equation ( 29) and k = Ai(l -f.li) in equation (30). Physically, n = 0 corresponds to pure radial oscillations about the finitely deformed shell. If the shells are subjected to a net inward pressure, i.e. q > 0, it can be shown from ( 29) and (30) that w 0 remains positive and is monotonically increasing with q. Theoretically, if confined in a pure radial mode, the system hardens under a net inward pressure, and instability of the shell will not occur.

On the other hand, if the net pressure is outward, i.e. q < 0, the shells are softening with increasing pressure and w 0 varies from being real to imaginary. The latter occurs in the case of the cylindrical shell,t when

(31)
and in the case of the spherical shell when q attains a maximum value, qmax' which may be calculated from equation [START_REF] Guo | Stability of non-conservative systems in the theory of elasticity of finite deformations[END_REF]. In both cases, as q ---+ qmax the shells fail without bound in a mode of radial expansion.

If the primary deformation of the shells is infinitesimal, i.e. q ~ 0, then f-1 1 , f-1 2 ---+ I and k ---+ 0. From equations ( 29) and (30) we obtain, respectively.

2 4CdA~ -Af) Wo = pAfA~ Ln(Az/..4 1) (32) 
which is the classical result of small radial oscillations for cylindrical shells (see, [START_REF] Knowles | On a class of oscillations in the finite deformation theory of elasticity[END_REF], equation 37), and

2 8C 1 Ai+A 1 A 2 +A; OJ = ----'--------o.---'---"-o------"' o p Ai + A; ( 33 
)
which is the classical result of pure radial oscillations for spherical shells (see [START_REF] Wang | Large amplitude oscillations of laminated thick-walled spherical shells using Galerkin's method[END_REF], equation 32).

Finite-difference solutions for n ~ 1: asymmetric vibrations

For n ~ 1, the system of equations (10H12) for the cylindrical shell, and (26H28) for the spherical shell are first non-dimensionalized and then written in finite-difference form. In both problems, a central-difference method is used. The thickness of the shells (the range of the variable r) is divided into N equal parts, and each of the two sets of equations is rewritten into a system of(N + 1) homogneous algebraic equations in the (N + 1) unknown nodal functions of R 1 (r). For non-trivial solutions of these nodal functions we require the vanishing of the respective characteristic determinant. Hence, for each integer n we obtain a transcendental equation relating the frequency of the vibrations, wn, and the deformation parameter k. Note that k is associated with f-1 1 and is convertible to the pressure q via equation (4) for the cylindrical shell, and ( 14) for the spherical shell.

Computational procedure and the determination of instability

It is noted that, if instability is not considered, the value of f-1 1 will vary from I to oo as q increases outwardly; from 1 to 0 as q increases inwardly. Thus, in the numerical calculation, we determine from the (wn, k)-equation the fundamental frequency wn for any given k, or any J.1. 1 with 0 ~ J.1. 1 ~ oo. We seek the range of J.1. 1 in which w; is positive real. In this range of J.ll' the strained shell (characterized by J.1. 1 ) will be oscillatory in the mode corresponding ton.

Outside this range w; will be non-positive, and the system will not be oscillatory. In particular, if w; is negative, the system will then deform without bound according to the solutions [START_REF] >of | The non-linear field theories of mechanics[END_REF] or [START_REF] Rayleigh | The Theory of Sound[END_REF]. Thus, we define the critical deformation, (J.1. 1 )c,., as the one which corresponds to the vanishing ol w;. The pressure q associated with (J.1. 1 )cr is defined as the critical pressure, under which the shell fails in the mode corresponding ton. Clearly, qcr is dependent upon the value of n; the shell fails first, however, in the mode which yields the smallest qcr•

Some remarks on the convergence of solutions

In examining the convergence of the solution scheme, we compute for each given shell, for each given nand for each given J.1. 1 < (J.l 1 )cr the frequency of oscillation wn as a function of the nodal number N. We then examine whether or not the solution approaches an asymptote as N increases in value.t Figure 1 shows the convergence nature of the critical deformation as plotted against N. Generally speaking, thicker shells require more nodal points for the same degree of convergence as thinner shells and the solutions converge faster for higher harmonics than for lower harmonics. It is also interesting to note that the solution for the cylindrical shell approaches its asymptote from above while that for the spherical shell approaches from below.

"I The computations were found to be quite sensitive numerically. Scattering of solutions occurred when only eight significant digits were used; but the situation was corrected by doubling the precision to 16 digits. For details, see [15].

Vibrations about the undeformed state

When the applied pressure q is small, the shell is virtually unstrained and the free vibrations of such a shell reduces to a classical problem. In fact, for thin shells, classical results may be readily found in the texts of Rayleigh [START_REF] Rayleigh | The Theory of Sound[END_REF] and Kraus [START_REF] Kraus | Thin Elastic Shells[END_REF] both of whom used an energy approach to determine the natural frequencies of the shells. In the present study, we can calculate the frequencies for shells of arbitrary thickness by letting p. 1 -+ l. The following Table illustrates the differences between the present solutions and the classical solutions:

n=2 =3 =4 TABLE I Cylindrical Spherical Present iii= G-235 = G-610 = 1•15 Rayleigh [20) Present Kraus [21] 0•252 0•624 1•50 1•69 1•36 1•90 2•21
where w is the non-dimensionalized frequency (by a factor of[3pA il E]t, E being the Young's modulus of the material). The thickness of both shells is A 1 / A 2 = 0•85. It is seen that the present solutions are uniformly lower than the classical solutions. This is more so in the higher harmonics.

Vibrations about the finitely deformed state

When the applied pressure q is finite, then the shells will be finitely strained. But the behavior of the shell depends profoundly on the initial loading characteristics.

When the net pressure is outward, the lowest frequency of vibration is a function of the initial state of strain. Figure 2 shows for a cylindrical shell having A 1 / A 2 = 0•8 the frequencies corresponding to n = 0, t and 2. It is seen that for small initial deformation the lowest (flexural) mode of vibration is n = 2; the behavior of the shell is of a hardening nature.

But as q increases, the lowest frequency corresponds to the breathing mode. The shell fails in excessive inflation at a limiting pressure qmax calculated from equation (31). For the mode n = 0, the shell behaves as a softening system. A similar character is shown in Fig. 3 for spherical shells.

In both the cylindrical and spherical shells the mode corresponding to n = 1 is not the lowest. Physically, n = 1 represents a radial breathing coupled with a rigid body motion.

The rigid body motion has a stiffening effect on the breathing mode since it is seen that the frequency corresponding ton = 1 under any pressure is always higher than that corresponding ton= 0.

When the net pressure is inward the behavior of the shells is reversed; the hardening effect is now associated with the breathing mode (n = 0, 1) while the softening effect corresponds to the flexural mode, n ~ 2. It is seen however, throughout the compression regime and for any thickness of the shell, that n = 2 gives the lowest frequency for all cylindrical shells. Figure 4a illustrates this point for a shell having A 1 /A 2 = 0•85, while Figure 4b shows the effect of the thickness on the frequency (for n = 2).

In the case oft he spherical shells, n = 2 does not always give the lowest frequency. Figure Sa shows the frequencies corresponding ton = 2, 3 and 4 for a spherical shell of

A 1 / A 2 = 0•8.
It is seen that n = 2 is the lowest mode only when the deformation is small. As the pressure -----W VS.J.i-1
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Frequencies and pressure vs. deformation for a cylindrical shell.

A 1 /A~;0•80 -J.i-1 vs. w ---fi-t vs. q I I I I increases n = 3 eventually takes over as the lowest mode until the shell fails by instability. Figure 5b is for a thinner shell, A 1 /A 2 = 0•85. Again, n = 2 governs the fundamental mode when q is small: as q increases, n = 3 takes over and eventually n = 4 is the lowest until the shell fails by instability. Thus, thinner shells fail in a mode of higher harmonics. Calculations have been made for 6). Such wave number dependent character for thin spherical shells has been discussed by Fliigge [START_REF] Flugge | Stresses in Shells[END_REF] and others. Recently, Long [START_REF] Long | Vibration of a radially loaded spherical shell[END_REF] has studied the stability of thin spherical shells under uniform external pressure for Hookean materials, and has found a similar behavior.
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A 1 /A 2 = 0•3, 0-4, 0•5, 0•6, 0•7, 0•8,

Instability due to inward pressure

Having determined the loss of stability of shells of any thickness under inward pressure, we now present some explicit results. For comparison, we first illustrate the results using the graphs shown in Refs. [START_REF] Wesolowski | Stability of an elastic thick-wall spherical shell loaded by an external pressure[END_REF] and [11]. Figure 6a shows the deformation parameter /1 2 = aiA 2 at instability as plotted against the thickness parameter for the cylindrical shells. It is seen that a shell of any thickness will collapse in an oval shape (n = 2). The dotted lines are results reported in [I 1]. Figure 6b shows a similar graph for the spherical shells. Here, it is seen that for A 1 / A 2 up to 0•7, n = 2 governs the failure mode. As the shell becomes thinner, higher harmonics govern. An envelope of failure is thus formed. The earlier results reported by Wesolowski correspond to the curve labelled by n = 2. When A 1 / A 2 increases beyond 0•85, Wesolowski encountered what he termed the singularity of the solution. Actually, the shell will never fail in the mode ofn = 2 if the shell has its A 1 /A 2 ratio larger than 0•7. The isolated points in Fig. 6b are the experimental data reported in [START_REF] Wesolowski | Stability of an elastic thick-wall spherical shell loaded by an external pressure[END_REF]. Excepting for one point, the present results agree well with the experiments.

Figures 7a and7b show the critical (lowest) pressure as plotted against the thickness of the shell. Figure 7a shows the pressure-thickness relation for cylindrical shells; the isolated points are obtained by experiments carried out in this study. In Fig. 7b, the same is shown for spherical shells. The dotted lines in both figures represent the classical thin shell solution, which may be calculated by the simple formula,

( ) -16C [Az -A1]3 ( ) -32C [Az -Al]z (34) qcr c.v- 1 Az + A 1 ' qcr sp - 1 Az + A 1 EXPERIMENTAL STUDY
Since in our analysis no simplifying assumption was made with regard to the magnitude of deformation, the thickness of the shells or the linearity of the material (the only assumptions are isotropy, homogeneity and incompressibility), we used in the experiments a rubber-like material which is capable of sustaining large elastic deformations and is materially non-linearJ To establish the constitutive equation of such a material, we examined first the incompressible nature of the rubber by performing uniaxial tension tests on four coupons, each of which was subjected to more than 350 per cent elongation without failure. All specimens were observed to return to their original length immediately after the load was removed. We assumed next that the material is of the neo-Hookean type. This assumption was confirmed by the tension tests, that the neo-Hookean model holds good within 200 per cent elongation. In addition, we manufactured cylindrical tubes of various thicknesses and tested them under triaxial stress conditions. Again, the neo-Hookean model represented the material behavior well in all stress levels before instability occurred in each case.

In the buckling tests of the cylindrical shells twelve specimens were examined. Each of these specimens had a length of at least 10 times the inner diameter of the tube, so that the end effects will be minimum at the center of the specimen. Uniform external pressure was supplied by subjecting the inner cavity of the tube to a vacuum, and the pressure difference between the inside and the outside was monitored by pressure gages. For thick shells with A 1 / A 2 ,::; 0•5, it was necessary to place the specimen in a transparent, high-pressure chamber and to apply additional pressure on the outside of the shell.

The specimens, under slowly increasing pressure, were first observed to undergo considerable concentric deformation. Then suddenly, the crosssection of the specimen became eccentric to resemble an oval shape (n = 2). Beyond this point, the pressure reading remained essentially constant while the specimen continued to register additional deformation: increasing on one diameter and decreasing on the other, the two diametral axes being approximately orthogonal. The final failure pressure for the shell was determined by the well-known Southwell plots (see Timoshenko and Gere [24]). Details of the experiments and other aspects of the present work are contained in Ref. [15].

In conclusion, it may be remarked that, in view of the close agreement between the theory and the experiments, the fundamental theory [START_REF] Green | General theory of small elastic deformation superposed on finite elastic deformlitions[END_REF] is applicable to the present problem and the criterion for the loss of stability is accurate. In addition, the numerical solution method adapted in the present work also provided reliable information. It should be mentioned, however, that since none of the specimens tested had a thickness-to-radius ratio smaller than w-1 , they must all be classified as being moderately thick or thick-walledshells. The pressure necessary to buckle a shell is approximately proportional to the thickness squared in the case of spherical shells, and to the thickness cubed in the case of cylindrical shells. Thus, for relatively thin shells (say t/R is of the order of 10-2 ), the buckling pressure is extremely small; the effects of geometrical or material imperfections may, therefore, become significant in comparison with the buckling pressure. These effects are negligible in the case of moderately thick or thick-walled shells. This may also help to explain why the present experimental results are so close to those predicted by theory.

Gleichungen geliist werden, die fiir neo-Hookesche Materialien anwendbar sind. Experimente an Gummimodellen bestatigen die theoretischen Ergebnisse. 

  2aw ;a1, 1/1 = 2aw;an If W(I, II) is a linear function ofl and II, then 4> and ljJ become constant and equation (3) reduces to
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 1 FIG. 1. Convergence of the finite-difference Solutions: (a, b) critical deformation vs. the pivotal number N for cylindrical shells; (c, d) critical deformation vs. the pivotal number N for spherical shells.
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 34 FIG.3. Frequencies and pressure vs. deformation for a spherical shell.

  0•85, 0•9, 0•95. Approximately, for shells of A JA 2 up to 0•7, n = 2 governs the failure mode; between 0•7 and 0•82, n = 3 governs: between 0•82 and 0•86, n = 4 governs: between 0•86 and 0•89 n = 5 governs; at 0•90 n = 6 or 7 governs; at 0•95 n ?;: 11 governs (see Fig.
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 5 FIG. 5. Frequencies vs. deformation for spherical shells: (a) A 1 /A 1 = 0•8: (b) A 1 /A 2 = 0•85.
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 67 FIG. 7. Critical pressure vs. thickness of the shells: (a) cylindrical shells: (b) spherical shells.

  ycTOH'IlfBOCTII TOJICTOCT8HHhiX l\IIJIIIH)l;pi1'18CRIIX II ciflepli'I8CRIIX OOOJIO'IeR rro)l; ]l;eilcTnneM BHeniHero )];3BJieHnR. CocTaBJIRIOTCR o6mne ypaBHeHnR ROJie6aHnil o6oJIO'IRII Ha OCHOBe CTpOrOil TeOp11I1 yrrpyrOCTll )l;JIR ROHe'IHbiX rrepeMemeHllil. IloTepR YCTOil'II1BOCTI1 Orrpe-)];8JIR8TCR ROr)l;a OCHOBH3R '13CTOT3 COOCTB8HHhiX ROJI803HIIH rrpe)l;B3p11T8JibHO HarpymeHHOil OOOJIO'!Rll CT3HOBI1TCR HepeaJibHOil. qi1CJI8HHhl8 pemeHIIR IIOJIH'I8Hbl rryTeM perneHHR CII8l\113JII13I!p0-B3HHhiX yrrpanHeHnil rrpnMeHHMhiX )l;JIR MaTepnaJIOB TpeJIJioapa.

t This limit was first found by Knowles[START_REF] Knowles | On a class of oscillations in the finite deformation theory of elasticity[END_REF] for radial oscillations of a tube.

•j• Silastic RTV Rubber, a product of the Dow Coming Corp., Midland, Michigan.
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