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Non-linear vibrations of shells: A literature review from 2003 to 2013

Farbod Alijani, Marco Amabili
Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Canada H3A 0C3

The present literature review focuses on geometrically non linear free and 
forced vibrations of shells made of traditional and advanced materials. Flat 
and imperfect plates and membranes are excluded. Closed shells and 
curved panels made of isotropic, laminated composite, piezoelectric, 
functionally graded and hyperelastic materials are reviewed and great 
attention is given to non linear vibrations of shells subjected to normal and 
in plane excitations. Theoretical, numerical and experimental studies 
dealing with particular dynamical problems involving parametric 
vibrations, stability, dynamic buckling, non stationary vibrations and 
chaotic vibrations are also addressed. Moreover, several original aspects of 
non linear vibrations of shells and panels, including (i) fluid structure 
interactions, (ii) geometric imperfections, (iii) effect of geometry and 
boundary conditions, (iv) thermal loads, (v) electrical loads and (vi) reduced 
order models and their accuracy including perturbation techniques, proper 
orthogonal decomposition, non linear normal modes and meshless 
methods are reviewed in depth.
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and engineering, along with the increasing demand to produce light
weight structures, has led to the use of advanced materials (laminated
composites and functionally graded materials (FGMs)) in designing
shell structures. Among diverse fields of application, aerospace and
aeronautical applications are particularly challenging as they involve
fluid structure interactions and the use of new materials with less
known properties. Therefore, models should be developed that take
into account non linear effects, such as large structural deflections,
and predictions of the structural responses to large amplitude
excitations.

In case of linear vibrations of closed (circumferentially complete)
circular cylindrical shells subjected to radial periodic excitations, the
mode shape of the shell is a standing wave directly excited by the
external excitation, which presents a number n of nodal diameters.
This is known as the driven mode. For large amplitude vibrations of
shells there is an intrinsic one to one internal resonance between
the driven mode and the orthogonal mode having the same shape

and natural frequency as the driven mode, but rotated by π⧸2n,
known as the companion mode. This mode interaction yields a
traveling wave response in the circumferential direction of the shell
that appears even for vibration amplitudes smaller than the shell
thickness. In fact, the presence of a traveling wave response near
resonance has a fundamental difference with respect to linear
vibrations. Another important feature of closed circular cylindrical
shells in large amplitude vibrations is the dynamic axisymmetric
contraction, which has been addressed both theoretically and
experimentally. In particular, during large amplitude vibrations,
the shell presents an inward axisymmetric dynamic contraction
with twice the excitation frequency to guarantee the in plane
quasi inextensibility of the shell. Without this axisymmetric con
traction, the shell would increase its length along the circumference
significantly, which is against shell mechanics. In fact, shells bend
more easily than they stretch.

Shell structures subjected to in plane loads lose stability and buckle
after a certain threshold. In fact, in the presence of static in plane
loads, instability occurs through pitchfork bifurcation, whereas in the
case of periodic in plane loads the so called parametric instability
occurs through period doubling bifurcation in the frequency neighbor
hood of twice the natural frequencies of the bending mode. In the
latter case, and in contrast with non linear vibrations of shells due to
radial harmonic excitation, the instability may arise even for small
excitation amplitudes and much below the static buckling load.

Shell structures that are coupled to a liquid have lower natural
frequencies as a consequence of the added virtual mass of the
liquid itself. In closed circular cylindrical shells, the effect of added
virtual mass is lower for the asymmetric modes than for axisym
metric modes. Therefore, the non linearity displayed by thin
closed circular shells is enhanced by the presence of dense fluid.
Moreover, circular cylindrical shells supported or clamped at both
ends and conveying liquid lose stability via divergence, which is a
static pitchfork bifurcation of the equilibrium, when the flow
speed reaches a critical value. The divergence is strongly subcri
tical, becoming supercritical for high flow velocities. In this case,
the system has two or more stable solutions related to divergence
much before pitchfork bifurcation occurs. In other words, if the
shell is perturbed from the initial configuration, it may have severe
deformations resulting in failure much below the critical velocity
that can be predicted by linear analysis.
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using bifurcation diagrams, Poincaré maps, phase plane plots, time
responses and spectra, Lyapunov exponents, Lyapunov spectrum
and fractal dimensions.

In contrast with closed circular cylindrical shells, curved panels
(i.e. open shells, with single and double curvature) do not always
exhibit an internal resonance, unless for a specific shallowness and
thickness ratios, and do not have axisymmetric dynamic contrac
tion. The peculiar aspects of panels that make the non linear
analysis of these structures interesting are their asymmetric
nature of oscillation with respect to the initial un deformed
middle surface, the softening non linear behavior that turns into
hardening for large amplitude vibrations and the diverse internal
resonance conditions that may occur for different geometries.

The present paper aims to review the existing literature on non
linear vibrations of shell structures from 2003 to 2013. Flat and
imperfect plates and membranes are excluded. Literature reviews of
the earlier works on large amplitude vibrations of shells before
2003 include those of Leissa [1], Evensen [2], Kubenko and
Koval'chuk [3,4], Amabili and Païdoussis [5] and Moussaoui and
Benamar [6]. In fact, an extensive literature review until 2003 on
the non linear dynamics of shells in vacuo, filled with or surrounded
by quiescent and flowing fluids, has been provided in Ref. [5] and
will not be repeated here. However, to elaborate the new research
carried out on non linear vibrations of shell type structures, it is
necessary to refer to some fundamental references, briefly. The
monograph of Amabili [7] has also provided a literature review on
non linear vibrations and dynamic stability of shells till 2008 and
has shown that many questions in this area still remain unan
swered. Therefore, the present literature review focuses on geome
trically non linear free and forced vibrations of closed and open
shells made from traditional and advanced materials with and
without fluid structure interaction. Studies dealing with particular
dynamical problems involving parametric vibrations, stability,
dynamic buckling, non stationary vibrations and chaotic vibrations
are profoundly addressed. Moreover, several original aspects of
non linear vibrations of shells and panels, including geometric
imperfections, effect of geometry and boundary conditions, thermal
loads, electrical loads and reduced order models including pertur
bation techniques, proper orthogonal decomposition, non linear
normal modes, natural modes and meshless methods, are fully
reviewed. Works dealing with experiments are also discussed.

The reviews are generally organized chronologically, according
to the publication date, and are structured as follows: non linear
theories of shell structures are discussed in Section 2. In Section 3,
non linear vibrations of circumferentially complete shells are
given. In order to better elaborate the review, Section 3 has been
divided into four subsections depending on the type of loads
applied on the shell. In particular, in Section 3.1, free and forced
vibrations of closed isotropic shells due to radial harmonic excita
tion are studied; in Section 3.2, dynamics and stability of closed
shells subjected to axial loads are discussed, and in Section 3.3 the
existing literature of shells conveying fluid are given. Section 3.3
has been divided into two subsections, Section 3.3.1 deals with
dynamical problems of shells filled with still fluid and Section
3.3.2 discusses the stability and dynamics of shells subjected to
flowing fluid. In Section 3.4, papers dealing with non linear
vibrations of closed isotropic shells subjected to non stationary,
thermal and electrical forces are reviewed.

In Section 4, non linear free and forced vibrations of curved
panels are discussed. Depending on the geometry of the panel, this
section has been divided into 2 subsections: Section 4.1 discusses
cylindrical and doubly curved panels and Section 4.2 discusses
spherical caps and panels of other geometries including conical
and ellipsoidal shapes.

Non linear vibrations of shells made of advanced materials are
discussed in Sections 5 and 6. In particular, sandwich and

1. Introduction

Shell structures are used in aircraft, spacecraft, rockets, cars,
computers, submarines, boats, storage tanks and the roofs of buildings.
In the last decade, the continuous development of material science

Shell structures generally do not follow a certain scenario to 
become chaotic, since the routes to chaos depend on all system 
parameters. These complex behaviors are usually analyzed

2



laminated composite shells, panels and fluid structure interaction
in composite shells are reviewed in Sections 5.1, 5.2 and 5.3,
respectively, and literature on non linear vibrations of FGM shells
and panels can be found in Sections 6.1 and 6.2, respectively.
Section 7 is dedicated to non linear vibrations of hyperelastic
shells and, finally, papers dealing with experiments are listed in
Section 8.

2. Non-linear theories of shells

The classical theories of non linear shell mechanics, suitable for
thin shells, include those of Donnell [8], Novozhilov [9], Sanders
[10], Koiter [11] and Flügge Lur'e Byrne [12] that are all based on
the Kirchhoff Love hypotheses. In particular, Donnell's non linear
shallow shell theory neglects in plane inertia and gives accurate
results only for very thin shells. In this theory, in plane displace
ments are infinitesimal, while the transverse displacement is of
the order of shell thickness. Moreover, the non linear terms are
retained only in the transverse displacement (the von Kármán
type non linear terms, in analogy to the treatment of plates);
however, other effects, such as the non linearities involving in
plane displacements, are neglected. The Donnell theory, without
the shallow shell hypothesis, retains in plane inertia and is more
accurate than Donnell's non linear shallow shell theory; however,
it still keeps non linear terms of only the von Kármán type. The
Sanders theory is a more refined non linear shell theory devel
oped by Sanders [10] originally in tensorial form. The same theory
was also derived independently by Koiter [11] around the same
period, leading to the designation of this theory as the Sanders
Koiter non linear shell theory. This theory is suitable for finite
deformations with small strain and moderately small rotations.
Therefore, in the Sanders Koiter theory the in plane displace
ments are not infinitesimal, and in the strain displacement rela
tions, non linear terms that depend on both in plane and
transverse displacements exist. In both the Donnell and the
Sanders Koiter theories the changes of curvature and torsion of
the middle surface are assumed to be linear. Moreover, the
Sanders Koiter theory gives accurate results for vibration ampli
tudes significantly larger than the shell thickness, whereas Don
nell's theory is accurate only for very thin shells and modes of high
circumferential wave number.

The general non linear theories of shells developed by Novoz
hilov [9] and the Flügge Lur'e Byrne theory [12] are very similar
and only differ in terms of change in curvature and torsion. In both
of these theories, non linearities can be retained in changes in
curvature and torsion [7]. Moreover, the thinness assumption is
delayed in the derivations of both theories and the strain
displacement relations include non linearities in both transverse
and in plane displacements. All of these classical theories are
obtained by neglecting transverse shear deformation and rotary
inertia, and thus, can give inaccurate results for moderately thick
or laminated anisotropic shells. In order to overcome this limita
tion, shear deformation theories have been introduced. These
theories can be classified as the first order and higher order shear
deformation theories; in the first category, a shear correction
factor is required for the equilibrium since a uniform shear strain
is assumed through the shell thickness. Higher order shear defor
mation theories overcome this limitation since a realistic shear
stress distribution through the shell thickness is assumed, which
also satisfies the condition of zero shear stresses at both the top
and bottom shell surfaces. These theories have been completely
discussed in the books of Amabili [7], Reddy [13] and Carrera et al.
[14]. Moreover, linear shear deformable and zigzag (layer wise
constant shear angle) theories have been profoundly reviewed by
Carrera [15,16] and Reddy and Arciniega [17].

The non linear first order shear deformation theory was pri
marily proposed by Reddy and Chandrashekhara [18] and was
based on Sanders Koiter non linear terms. Five independent
variables three displacements and two rotations were used
to describe the shell deformations. Non linear first order shear
deformation theory of shells based on von Kármán type non
linear terms and its finite element formulations is also given in the
study by Reddy [13]. Librescu [19] developed a non linear shell
theory by expanding the shell displacements with cubic terms in
the transverse coordinate. Dennis and Palazotto [20] and Palazotto
and Dennis [21] extended Reddy's linear higher order shear
deformation shell theory to non linear deformation by introducing
the von Kármán type non linear terms. The non linear higher
order shell theory of sandwich anisotropic shells with transversely
compressible core was developed by Hohe and Librescu [22].
In their theory, the Kirchhoff Love hypotheses were adopted for
the face sheets and a second/ third order power series expansion
was considered for the core displacements. Chaudhuri [23] pro
posed a non linear zigzag theory for the non linear finite element
analysis of doubly curved shells by considering the full non linear
strain displacement relations for the five independent variables of
the shell. Amabili and Reddy [24] developed a new theory for
closed and open shells that, in contrast with previous non linear
shell theories, was derived with consistency retaining rotary
inertia, shear deformation and non linearities in both in plane
and transverse displacements. The new theory has shown super
iorities over the existing non linear shear deformation theories in
predicting large amplitude vibrations of deep and moderately
thick laminated circular cylindrical shells [25] and curved panels
[26]. Recently, Amabili [27] extended the theory of [24] by adding
the thickness stretching effect and taking into account the geo
metric imperfections. In this new theory, six independent vari
ables were used to describe shell deformation. In particular, in [27]
a uniform transverse normal strain is assumed through the shell
thickness. This theory has been extended to third order transverse
normal strain by Amabili [28]. The advantages of shell theories
retaining transverse normal stress and strain are using the full
three dimensional constitutive equations and they are particularly
suitable for soft materials, like rubbers and biological materials,
where very large deformations are achieved and accompanied by
large thickness reduction. Parisch [29] and Sansour [30] developed
independently shell theories that introduce quadratic assumption
of shell displacement over shell thickness. Moreover, an accurate
linear shell theory that takes into account the thickness variation
was developed by Carrera et al. [31] and Ferreira et al. [32]. Tensor
based geometrically non linear theories of shells are quite abun
dant in the literature [33 45]. Eremeyev and Pietraszkiewicz [33]
developed a general non linear theory for shells taking into
account the phase transitions of materials. In their theory shell
displacements were expressed by work averaged translations and
rotations of the shell cross sections. Moreover, all shell relations
were found from the variational principle of the stationary
potential energy. Opoka and Pietraszkiewicz [34] consistently
obtained a complete boundary value problem for the non linear
theory of thin elastic shells expressed thoroughly in terms of stress
resultants and bending of the shell reference surface. Arciniega
and Reddy [35] developed an improved first order shear deforma
tion theory with seven independent variables under the Lagran
gian framework and presented the finite element formulations
that could be used to study the non linear analysis of a broad
range of shell geometries made of different types of materials
including isotropic, laminated composite and FGMs. Opoka and
Pietraszkiewicz [36] modified their previous work [34] by for
mulating a new version of the Lagrangian theory of thin shells in
terms of displacements of the reference surface and based on the
principle of virtual work. Berdichevsky [37] proposed a non linear
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theory for sandwich shells based on the asymptotic variational
method. Shen et al. [38] developed a modified Koiter shell theory
and discussed the role of metric and curvature tensors in con
structing non linear elastic shell models of the Koiter type.
Pietraszkiewicz [39] reviewed some equivalent expressions of
the bending tensor in the non linear shell theory and indicated
that the one proposed by Shen et al. [38] was not exact. The Koiter
shell theory has also been discussed from the perspective of non
linear three dimensional elasticity by Steigmann [40].

Non linear shell theories that were proposed using the Cosserat
continuum can be found in Refs. [41 45]. The basic idea of this
variant of continuum mechanics model is the independence of
translations and rotations, and therefore by analogy the indepen
dence of forces and moments. The non linear theory of micropolar
shells has been given in Ref. [41], and the local symmetry group for
the dynamical exact theory of shells is established in Ref. [42].
A short review of Cosserat theories for shell structures was carried
out by Altenbach et al. [44], and the non linear shell theory in
nanoscale was presented by Altenbach and Ermeyev [45]. Moreover,
the non linear strain gradient theory of shells was presented by
Lazopoulos and Lazopoulos [46].

3. Non-linear vibrations of closed isotropic shells

This section is divided into four parts, depending on the type of
excitation: (i) free and forced vibrations of shells due to radial
excitation; (ii) dynamics and stability of shells subjected to axial
loads; (iii) fluid shell interaction; and (iv) forced vibrations of
shells subjected to other types of loading conditions.

3.1. Free and forced vibrations of shells due to radial excitation

The history of thin circular cylindrical shells subjected to large
amplitude excitations and discussions made by different researchers
on the softening nature of the response has been well explained in the
review paper of Amabili and Païdoussis [5]. However, it is worth
having a brief review on how the correct behavior of shells can be
numerically modeled. In fact, to accurately predict the large amplitude
behavior of circular cylindrical shells, the mode shapes should be
expanded by sufficient asymmetric and axisymmetric modes. The
original idea of mode expansions of shell flexural displacement
involving the driven and companion modes plus an axisymmetric
term is attributed to Evensen [2,47,48], Dowell and Ventres [49] and
Atluri [50]. In particular, the axisymmetric term considered by Evensen
was a squared sine in the axial coordinate with the amplitude related
to the amplitude of linear terms in order to satisfy the continuity
of the shell circumferential displacement, while Refs. [49,50] only
considered the first axisymmetric mode of linear vibrations in order to
satisfy exactly the out of plane boundary conditions and the in plane
boundary conditions on average. Although the effect of adding an
axisymmetric term in the mode expansionwas found to be significant,
discrepancies still existed between theory and experiments since
experimental observations of Evensen [51] and Olson [52] illustrated
softening type non linearity whereas the numerical results of Dowell
and Venters [49] and Atluri [50] predicted hardening non linearity.
Varadan et al. [53] showed that the hardening type results obtained in
Refs. [49,50] are due to the choice of the axisymmetric term. Amabili
[54,55] elaborated the effect of axisymmetric terms and showed that
in order to correctly predict the softening behavior of circular
cylindrical shells, at least the first two axisymmetric modes (axisym
metric modes with an even number of longitudinal half waves do not
give any contribution) should be retained in the mode expansion in
addition to the driven and companion modes.

In 2003, Amabili [56,57] extended his previous works on non
linear forced vibrations of simply supported circular cylindrical

shells subjected to concentrated harmonic force. In particular, in
Ref. [56], Donnell's non linear shallow shell theory was used and
the non linear frequency response curves were obtained using
the Galerkin method considering several expansions, including 16
or more natural modes of the shell that included sufficient
asymmetric and axisymmetric modes. Moreover, a code based
on the arc length continuation technique was utilized to perform
bifurcation analysis. Several interesting non linear phenomena
were observed including softening type non linearity, different
types of traveling wave response, amplitude modulated response
and modal interactions. In order to validate the numerical simula
tions and to understand the physical behavior of the shell,
experiments were also carried out following a stepped sine
technique and by spanning the excitation frequency up and down
in very small increments in the frequency neighborhood of the
shell's fundamental frequency. In the experimental tests the
response of the shell was measured by using two accelerometers
and the excitation was provided by an electrodynamic exciter
connected to the shell by a stinger glued in a position close to the
middle of the shell. The time responses were measured using a
Difa Scadas II front end connected to a workstation with the
software CADA X of LMS for signal processing. The same front
end was used to generate the excitation and its closed loop control
was used to keep the value of the excitation force constant for any
excitation frequency, during the measurements of non linear
response.

Amabili [57] compared the numerical results obtained from
Donnell's non linear theory (with and without in plane inertia)
with Sanders Koiter, Flügge Lur'e Byrne and Novozhilov's theories
following a Lagrangian approach. Different expansions involving
14 48 generalized coordinates, associated with natural modes of
simply supported shells, were used and it was shown that the
results from Sanders Koiter, Flügge Lur'e Byrne and Novozhilov are
practically coincident. Moreover, a small difference was observed
between the previous three theories and Donnell's theory with in
plane inertia. On the other hand, Donnell's non linear shallow shell
theory proved to be the least accurate among the five theories
compared. Comparisons between these theories in predicting the
non linear response of a circular cylindrical shell are shown in
Fig. 1.

The internal resonances of undamped and unloaded circular
cylindrical shells were investigated by Popov [58,59] by means of
Hamiltonian dynamics. The analysis was based on Donnell's shell
theory and the Rayleigh Ritz technique was used to discretize the
equations of motion and to study non linear systems that had two and
three degrees of freedom, respectively. Avramov [60] and Avramov
et al. [61] used the method of multiple scales to study the forced
vibrations of circular cylindrical shells with two internal resonances
and found hardening behavior for standing and traveling wave
responses of the shell. They used Donnell's non linear theory and an
expansion for the transverse displacement that consisted of only the
fundamental driven and companion modes plus an axisymmetric
term in the form of a squared sine in the axial coordinate. In fact, the
source of the reported hardening non linearity could be due to the
inappropriate expansions considered for the flexural displacement.

To study non linear forced vibrations of simply supported shells,
Gonçalves et al. [62] presented a low dimensional model, combining
a perturbation technique with the proper orthogonal decomposition
(POD) method. In their analysis, the POD method was used to
investigate the relative importance of each mode obtained by the
perturbation solution on the non linear response and the total
energy of the system. Touzé et al. [63] used the non linear normal
modes method to predict the response of circular cylindrical shells
subjected to harmonic excitation and compared the accuracy of
different truncations obtained using linear and non linear modes.
They showed that a reduced order model comprising one or two
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non linear normal modes gives perfect results for vibration ampli
tudes lower than or equal to the thickness of the shell. However,
non linear normal modes obtained by perturbation techniques, as
other perturbation techniques, lose accuracy when the vibration
amplitude becomes larger.

Using a Lagrangian approach and the method of harmonic
balance, Rougui et al. [64] investigated the non linear free and
forced vibrations of simply supported cylindrical shells. A simple
approximate transverse displacement expansion including the
driven mode and the axisymmetric modes (neglecting the com
panion modes and using the squared sin axisymmetric term) was
used for the minimization of the energy functional and it was
shown that the shell exhibits a softening behavior. The method of
harmonic balance was also successfully used by Avramov [65,66]
in obtaining the non linear normal modes and traveling waves of
simply supported circular cylindrical shells.

Non linear free and forced vibrations of rotating shells were
investigated by Chen and Dai [67], Wang et al. [68 70], Liu and
Chu [71] and Chen [72]. In particular, in Refs. [67,72] the method of
multiple scales was used to study the non linear vibrations of rotary
truncated conical shells with simply supported and clamped bound
ary conditions, and it was found that the shell exhibits hardening
behavior. Using Donnell's non linear shallow shell theory, Wang et al.
[68,69] used different multi dimensional models and included the
Coriolis force and damping effects in the equations of motion. To
obtain the frequency response curves, the equations of motion were
solved by direct time integration in [68] and the method of harmonic
balance in [69]. Wang et al. [70] also studied the non linear
vibrations of cantilevered shells subjected to a moving concentrated
harmonic force along the shell using the harmonic balance method.
Liu and Chu [71] used a single mode Galerkin approximation
together with the method of multiple scales to obtain the fre
quency response curves of cantilevered rotating thin circular cylind
rical shells. They used the eigen functions of a clamped free beam to
discretize the equations of motion. In all these studies, Refs. [67 72],
the effect of axisymmetric modes was neglected and therefore
hardening behavior was obtained for the shells under investigation.

Kurylov and Amabili [73] compared the large amplitude response
of isotropic shells obtained using Chebyshev polynomials, power

polynomials and trigonometric functions for simply supported and
clamped boundary conditions. The Sanders Koiter non linear shell
theory was used and it was found that trigonometric functions are
very efficient for simply supported boundary conditions while they
require a large number of degrees of freedom for other boundary
conditions, thereby decreasing the computational efficiency. It was
also found that Chebyshev polynomials have the advantage of
requiring similar degrees of freedom for any boundary condition
whereas ordinary power polynomials present ill conditioned mass
and stiffness matrices in the linear problem, which can become
problematic in non linear analysis. The same authors [74] also
thoroughly investigated the non linear vibrations of cantilevered
circular cylindrical shells using the Sanders Koiter non linear shell
theory and expanded the shell displacements in terms of a harmonic
function for the circumferential variable and Chebyshev polynomials
for the longitudinal variable. A novel technique to reduce the number
of degrees of freedom by introducing artificial axisymmetric modes
in the expansions of the displacements was used and different
expansions involving 18 52 generalized coordinates were considered
to study the convergence of the solution.

Non linear vibrations of cantilevered shells were also studied by
Zhang et al. [75]. The shell was assumed to be in high speed milling
process and was subjected to a harmonic transverse cutting force.
Considering a two to one internal resonance between the first two
asymmetric modes of the shell and neglecting the companion and
axisymmetric modes, the method of multiple scales was used to
obtain the modulation equations and the fourth order Runge Kutta
algorithm was utilized to solve the modulation equations and to
obtain the bifurcation diagrams.

Non linear free vibrations of pre stressed circular cylindrical shells
having combinations of clamped, free and simply supported boundary
conditions, resting on an elastic foundation, were investigated by
Bakhtiari Nejad and Bideleh [76]. The non linear Sanders Koiter
theory was used and a minimal single mode approximation with
the Lindstedt Poincaré perturbation technique was utilized to obtain
the backbone curves that showed erroneous hardening behavior.

The effect of geometric imperfections on the large amplitude
response of circular cylindrical shells was studied in Refs.
[56,57,61,74]. In particular, Amabili [56,57] discussed the effect of
three different sets of imperfections on the fundamental mode of a
simply supported shell, and showed that asymmetric imperfec
tions having the same shape of the fundamental mode have a large
effect on the non linear response of the shell. He showed that, due
to the presence of small imperfection, the trend of non linearity is
not affected while the traveling wave response is largely modified
since the natural frequencies of the driven and companion modes
do not coincide anymore. The initial geometric imperfection
having the shape of the driven and companion modes of the shell
was also taken into account by Avramov et al. [61]. They found that
the non linear normal modes of the shell are mainly determined
by shell imperfections. Kurylov and Amabili [74] studied the effect
of imperfection on large amplitude vibrations of clamped free
shells in depth and found that unlike other types of boundary
conditions, geometric imperfections introducing an ovalization of
the shell play an important role in non linear response, increasing
significantly the softening behavior of the shell.

Chaotic vibrations of circular cylindrical shells were studied in
Refs. [77 82]. In particular, using the Galerkin approach and the
fourth order Runge Kutta method, Krysko et al. [77] showed that
the chaotic regions of a circular cylindrical shell depend greatly on
the loading angle when the shell is subjected to transversal
sinusoidal load. Moreover, they investigated the local and global
stability loss of closed shells and found that stiff stability loss is
associated with a Hopf bifurcation and transition to chaotic and
harmonic motions. Krysko et al. [78,79] illustrated that increasing
the amplitude of the external load in the presence of various
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Fig. 1. Non-linear frequency response curve for the fundamental mode of a perfect
shell subjected to radial harmonic load. ω1,n is the fundamental frequency, ω is the
excitation frequency, w1,n,c is the amplitude of the driven mode, h denotes the
thickness. Donnell’s shallow shell theory without in-plane inertia, Donnell’s theory
with in-plane inertia, Sanders-Koiter theory, Flugge-Lu’re-Byrne theory (coincident
with Novozhilov). From Amabili [57].
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temperature intensities can yield qualitative changes in the
dynamics of the shell and can result in transition from chaotic
behavior to harmonic and vice versa. In a series of papers,
Awrejcewicz et al. [80], Krysko et al. [81] and Awrejcewicz et al.
[82] discussed comprehensively the possible routes to chaos in
circular cylindrical shells. In particular, in the first part [80], the
practical convergence of diverse numerical methods including
Galerkin, finite difference method, Ritz and different Runge Kutta
techniques in predicting the chaotic behavior of shells was
discussed. In the second part [81], it was shown that closed
circular cylindrical shells may exhibit the modified Pomeau
Manneville scenario and closed shells reinforced by flexible non
compressed ribs may exhibit the modified Ruelle Takens New
house Feigenbaum scenario to chaotic vibrations, and in the third
part [82] the Lyapunov exponents were calculated.

Non linear vibrations of closed spherical shells were studied
thoroughly by Arafat and Nayfeh [83]. The possibility of activation
of two to one internal resonance between different vibration
modes of the shell was investigated, and the method of multiple
scales was used to obtain primary resonance responses and
bifurcations due to an external axisymmetric excitation.

3.2. Dynamics and stability of shells subjected to axial loads

The parametric instability and the post critical behavior of simply
supported circular cylindrical shells subjected to periodic axial loads
were studied by Pellicano and Amabili [84]. Donnell's non linear
shallow shell theory was used and the equations of motion were
obtained using the Galerkin method and discretizing the governing
partial differential equations with a relatively large number of linear
modes, including axisymmetric and asymmetric modes. To perform
bifurcation analysis, a pseudo arc length continuation scheme was
utilized and the role of parametric resonance in the structural

collapse of shells was confirmed. It was shown that, when the
excitation frequency is close to twice the natural frequency of an
asymmetric mode, a period doubling bifurcation takes place, result
ing in quite large vibration amplitudes. Fig. 2(a c) shows the
response of a thin perfect shell under periodic axial load. It can be
clearly observed that dynamic instability occurs much below the
static buckling load as a result of period doubling bifurcation. It can
be seen that before the bifurcation point, only axisymmetric modes
contribute to the vibration of the shell.

The parametric resonance of circular cylindrical shells has also
been discussed by Popov [85], who considered a simple model of
the shell with two degrees of freedom. In a series of papers,
Gonçalves and del Prado [86,87] and Gonçalves et al. [88 90]
studied the dynamic instability of axially excited simply supported,
perfect circular cylindrical shells using Donnell’s non linear shal
low shell theory and following the Galerkin approach. In particular,
modal interactions between non linear vibration modes with equal
or nearly equal natural frequencies and their influence on para
metric and snap through instability were studied in [86], and
suitable reduced order models, which could reproduce the shell
response accurately, were obtained in [87].Transient and steady
state stability boundaries of an isotropic shell were obtained in [88]
and special attention was devoted to the determination of critical
loading conditions using a numerical continuation technique and
the Runge Kutta method. Moreover, the complexity of the basins of
attraction of low frequency vibration responses and the escape
from the potential well as a result of combined static and periodic
axial loads were clarified in [89]. In Ref. [90], the same authors
focused more on the use of basins of attraction as a measure of
reliability and safety of the shell and commented that, due to the
fractal nature of the basin boundaries and as a result of the sub
critical behavior, the shell response is very sensitive to initial
conditions and uncertainties in system parameters.

PD

Asymmetric
vibration

PD

Axial symmetric 
vibration 

Fig. 2. Dynamic bifurcation of an isotropic thin circular cylindrical shell under periodic axial load when the excitation frequency is close to twice the fundamental frequency.
(a) Amplitude of the driven mode/h; (b) amplitude of the companion mode/h; (c) amplitude of the first, axisymmetric mode/h. h Denotes the thickness, ND is the dynamic
load, Ncr is the critical static buckling load and PD is period-doubling bifurcation. From Pellicano and Amabili [84].

6



Kochurov and Avramov [91] investigated the non linear modes
and traveling waves of parametrically excited cylindrical shells.
They used Donnell's non linear shallow shell theory and consid
ered an eight degree of freedom model consisting of six asym
metric modes, a squared sine term to describe the asymmetry
of displacements with respect to the shell middle surface and a
constant term that did not depend on the circumferential coordi
nate. They mentioned that the constant term is added to describe
the radial displacement of the points of the end sections of the
shell or in other words to assume that the end sections can
“breathe” during vibrations. Moreover, using the harmonic balance
method, they found that non linear normal modes of vibration
correspond to standing waves, and the behavior of non linear
normal modes and traveling waves is qualitatively similar. The
same authors [92] also studied the parametric resonance of
circular cylindrical shells with a combination of resonance. A six
degree of freedom model was considered. The modulation equa
tions were derived for two types of combination of resonances by
employing the method of multiple scales and it was shown that,
depending on the combination of resonance, the shell exhibits
either softening or hardening behavior.

By considering a two degree of freedom model based on Donnell's
non linear shallow shell theory, Gonçalves et al. [93] studied the
global dynamics of isotropic shells due to a combination of static
and harmonic axial loads. By plotting Poincaré sections, bifurcation
diagrams and basins of attractions, sub critical and super critical
bifurcation scenarios were investigated and periodic, quasi periodic
and chaotic motions were obtained.

Parametric stability of rotating truncated conical shells was
investigated by Chen and Dai [67] and Chen [72]. The method of
harmonic balance was used to obtain the regions of instability.
Moreover, by considering a single degree of freedom model, Chen
[72] used the Melinkov method to study the homoclinic and sub
harmonic bifurcation of the shell, and the method of multiple
scales to obtain the frequency amplitude curves.

Theory and experiments for non linear dynamics of circular
cylindrical shells connected to a top mass and under base excitation
were conducted by Pellicano and Avramov [94] and Pellicano
[95,96]. In particular, in Ref. [94] dynamics of a shell carrying a rigid
disk on top and clamped at the bottom was investigated using the
Sanders Koiter non linear theory and solutions were obtained using
a perturbation technique and direct time integration of equations
of motion. Moreover, linear experimental modal analysis was
performed and the damping ratios obtained from the experiments
were used to conduct the non linear analysis. In Ref. [95], non linear
vibrations were studied via a Lagrangian approach based on the
Sanders Koiter theory, and Chebyshev polynomials were used to
discretize the energy functional. The experimental analysis carried
out in Ref. [95] was similar to that in Ref. [94] and included linear
modal analysis. In Ref. [96], Pellicano extended his previous works
by modifying the experimental analysis and obtaining a non linear
numerical model that included the shell shaker interaction. In
particular, large amplitude vibrations were studied experimentally
following a stepped sine testing procedure and it was observed that
there is a strong energy transfer mechanism from low frequency
axisymmetric and asymmetric modes resulting in non linear inter
actions between these modes. Moreover, a saturation phenomenon
regarding the vibration of the top disk was observed, associated with
the violent shell vibration. The numerical simulations in Ref. [96]
clarified the experimental results, and the shell model was similar to
Ref. [95]. Fig. 3(a c) shows the experimental results obtained by
Pellicano [96] on a circular cylindrical shell with top mass subjected
to base excitation. Strong interaction between the shaker and the
shell disk system can be observed from the figures. Moreover, it can
be seen that the acceleration on the shell is surprisingly huge.
Parametric vibrations of shells with geometric imperfections have

been investigated in Refs. [97 102]. Kubenko and Koval'chuk [97]
analyzed the effect of initial imperfections on the stability and
dynamics of circular cylindrical shells. In particular, they reviewed
193 papers in this field and studied the influence of initial axisym
metric and non axisymmetric deflections on the parametric vibra
tions of imperfect shells. They suggested that, although numerous
studies can be found addressing the dynamic problems of circular
cylindrical shells, the effect of imperfections is an important issue
that should be further elaborated.

Catellani et al. [98] developed a multi mode approach based on
the shell theories of Donnell and Sanders and analyzed the
correlation of parametric instability with shell collapse, taking
into account the effect of geometric imperfections. Pellicano and
Amabli [99] extended their previous study [84] by deeply analyz
ing the effect of geometric imperfection on post critical buckling,
non linear vibrations and chaotic oscillations of shells subjected to
combined static and periodic axial loads. To classify the non linear
dynamics, they extracted the correlation dimension, calculated
the Lyapunov exponents and depicted the Poincaré sections and
bifurcation diagrams. Pellicano [100] also investigated the sensitivity
to geometric imperfections in the dynamic stability analysis of strongly
compressed circular cylindrical shells. He used the Sanders Koiter
non linear theory and showed that the role of imperfections becomes
important in case of shells subjected to combined axial compression

Fig. 3. Experimental results for the large-amplitude vibrations of a circular
cylindrical shell with top mass subjected to base excitation. (a) Base excitation
amplitude (acceleration [g]); (b) top disk amplitude (acceleration [g]);
(c) maximum, minimum and the peak-to-peak of the shell response at the mid-
span. From Pellicano [96].
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and periodic loads since dynamic instabilities interact with the static
potential well. The effect of initial geometric imperfections on the
parametric vibrations of circular cylindrical shells was also investigated
by Kochurov and Avramov [101]. In their analysis, Donnell's non linear
shallow shell theory was used and an expansion of transverse
displacement with eight degrees of freedom including six asymmetric
modes (driven and companion modes), one axisymmetric mode and a
constant term was utilized to obtain the equations of motion via the
Galerkin approach. Then, by assuming that the frequencies corre
sponding to the axisymmetric and the constant term are much higher
than the asymmetric modes, the time derivatives of those modes were
set to zero and a system of six second order ordinary differential
equations plus two algebraic equations was solved by the method of
multiple scales and a continuation algorithm. The effect of geometric
imperfections on the dynamic instability of cylindrical shells carrying a
top mass and subjected to base excitation was investigated by Mallon
et al. [102]. Based on Donnell's shallow shell theory and considering a
multi mode expansion, they obtained a semi analytical model that
was verified by finite element simulations in case of linear vibration
and buckling. Moreover, depending on the type of initial imperfection,
they found periodic, quasi periodic and chaotic post critical behaviors
for the shells under investigation.

3.3. Fluid shell interaction

This subsection is divided into two sections: (i) fluid structure
interaction for shells containing still fluid; and (ii) fluid structure
interaction for shells subjected to flowing fluid. It is worth noting
that papers addressing the non linear response of shells containing
still fluid also discuss the non linear vibrations of empty shells.
Therefore, a reader interested in Sections 3.1 and 3.2 should also refer
to Section 3.3.1.

3.3.1. Fluid structure interaction for shells containing still fluid
In the studies reviewed in this section, the contained fluid is

assumed to be incompressible and inviscid. In fact, liquid filled
shells vibrating in the low frequency range satisfy very well the
incompressible assumption. Moreover, non linear effects in the
dynamic pressure and in the boundary conditions at the fluid
structure interface, and the shell pre stress due to fluid weight are
neglected. Therefore, to determine the hydrodynamic pressure
exerted by the fluid on the shell, the fluid motion has been
described by the velocity potential, which satisfies the Laplace
equation in cylindrical coordinates.

Non linear free vibrations of fluid filled circular cylindrical shells
were investigated in Refs. [103 108]. In particular, Kubenko et al.
[103] used the asymptotic Krylov Bogolyubov Mitropol'skii aver
aging method to study the sub harmonic responses of shells fully
filled with a perfect incompressible liquid. Circumferential traveling
waves in carrier shells filled with liquid were investigated by
Koval'chuk and Fillin [104]. The same authors [105] also studied
the flexural vibrations of initially bent, partially filled circular
cylindrical shells. Kubenko et al. [106] extended their previous
work [103] and studied non linear free vibrations of fluid filled
shells with internal resonance using the same averaging technique.
Diverse internal resonances of simply supported and clamped shells
filled with fluid were investigated by Koval'chuk and Kruk [107].
Silva et al. [108] studied the non linear free vibration response of
fluid filled circular cylindrical shells following a qualitatively accu
rate reduced order model obtained via the POD method. By
comparing the backbone curves of empty and fluid filled shells,
they showed that the internal fluid yields a stronger softening
behavior. It should be noted that, in all these papers the governing
equations of motion were obtained using Donnell's non linear
shallow shell theory.

Amabili [56] performed a full series of comparisons between
numerical and experimental results for large amplitude vibrations
of fluid filled imperfect shells subjected to radial excitation. Fig. 4
(a and b) shows the comparison between the experimental and
numerical frequency response curves of a water filled shell with
the number of circumferential waves equal to 10. The presence of
one to one internal resonance between driven and companion
modes appear in both theoretical and experimental curves.
Amabili [57] compared the responses of different non linear
theories in the case of fluid filled shells and showed that, although
Donnell's non linear shallow shell theory is the least accurate
theory for empty shells, it gives sufficient accurate results for
water filled shells. This was because the in plane inertia, which is
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Fig. 4. Comparison between experimental and theoretical frequency–response
curves for a water-filled shell (n 10, m 1); force 3 N and is applied in the radial
direction, ω is the excitation frequency. Experimental data; stable solution; –
– – – unstable solutions. (a) Amplitude of the driven mode/h; (b) amplitude of the
companion mode/h. h Denotes the thickness of the shell. From Amabili [56].
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neglected in Donnell's shallow shell theory, is less important
for a water filled shell that has a large radial inertia owing to the
presence of internal liquid.

The chaotic vibrations of partially filled shells were investigated
by Koval'chuk and Kruk [109] using a model that had only two
degrees of freedom. Karagiozis et al. [110] developed two numer
ical models based on Donnell's non linear theory with and with
out in plane inertia to study non linear vibrations of clamped
fluid filled shells. In a series of papers Koval'chuk and Kruk
[111,112], Koval'chuk et al. [113] and Kubenko et al. [114] discussed
the problem of non linear forced vibrations of completely filled
simply supported circular cylindrical shells using Donnell's non
linear shallow shell theory and the Krylov Bogolyubov Mitro
pol'skii averaging technique. Particularly, in Refs. [111,112,114] a
three degree of freedom model was used that included the driven
and companion modes plus a quartic sine term as a function of
longitudinal coordinate to describe the axisymmetric contraction
of the shell, whereas in Ref. [113] a five degree of freedom model
that contained four asymmetric modes was considered to study
the non linear interaction of different flexural modes. The quartic
sine term was used in the expansion of the transverse displace
ment instead of the well known squared sine, to satisfy the
moment resultant at the edges of the shell exactly.

Reduced order models based on POD and the non linear normal
modes method, for studying large amplitude vibrations of fluid filled
shells subjected to radial harmonic excitation, have been obtained in
Refs. [108,115 118]. In particular, Amabili et al. [115,116] compared
the Galerkin and POD models of a water filled cylindrical shell for
moderate and large amplitude vibrations. In Ref. [115] it was shown
that the POD technique allows a drastic reduction in the computa
tional effort. Moreover, it was illustrated that models with only three
degrees of freedom based on POD have the same level of accuracy as
models built by the Galerkin technique with sixteen degrees of
freedom. In Ref. [116], it was found that more proper orthogonal
modes are necessary to reach energy convergence for chaotic
dynamics and it is important to extract the modes using a time
series of complex responses (quasi periodic or chaotic). Touzé and
Amabili [117] used the non linear normal modes method and built a
reduced order model with only two degrees of freedom that showed
accurate results for vibration amplitudes up to twice the thickness of
the water filled shell. The detailed comparison between POD and
non linear normal modes method in studying non linear vibrations
of fluid filled shells was given by Amabili and Touzé [118]. Silva et al.
[108] combined a perturbation technique and the POD method
and assessed the quality of the proposed method by studying the
convergence of frequency amplitude curves, bifurcation diagrams
and time responses.

Parametric vibrations of shells conveying fluid were investigated
in Refs. [84,88,99,108,119]. Pellicano and Amabili [84] showed that
compared to empty shells, the presence of liquid changes the dynamic
stability bounds interestingly. Gonçalves et al. [88] discussed the
significance of the transient response, in studying the dynamic
buckling of fluid filled shells. Pellicano and Amabili [99] confirmed
that the presence of fluid provides a safety effect on the onset of
instability that occurs via period doubling bifurcation. In the same
paper, they discussed the chaotic response of fluid filled imperfect
shells under periodic axial loads. Parametric instability boundaries and
chaotic vibrations of fluid filled cylindrical shells were also studied by
Silva et al. [108]. The same authors [119] also discussed the dynamic
instability and snap through buckling of partially filled shells.

3.3.2. Fluid structure interaction for shells subjected to flowing fluid
Systematic research on the non linear dynamics of shells

conveying fluid was conducted by Païdoussis and it is synthesized
in his monograph [120].

Theory and experiments for the dynamic stability of circular
cylindrical shells subjected to incompressible subsonic liquid and air
flow have been reported by Karagiozis et al. [121 125]. In the
theoretical part of these studies, the shell was assumed to be in
contact with inviscid fluid, and the fluid structure interaction was
described by the potential flow theory. Experiments on non linear
dynamics of clamped shells subjected to axial flow were described
in Ref. [121] and its visual experimental evidence was provided in
Ref. [122]. A subcritical non linear softening behavior was reported for
shells subjected to internal and external flows. Three different types of
experimental tests were carried out on fully clamped shells in Ref.
[123], which included experiments on (i) elastomer shells in annular
airflow; (ii) elastomer shells with internal airflow; and (iii) aluminum
or plastic cylindrical shells with internal water flow. It was found that
the interaction between the shell and the fully developed flow gives
rise to instabilities in the form of static or dynamic divergence at
sufficiently high flow velocities. In Ref. [124], the effect of varying the
thickness to radius and length to radius ratios of the shell on non
linear stability was discussed and it was found that an increase of the
circumferential wave number, for shells with the same thickness to
radius ratio, enhances the subcritical behavior of the shell. Karagiozis
et al. [125] elaborated the experiments performed in Ref. [123] and
compared the experimental results with numerical ones obtained for
simply supported and fully clamped shells in details. Shells with
internal and annular fluid flows were studied and it was found that
the system loses stability by static, strongly subcritical divergence.
In order to obtain the numerical results, Donnell's non linear
shell theory was used and the Galerkin approach was employed to
obtain the equations of motion, which were solved using a pseudo arc
length continuation and collocation method and Gear's backward
differentiation formula. For fully clamped shells, models having seven
(4 asymmetric modes, 3 axisymmetric modes), eight (4 asymmetric
modes, 4 axisymmetric modes) and eleven (8 asymmetric modes,
3 axisymmetric modes) degrees of freedomwere considered, whereas
for the simply supported shell the numerical model had eighteen
degrees of freedom (12 asymmetric modes, 6 axisymmetric modes).

The effect of imperfections on the non linear stability of shells
containing fluid flow was investigated by Amabili et al. [126] using a
refined model. A Lagrangian approach based on (i) Donnell's theory
retaining in plane inertia and (ii) the Sanders Koiter theory was
utilized retaining 51 degrees of freedom in the discretization and
differently from previous works, the effect of fluid viscosity was
taken into account by using the time averaged Navier Stokes equa
tions. Non classical boundary conditions were used to simulate the
conditions of experimental tests in a water tunnel and satisfactory
comparisons of numerical and experimental results were conducted.
It was shown that asymmetric geometric imperfections with the
same number of circumferential waves as the mode associated with
instability play a significant role, transforming the pitchfork bifurca
tion at divergence to a folding (saddle node) bifurcation. Good
agreement was shown with the available experimental results for
divergence of aluminum shells conveying water. Moreover, it was
found that axisymmetric and asymmetric imperfections with a
number of circumferential waves that is not a multiple of the number
of waves at instability play a small role.

The combined effect of geometric imperfections and fluid flow
on the non linear vibrations and stability of shells was investi
gated by del Prado et al. [127].The behavior of the thin walled
shell was modeled by Donnell's non linear shallow shell theory
and the shell was assumed to be subjected to a static uniform
compressive axial pre load plus a harmonic axial load. A low
dimensional model was obtained using the Galerkin method and
the numerical solutions were found using a Runge Kutta scheme.
It was shown that the parametric instability regions, bifurcations
and basins of attraction are affected by the initial geometric
imperfection and flow velocity.
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The effect of fluid viscosity was also retained by Karagiozis et al.
[128] in studying the non linear vibrations of harmonically excited
circular cylindrical shells conveying water flow. A detailed analysis
was carried out using a pseudo arc length continuation method
at different flow velocities and for (i) fixed excitation amplitude and
variable excitation frequency and (ii) fixed excitation frequency
and variable excitation amplitude. Moreover, in order to classify the
system dynamics, direct time integration of equations of motion was
performed to obtain bifurcation diagrams of Poincaré maps, the
maximum Lyapunov exponent and the Lyapunov dimension. Periodic,
quasi periodic, sub harmonic and chaotic responses were detected,
depending on the flow velocity and amplitude of the harmonic
excitation. Fig. 5(a and b) shows the non linear forced response of
the driven and companion modes of a simply supported shell
subjected to external harmonic excitation and different flow velo
cities. It is interesting to see that the softening behavior is enhanced
by increasing the flow velocity.

By neglecting the effect of fluid viscosity and considering the
potential flow model, non linear forced vibrations and stability of

shells interacting with fluid flow were investigated in Refs. [129 132].
Koval'chuk [129] used Donnell's non linear theory together with the
Galerkin approach and the Krylov Bogolyubov Mitropol'skii aver
aging technique to study the non linear vibrations of the shell,
neglecting the effect of axisymmetric modes. The same theory and
solution methodology was used by Koval'chuk and Kruk [130].
However, in their analysis, the numerical model had six degrees of
freedom, which included four asymmetric modes plus two axisym
metric modes. The axisymmetric modes were described as quartic
sine terms. Kubenko et al. [131] extended the previous works of Refs.
[129,130] by showing the mathematical procedure for the Krylov
Bogolyubov Mitropol'skii method in studying multi mode non linear
free, forced and parametrically excited vibrations of shells in contact
with flowing fluid. Kubenko et al. [132] also studied the vibrations of
cylindrical shells interacting with a fluid flow and subjected to external
periodic pressure with slowly varying frequency.

Non linear dynamics of cantilevered circular cylindrical shells
subjected to flowing fluid was investigated by Paak et al. [133]. The
non linear model of the shell was based on the Flügge theory
retaining non linear terms due to mid surface stretching, and the
fluid model was based on the potential flow theory. The unsteady
interaction and asymptotic dynamics of a viscous fluid with an
elastic shell were also examined by Chueshov and Ryzhkova [134]
using the linearized Navier Stokes equations and Donnell's non
linear shallow shell theory.

Non linear vibration of circular cylindrical shells in supersonic
flow and non linear flutter instability of shells is an important
subject. Little publications can be found in the last decade on non
linear studies dealing with isotropic shells, whereas publications
concerning linear studies or non linear analysis of non isotropic
shells are wider (see Section 5.3). The only publications available
since 2003 are those by Kurilov and Mikhlin [135] (even if the
spelling of both name and surname is different, the first author is
the same author of Refs. [73,74] ) and Jansen [136]. Donnell's non
linear shallow shell theory was used in both works. However, in
Ref. [135] a pseudo arc length continuation scheme was used to
solve the equations of motion, whereas in Ref. [136] the non linear
response was obtained following a semi analytic perturbation
method. Earlier investigations in this field were carried out by
Amabili and Pellicano [137,138] and new results based on this
approach were published in Ref. [5].

3.4. Forced vibrations of shells subjected to other types of loading
conditions

The non linear response of circular cylindrical shells subjected
to dynamic transient loading was investigated by Sansour [139]
using the finite element method. A time integration scheme was
proposed and formulated for a shell with seven parameters and
with arbitrary geometric and material non linearities, which
conserved energy, momentum and angular momentum.

Non linear vibrations of isotropic circular cylindrical shells in
thermal environments were investigated in Refs. [78,79,140,141].
Awrejcewicz and Krysko [140] proposed an approach based on
finite difference and a relaxation method to solve the coupled
thermoelastic problem of a flexible shallow shell. Shu et al. [141]
studied the coupled thermoelastic vibrations of circular cylindrical
shells in large deflection. In their analysis, the non linear terms
were only retained in the strain displacement relation in the
longitudinal direction, and a single mode approximation was used
to study the effect of temperature on the vibration amplitude.

Dynamic buckling of imperfect shells under short term impul
sive loads was reviewed by Kubenko and Koval'chuk [97]. Moreover,
large amplitude vibrations of cylindrical shells subjected to non
stationary loads (e.g. impulse) were investigated in Refs. [142 148].
Shul'ga and Bogdanov [142] developed a numerical method based on
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Fig. 5. Effect of flow velocity on non-linear frequency–response curves. Force
0.0165N. (a) Amplitude of the driven mode/h; (b) amplitude of the companion
mode/h. h Denotes the thickness of the shell and V is the flow velocity. From
Karagiozis et al. [128].
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the integro differential method of constructing difference schemes to
find the response of conical shells with different taper angles
subjected to an impulsive load. The same authors [143] proposed a
numerical scheme based on the finite difference method to study the
dynamic stress strain state of reinforced circular cylindrical shells
subjected to different initial deflections. Vibrations of discretely ribbed,
reinforced shells were also investigated by Meish and Kairov [144]
based on the Timoshenko shell theory and using a finite difference
scheme. In a series of papers, Lugovoi et al. [145 147] used the same
theory and extended the work of Ref. [144] by solving the problem via
a new technique based on the Richardson extrapolation method in
[145], studying the dynamics of compound cylindrical shells with
spherical caps in [146], and investigating the dynamic behavior of
cylindrical shells in an elastic medium in [147]. Moreover, the stability
of vibration mode transformation between extensional and flexural
modes, and two to one internal resonance in thin walled circular
cylindrical shells subjected to large initial radial velocity or impulse
was investigated by Shi et al. [148].

Large amplitude vibrations of shells subjected to electrical loads
were investigated in Refs. [149 152]. In particular, using the three
dimensional equations of non linear electroelasticity, Yang et al [149]
derived a single degree of freedom model, which was solved by the
method of harmonic balance to obtain the non linear frequency
amplitude behavior of the electric current near resonance. Karnaukhov
and Tkachenko [150] studied the vibrations of an infinitely long thin
cylindrical shell made of a non linear elastic piezoceramic material
subjected to periodic electric force. They used the method of harmonic
balance to plot frequency response curves and time responses, for
different levels of electric loading. The non linear vibration response of
a thick walled spherical shell subjected to mechanical pressure and
electric field was investigated by Yong et al. [151]. They assumed that
the dielectric elastomer is isotropic and neo Hookean hyperelastic, and
found the critical voltage for various loading conditions. Moreover,
they found that the spherical shell may undergo quasi periodic motion
while it is subjected to sinusoidal electrical load. The same authors
[152] also studied the non linear vibrations of dielectric elastomer
circular cylindrical shells modeled by neo Hookean material, when
subjected to a periodic voltage. They discussed the influence of
thickness and boundary conditions on the critical voltage and stated
that by applying a voltage greater than the critical value, the shell will
be destroyed. Moreover, to obtain periodic solutions, they used a
shooting method.

Dong et al. [153] studied non linear modal coupling and strain
growth phenomenon in spherical shells subjected to blast loading.
Using the LS DYNA finite element software, they explained that the
strain growth in the non axisymmetric response of closed spherical
shells is due to the non linear coupling between the radial breathing
mode of the shell and its composite modes.

Non linear vibrations and dynamic stability of viscoelastic circular
cylindrical shells subjected to a dynamic load (i.e. ramp) irregularly
distributed along the surface of the shell were investigated in a series
of papers by Eshmatov [154 156]. In all these papers, the equations of
motion were derived based on the Timoshenko theory and taking into
account shear deformation and rotary inertia. Moreover, by assuming
simply supported boundary conditions and by applying the Galerkin
approach, the equations of motion were reduced to a set of non linear
integro differential equations, which were solved via a quadrature
technique.

4. Non-linear vibrations of isotropic panels

This subsection is divided into two sections: (i) cylindrical and
doubly curved panels; (ii) spherical caps, and panels of other
geometries.

4.1. Cylindrical and doubly curved panels

Non linear vibrations of cylindrical and doubly curved panels
(shallow shells) with rectangular base were investigated in depth by
Amabili [157 161]. Experiments on large amplitude vibrations of
circular cylindrical panels were performed in Ref. [157]. The experi
mental boundary conditions that were considered allowed zero axial,
radial and circumferential displacements on the curved edges and zero
axial and radial displacements on the straight edges. A stepped sine
testing technique was performed in the frequency neighborhood of
the first three natural frequencies of the tested cylindrical panel and
frequency response curves were obtained that showed strong soft
ening behavior. Amabili [158,159] extended his work by addressing
the non linear vibrations and internal resonances of simply supported
cylindrical [158] and doubly curved panels [159], numerically. The
shell theories of Donnell and Novozhilov were used and a Lagrangian
approach was utilized to obtain the equations of motion. Moreover,
the bifurcation analysis was performed by using a pseudo arc length
continuation and collocation scheme and in order to check the
convergence of the solution, different multi dimensional models were
considered. It was found that differently from closed circular cylind
rical shells that show weak softening behavior, shallow cylindrical and
spherical shells show a softening type non linearity that may turn to
hardening for large amplitude vibrations. Moreover, it was shown that
hyperbolic paraboloidal shells (cases with negative curvature ratios)
show hardening type non linearity. Fig. 6 shows the trend of non
linearity for different types of shallow shells. Comparisons between
experimental results of circular cylindrical panels and simulations
taking into account the geometric imperfections were performed by
Amabili [160]. Donnell's non linear theory was used and the equations
of motion were obtained via a Lagrangian approach. For experiments,
two thin cylindrical panels were tested for several excitation ampli
tudes to characterize the non linearity. The dimensions of the two
panels were chosen in order to have fundamental modes with one and
two circumferential half waves, respectively. Amabili [161] also dis
cussed the effect of different boundary conditions on the trend of non
linearity of circular cylindrical panels.

Finite element studies for large amplitude vibrations of cylindrical
panels can be found in Refs. [162 168]. Sansour et al. [162] proposed

Fig. 6. Effect of curvature ratio (Rx/Ry) on the trend of non-linearity in doubly
curved panels. ω1,1 Is the fundamental frequency, ω is the excitation frequency and
w1,1 is the fundamental generalized coordinate. From Amabili [159].
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a post processed Galerkin finite element based on hierarchical inter
polations to study the non linear response of cylindrical and spherical
panels subjected to transient dynamic loads. Ribeiro [163] used first
order shear deformation theory and p version finite element with
hierarchic basis functions to study non linear free vibrations of
moderately thick isotropic doubly curved shallow shells. Shells with
different boundary conditions, curvature ratios and thicknesses were
studied and it was found that in order to reach accurate results, the p
version finite element requires fewer degrees of freedom than the h
version finite element method. de Faria [164] assessed the dynamic
response of cylindrical panels by studying the effect of moving mass,
moving force and load velocity. The equations of motion that were
obtained by the finite element method in [164] were non linear only
in the velocity of the moving mass, and a perturbation technique was
proposed to convert the non linear equations to a series of linear
ordinary differential equations. Finite element formulations for large
amplitude vibrations of isotropic shallow panels were suggested by
Przekop et al. [165]. Non linear first order shear deformation theory
was used and it was found that even for moderate deflections, higher
modes contribution can be quite large. Ribeiro [166,167] used the
same theory and solution methodology of Ref. [163] to illustrate the
internal resonances that occur between non linear modes and to
study the non linear forced vibrations of shallow cylindrical panels,
respectively. In particular, in Ref. [166] the harmonic balance method
with a constant term and three harmonics was used to transform the
equations of motion into frequency domain equations, which were
then solved using a continuation method to obtain the backbone
curves, whereas in Ref. [167] a shooting method in conjunction with
the Newton method was utilized to solve the equations of motion and
to obtain the non linear frequency response curves. Similar finite
element formulations were presented by Ribeiro et al. [168] to study
non linear vibrations of deep cylindrical panels.

Touzé et al. [63] used non linear normal modes method to
study geometrically non linear forced vibrations of simply sup
ported hyperbolic paraboloidal shells, and cylindrical panels with
simply supported, in plane free edges. They showed that a reduc
tion to a single non linear normal mode is possible, showing very
accurate results for moderate amplitude vibrations. Alijani et al.
[169] discussed the accuracy of the method of multiple scales for
non linear vibrations of doubly curved panels. Donnell's non
linear shallow shell theory was used and the Galerkin method
was applied to obtain the governing equations of motion. In order
to perform a perturbation analysis and to study the primary
resonance response, a quadratic relation was assumed between
the excitation frequency and the fundamental frequency of the
panel. It was shown that, although in case of hardening non
linearity (shallow shells with large radii of curvature) the results
resemble those found by numerical integration or continuation
methods, in case of softening non linearity (e.g. spherical panels)
the solution breaks down as the amplitude becomes greater than
the thickness.

Non linear vibrations of shallow shells having a complex shape
have been investigated in Refs. [170 175] based on the R functions
mesh free technique. The R functions method is a powerful tool to
obtain discretization of two dimensional and three dimensional
domains of complex shape, and can be applied to moving boundaries.
Kurpa et al. [170] obtained a single degree of freedom model for
different sets of boundary conditions and presented the backbone
curves. The results obtained by the R functions method were in good
agreement with the results previously obtained by Amabili [158,159]
for simply supported panels and experimental results performed on a
cylindrical panel with complex boundary conditions. In particular, the
complex panel had symmetrical squared grooves on the straight edges
of the panel. Breslavsky and Avramov [171] studied a similar problem
by using the R functions method together with a combination of
non linear normal modes and multiple scales method to obtain the

backbone curves of a complex cylindrical panel with symmetrical
squared grooves on the curved edges. The same problem was also
studied by Breslavsky and Avramov [172] using a combination of R
functions and the harmonic balancemethod. The non linear vibrations
of complex base shallow shells submerged in a fluid were investigated
by Breslavsky et al. [173,174]. The interaction of the shell with the fluid
was described by a hyper singular integral equation, which was solved
by the boundary element method, and the method of normal modes
was used to study the large amplitude vibrations. Pilgun and Amabili
[175] performed a novel two step Lagrangian approach to study non
linear forced vibrations of cylindrical panels with complex shape and
clamped edges. A linear analysis was conducted in the first step, to
identify natural frequencies and corresponding natural modes of the
panel using Chebyshev polynomials as trial functions. Then, the
natural modes obtained from the first step were used as the basis
for non linear displacements. Both Donnell and Sanders Koiter the
ories were used and the bifurcation analysis was carried out using a
pseudo arc length continuation and collocation technique.

Chaotic vibrations and complex non linear dynamics of panels
have received considerable research attention in the literature.
Sansour et al. [176] constructed an energy momentum integration
scheme in the framework of the finite element method to study the
chaotic motion of panels. Nagai et al. [177] studied the effect of
concentrated mass on the chaotic vibrations of shallow cylindrical
panels. They used Donnell's non linear theory and the Galerkin
approach to obtain the governing equations of motion. The chaotic
responses of the shell were examined by Poincaré maps, Lyapunov
exponents and Lyapunov dimension following direct time integra
tion of the equations of motion using a Runge Kutta method.
It was illustrated that, once the concentrated mass is increased,
the maximum Lyapunov exponent decreases gradually. Amabili
[159,161] used Gear’s backward differentiation formula (BDF) to
perform bifurcation analysis on multi modal numerical models and
to obtain the bifurcation diagrams, Poincaré maps, Lyapunov
exponents and Lyapunov dimension of a spherical and a cylindrical
panel, respectively. He found that panels exhibit interesting non
linear phenomena such as sub harmonic response, period doubling
bifurcation, quasi periodic and chaotic behaviors when they are
subjected to large amplitude excitations. Krysko et al. [178] used
the Ritz method in conjunction with the fourth order Runge Kutta
time integration technique to investigate the chaotic response of
spherical panels subjected to sign changing transversal harmonic
load. Awrejcewicz et al. [179] studied the transition from regular to
chaotic motion in spherical panels with non homogenous thick
ness. The chaotic vibrations of shallow panels were experimentally
investigated by Nagai et al. [180]. The tested panel was simply
supported on all edges, and was subjected to gravity and periodic
lateral excitation. Two types of chaotic responses were identified
that were bifurcated from a sub harmonic resonance response of
half order and an ultra sub harmonic resonance response of two
third order corresponding to the fundamental mode of vibration.
Wang et al. [181] studied the chaotic response of cylindrical
reticulated panels by considering a single degree of freedom model
and using the Melinkov method. Awrejcewicz et al. [182] studied
the chaotic dynamics of cylindrical panels with infinite length
subjected to harmonic loads. They found classical routes to chaos
including Feigenbaum and Ruell Takens Newhouse scenarios. Mar
uyama et al. [183] extended the work of Nagai et al. [180], and
provided detailed numerical and experimental results for modal
interactions of doubly curved shallow panels. The contribution of
modes of vibration in the chaotic response was discussed in Ref.
[183]. Additional experimental and numerical analyses were per
formed by Nagai et al. [184] to identify chaotic regions of cylindrical
panels with a combination of clamped and simply supported
boundary conditions and subjected to lateral periodic acceleration.
Krysko et al. [81] observed Feigenbaum scenario associated with
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non smooth stability loss for cylindrical panels subjected to uni
formly distributed transversal harmonic load. In the same paper, the
Ruelle Takens Newhouse route to chaos was found for spherical
panels.

Non linear vibrations of viscoelastic panels were investigated
in Refs. [185 188]. Khudayarov and Bandurin [185] proposed
a numerical algorithm to solve the integro differential equations
of viscoelastic panels in contact with gas flow. Eshmatov and
Khodzhaev [186,187] studied the effect of concentrated masses on
the non linear vibrations and dynamic stability of viscoelastic
cylindrical panels, respectively. The Koltunov Rzhanitsyn singular
kernel with three rheological parameters was used for the viscoe
lastic model and it was observed that an increase in the concen
trated mass leads to a sharp drop in the frequency and amplitude
of the panel. The effect of damping on the non stationary vibra
tions of a viscoelastic simply supported cylindrical panel with
distributed piezoelectric sensors and actuators was investigated by
Karnaukhov and Tkachenko [188]. An integral viscoelastic model
was used to describe the viscoelastic behavior of the material, and
the effect of viscosity and geometric non linearity on the resonant
vibrations of the cylindrical panel was discussed.

4.2. Spherical caps and panels of other geometries

Spherical caps are segments of spherical shells with circular
base described in spherical coordinates. Non linear dynamics of
shallow spherical caps subjected to radial dynamic edge loading
(in the form of step loading) was investigated by Odeh [189]. He
found that snap through buckling is possible under peripheral
dynamic loading condition and the amount of snapping is con
siderable when the cap has an opening around the apex.

In a series of papers, Thomas et al. [190], Touzé and Thomas
[191], Thomas et al. [192] and Camier et al. [193] investigated in
depth the non linear vibrations of free edge spherical caps. In
particular, Thomas et al. [190] used Donnell's shallow shell theory
and a set of eigen modes obtained from the associated linear
problem to calculate all coefficients of the non linear quadratic
and cubic terms that appear in the governing equations of motion
and discussed the non linear modal interaction rules. Moreover, by
deriving a three degree of freedom model and using the method of
multiple scales, a specific mode coupling due to 1:1:2 internal
resonance between two companion modes and an axisymmetric
mode was studied. Touzé and Thomas [191] used the non linear
normal modes method to study the effect of geometry on the trend
of non linearity. They found that, similar to closed circular cylind
rical shells, axisymmetric modes play an important role in the non
linear behavior of purely asymmetric modes. Moreover, it was
observed that the behavior of asymmetric modes is generally
hardening, and it may become softening for certain cases after a
2:1 internal resonance between an asymmetric and an axisym
metric mode. It was also shown that, the behavior of axisymmetric
modes may change from hardening to softening for small values of
aspect ratios, since the eigen frequencies of the axisymmetric
modes depend greatly on the curvature of the spherical cap.
Thomas et al. [192] performed experimental tests to validate the
occurrence of 1:1:2 internal resonance in free edge spherical caps.
The particular internal resonance was observed between the first
axisymmetric mode and the sixth asymmetric modes. A coil
magnet non contact exciter was used to excite the shell and three
transducers, two accelerometers and a laser Vibrometer were used
to measure the time evolution of the three involved modes.
Particularly, the shell was excited at the center so that only the
axisymmetric mode was directly excited and the laser Vibrometer
beam was pointing at the center to measure the time response of
the axisymmetric mode only. Experimental frequency response
curves were obtained for different force levels and quantitative

differences were found between the experimental and theoretical
results owing to geometric imperfections that were not included in
the numerical model. In order to find consistent experimental and
numerical results, Camier et al. [193] improved the previous
theoretical models of Refs. [190 192] by taking into account the
effect of geometric imperfections. They found that, although good
agreement can be seen between the linear experimental and
numerical results, there are still discrepancies between the non
linear results. In fact, it was observed that the theory over predicts
the instability regions, even though it correctly predicts the trend of
non linearity. A very possible reason of the discrepancy was
mentioned to be the thickness variation or inhomogeneous material
property of the tested shell, which was still being neglected in the
numerical model.

Non linear vibrations of corrugated spherical shallow panels
were investigated by Yuan and Liu [194] and Yuan [195]. Green's
function method was used to reduce the problem to a single
degree of freedom model with quadratic and cubic non linearities
and the solution was found using the Galerkin method. Wang and
Song [196] studied non linear free vibrations of uniformly heated
bimetallic shallow spherical caps. The Kantorovich averaging
method was used to convert the governing partial differential
equations to ordinary differential equations and a shooting
method was used to obtain the numerical solutions. It was found
that the non linear fundamental frequency decreases with tem
perature increase and increases once the shell height is increased.

Chaotic vibrations of spherical caps can be found in Refs. [197
199]. Soliman and Gonçalves [197] studied the complex axisym
metric dynamics of clamped spherical caps under large harmonic
loads. They showed that steady state instabilities including jumps
to resonance, sub harmonic response, period doubling bifurcation
and cascades of period doubling bifurcations to chaos may
occur by varying different parameters of the system. Moreover,
they found that a sudden pulse of excitation may lead to the
transient failure of the shell. Krysko et al. [198] studied the
complex dynamics of spherical caps subjected to transverse
distributed sign changeable load and analyzed the scenarios of
transition from regular to chaotic motions.

The non linear theory of spherical caps was also used for
modeling percussive instruments and loudspeakers. Chaigne
et al. [199] discussed the nature of non linear coupling and chaotic
response that leads to particular sounds of gongs and cymbals, by
calculating the Lyapunov exponents. Bilbao [200] used the non
linear shell theory and a finite difference scheme to discuss the
sound synthesized by gongs due to large amplitude vibrations.
Quaegebeur et al. [201] used a time domain formulation to predict
the non linear sound radiation pattern of a prototype loudspeaker
that was modeled as a truncated cone with a spherical cap, during
large amplitude vibrations.

Non linear free and forced vibrations of shallow conical panels
can be rarely found in the literature. The non linear behavior of
conical panels under the combined action of peripheral moments
and transverse loads was studied by Zhao et al. [202] based on a
perturbation method. Thermoelastically coupled non linear axi
symmetric vibrations of thin conical panels were investigated by
Wang and Dai [203] by applying the Galerkin technique and by
assuming similar shape functions for the fundamental mode,
thermal bending moment and thermal in plane force resultant.
In Ref. [203], a three degree of freedom model was obtained that
was solved using the method of multiple scales. A perturbation
method was also used in Ref. [204] to obtain the non linear
natural frequencies of variable thickness conical shells.

Chaotic vibrations of shallow conical panels can be found in
Refs. [81,178,179,205]. Krysko et al. [81,178] found the Feigenbaum
scenario for conical panels subjected to large harmonic excitations.
Awrejcewicz et al. [179] discussed the routes to chaos of conical
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panels with non homogenous thickness. Wang et al. [205] used
the Melinkov method to discuss the chaotic response of a conical
lattice shell modeled as a single degree of freedom system.

Non linear forced vibrations of discretely reinforced ellipsoidal
panels under impulsive loads were investigated by Meish [206].
Non linear first order shear deformation theory was used and a
finite difference scheme was utilized to obtain the numerical
solutions. The same theory and solution methodology was used
by Meish and Maiborodina [207,208] to study non axisymmetric
vibrations of ellipsoidal [207] and reinforced ellipsoidal panels
[208] subjected to non stationary loads.

5. Non-linear vibrations of composite shells

This section is divided into three subsections: (i) closed
composite shells; (ii) composite panels; (iii) fluid structure inter
action in composite shells. It must be noted that papers dealing
with vibrations of anisotropic shells generally treat vibrations of
single layer isotropic shells as specific cases. Therefore, a reader
interested in Section 3 should also refer to Section 5.

5.1. Closed composite shells

Toorani [209] and Toorani and Lakis [210] studied non linear
free vibrations of composite circular cylindrical shells based on a
finite element method and a shear deformation theory. In a series
of papers, Jansen [211 215] used Donnell's non linear shell theory
and a semi analytic method for studying non linear free and
forced vibrations of orthotropic and composite shells. In particular,
Jansen [211] presented two types of solutions with different levels
of accuracy and complexity. In the first type, which he denoted as
“simplified analysis”, a number of asymmetric and axisymmetric
modes are used to build reduced order models via the Galerkin
approach. The obtained reduced order models are then solved
either by an averaging technique or by numerical time integration.
In the second type of analysis, referred to as the “extended
analysis”, the boundary conditions of the shell are satisfied exactly
and the Fourier decomposition method is used to eliminate the
dependence of the solution on the circumferential coordinate.
Finally, the resulting boundary value problem for ordinary differ
ential equations is solved numerically by means of a parallel
shooting method while a perturbation method is used to assess
the influence of large amplitude vibrations. Jansen [211] used
these methods to obtain non linear frequency response curves
of isotropic and orthotropic shells and to discuss the reasons of
discrepancies between the results presented by different research
ers. Jansen [212,213] used both simplified and extended methods
to study the effect of geometric imperfections and static loading
on the large amplitude vibrations of composite shells. He found
that, for unloaded shells, asymmetric imperfections mostly influ
ence the linear vibration behavior, while their effect on large
amplitude vibration is small. Moreover, he showed that certain
axisymmetric imperfections reduce linear frequencies and result
in a less softening non linearity, whereas static compressive axial
loads yield stronger softening behavior. In Ref. [214], the so called
extended analysis was elaborated and non linear vibrations
of laminated shells were studied. Jansen [215] also used the semi
analytic method based on the perturbation expansion (extended
analysis) to study the effect of different boundary conditions on the
non linear vibrations and flutter of composite shells. These works
were then extended by Rahman et al. [216] who proposed a finite
element perturbation method for studying non linear free vibrations
of composite circular cylindrical shells. By comparing the results of
this new method with the so called simplified and extended analysis

of Refs. [211,214], it was shown that the finite element method may
result in a weaker softening behavior.

Non linear vibrations of symmetrically laminated composite
shells were investigated by Amabili and Reddy [24] and Amabili
[25,217] based on a new higher order shear deformation theory
that takes into account non linear terms involving both the
normal and in plane displacements. In particular, Amabili and
Reddy [24] found that the conventional higher order shear defor
mation theory with von Kármán type non linearities gives
inaccurate results for vibration amplitudes of about twice the shell
thickness. Amabili [25] compared the non linear frequency response
curves of simply supported shells obtained by (i) higher order
shear deformation theory with von Kármán type non linear terms,
(ii) Novozhoilov shell theory, and (iii) the new theory of Amabili
Reddy. He indicated that the conventional higher order shear defor
mation theory only gives accurate results for modes with high
circumferential wave numbers, the Novozhilov theory gives good
results for thin laminated shells and the new theory of Amabili and
Reddy is preferable, if non linear vibrations of very thick shells are of
interest. The comparison between these theories in predicting the
non linear forced vibration responses of a thick composite shell with
0/90/90/0 lay up is shown in Fig. 7(a d). The rich non linear
dynamics and internal resonances of the type 1:2 between asym
metric and axisymmetric modes for a symmetric cross ply circular
cylindrical shell were studied in Ref. [217]. Amabili [218] extended his
previous works and studied the non linear vibrations of angle ply
circular cylindrical shells by taking into account the possibility of
skewed modes (modes with nodal lines not parallel to the long
itudinal axis). He found an increased non linearity for a 0/30 lay up
shell with respect to an identical symmetric cross ply 0/90/0
laminated shell. Moreover, Amabili [219] developed a new technique
for obtaining reduced order models of angle ply circular cylindrical
shells by using natural modes of vibration. In Refs. [24,25,217 219],
the equations of motion were obtained by the Lagrangian approach
and were solved using a pseudo arc length continuation and collo
cation technique. Shen [220] performed boundary layer analysis for
non linear free vibrations of anisotropic shear deformable shells
and obtained hardening type non linearity for different stacking
sequences. The equations of motion were obtained based on the
conventional higher order shear deformation theory with von
Kármán type non linearities and a singular perturbation technique
was employed to solve the equations. The axisymmetric modes were
neglected in the mode expansions.

Dynamic instability and buckling of composite shells were
investigated by Jansen [221], Kubenko and Koval'chuk [222], Mallon
[223], Mallon et al. [224], Bespalova and Urusova [225], Rahman et al.
[226] and Shariyat [227,228]. Jansen [221] used Donnell's non linear
shell theory and combined the Lagrangian approach with numerical
time integration to study the parametric vibrations of laminated
circular cylindrical shells with simply supported boundary condi
tions. A two mode imperfection consisting of an axisymmetric and
an asymmetric mode was taken into account and the shell was
statically under axial compression, radial pressure and torsion.
Dynamic buckling of isotropic and anisotropic shells under axial step
loading was also simulated in Ref. [221]. Experiments on dynamic
stability of composite shells were performed by Kubenko and
Koval'chuk [222].The mode shapes of shells subjected to periodic
excitation were studied and the effect of steady excitation on the
vibration response of three layer glass/fiber reinforced plastic shells
was investigated. Theory and experiments on dynamic instability of
orthotropic cylindrical shells with top mass under base excitation
were presented by Mallon [223] and Mallon et al. [224]. Donnell's
shell theory was used and the numerical approach was based on a
semi analytic technique that took into account the shell shaker
interaction. The experimental results confirmed the observations of
the semi analytical analysis and showed that the dynamic stability
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analysis of these types of structures should be focused near a
resonance of relatively low frequency, corresponding to an axisym
metric suspension mode, dominated by axial vibrations of the coupled
system. Bespalova and Urusova [225] proposed a numerical approach
to obtain the dynamic instability domains of compound shells. Rah
man et al. [226] implemented a finite element perturbation method
similar to [216] in order to perform a single mode dynamic buckling
analysis for unstiffened and ring stiffened composite cylindrical shells.
Shariyat [227,228] proposed a double superposition global local for
mulation inherently suitable for non linear analysis of imperfect
composite and sandwich shells. In particular, in Ref. [227], viscoelastic
properties of the shell were also taken into account and it was
revealed that the relaxation behavior of the viscoelastic material
may decrease the dynamic buckling load. In Ref. [228] it was shown
that the proposed theoretical approach satisfies all the kinematic and
interlaminar stress continuity conditions of composite and sandwich
shells at layer interfaces. In both papers, non linear terms in transverse
and in plane displacements were included in the strain displacement
relations of the shell.

Non linear vibrations of sandwich shells were also investigated
in Refs. [229 232]. Lugovoi et al. [229] studied the forced non
stationary vibrations of sandwich circular cylindrical shells with
cross ribbed cores using a finite difference scheme. Dogan and
Vaicaitis [230] used Donnell's shell theory to predict the non
linear response of a simply supported double wall sandwich

cylindrical shell subjected to random excitation. Non linear
spring dashpot models were used to characterize the behavior of
the soft core of the sandwich shell. Zarutskii et al. [231] performed
an extensive review on non linear vibrations of sandwich shells
under moving and impulsive loads. Mohammadi and Sedaghati
[232] focused on the damping characteristics of three layered
sandwich cylindrical shells with thin and thick viscoelastic layers
using a semi analytic finite element approach.

The effects of geometrical non linearity, rotary inertia, thermal
loads and piezoelectric layers on the wave propagation of sand
wich shells were discussed by Dong and Wang [233,234]. Kozlov
et al. [235] studied the effect of piezoelectric layers on the active
damping of forced thermo mechanical resonance vibrations of
viscoelastic shells. In their paper, the effect of non linearity was
due to the coupling of electromechanical and thermal fields.

5.2. Composite panels

Finite element formulations for non linear free vibrations of
composite panels can be extensively found in the literature. Toorani
[209] used a hybrid finite element approach and obtained hardening
behavior for fully clamped deep orthotropic cylindrical panels. Lee
et al. [236] used Donnell's theory to propose a thin laminated doubly
curved panel element for the multi mode non linear free vibrations
and random response of curved panels. In this paper, although
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Fig. 7. Comparison between the forced non-linear responses of the Amabili–Reddy theory with classical theories, for a thick composite shell with n 2. (a) Comparison
between the amplitude of the driven mode of Novozhilov and Amabili–Reddy theories; (b) comparison between the amplitude of the companion mode of Novozhilov and
Amabili–Reddy theories; (c) comparison between the amplitude of the driven mode of the conventional higher-order shear deformation and Amabili–Reddy theories;
(d) comparison between the amplitude of the companion mode of the conventional higher-order shear deformation and Amabili–Reddy theories. ―, stable periodic solution;
— �—, quasi-periodic stable solution; —, unstable periodic solution. From Amabili [25].
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formulations were presented for composite panels, an isotropic
cylindrical panel was considered for the numerical simulations.
Swamy Naidu and Sinha [237] and Nanda and Bandyopadhyay
[238,239] used the non linear first order shear deformation theory
and an eight noded isoparametric quadrilateral element to study
non linear free vibrations of doubly curved panels with simply
supported boundary conditions. In particular, the effects of moisture
concentration and temperature rise on the non linear response of
cylindrical, spherical and hyperbolic paraboloidal panels were dis
cussed in Ref. [237], the non linear to linear fundamental frequency
of cylindrical panels with cut out was obtained in Ref. [238], and
backbone curves of spherical panels with cut out were presented in
Ref. [239]. Panda and Singh [240 242] used higher order shear
deformation theory and the finite element method to obtain non
linear fundamental frequency of cross ply and angle ply doubly
curved panels with simply supported and clamped boundary condi
tions. A nine noded isoparametric quadrilateral element was used
and the transverse and in plane displacement non linear terms were
retained in the strain displacement relations. In detail, non linear
fundamental frequency of cylindrical and hyperbolic paraboloidal
panels was presented in Ref. [240], spherical panels were studied in
Ref. [241] and thermally post buckled spherical panels were exam
ined in Ref. [242]. Moreover, it was shown in Refs. [241,242] that
thick spherical panels exhibit hardening type behavior irrespective of
the type of boundary conditions, geometry and material properties. A
combination of finite element and Lindstedt Poincaré perturbation
method was used by Hashemian and Jam [243] to study the
vibrations of symmetrically laminated cylindrical panels. Nanda
[244] and Nanda and Pradyumna [245] used a combination of finite
element and direct iteration method to obtain the non linear
fundamental frequency of laminated cylindrical and spherical panels.
Piezoelectric and thermal effects were discussed in Ref. [244],
whereas hygrothermal and geometric imperfection effects were
investigated in Ref. [245]. In both papers, the finite element formula
tions were based on higher order shear deformation theory with von
Kármán type non linear terms and panels had simply supported and
clamped boundary conditions. Panda and Singh [246] used the same
theory and finite element formulation of Ref. [242] to obtain non
linear fundamental frequency of thermally post buckled doubly
curved panels. Mohammdai and Sedaghati [247] discussed the effects
of different boundary conditions, small and large displacements, core
thickness ratio and electric field intensity on the non linear vibration
and damping characteristics of sandwich cylindrical panels with a
constrained electrorheological fluid. Finite element formulations
similar to Refs. [242,246] were used by Panda and Singh [248] to
obtain the non linear fundamental frequency of laminated spherical
panels with embedded shape memory alloy fibers.

Non linear free vibrations of composite panels were also
investigated with solution techniques other than the finite
element method. Kurpa [249] used the first order shear deforma
tion theory and the R functions method to obtain the backbone
curves of simply supported multi layer cylindrical panels with
complex bases. The effect of variable thickness was introduced in
Ref. [250]. Yazdi [251] used Donnell's non linear shallow shell
theory and Galerkin single mode approximation together with the
homotopy perturbation method to obtain the backbone curves of
cross ply doubly curved panels.

Non linear forced vibrations of composite panels subjected to
transverse harmonic loads were investigated in Refs. [26,252 256].
Experiments on non linear vibrations of graphite/epoxy cylindrical
panels were carried out by Amabili et al. [252]. A plain weave
fabrics and a three layer 90/0/ 90 panel were tested and the trend
of non linearity was characterized following a stepped sine tech
nique and by increasing and decreasing the excitation frequency in
very small steps in the frequency neighborhood of the lowest
natural frequencies. The results showed strong softening behavior.

Adam [253,254] studied non linear flexural vibrations of multi
layered doubly curved panels based on a first order layer wise
theory. In Ref. [253] the effect of initial imperfections was discussed
and it was shown that, depending on the amplitude of the
imperfection, a thick laminated panel may exhibit hardening or
softening type non linearity, or even a combination of both. The
effects of initial curvature and transverse shear flexibility on the
non linear frequency amplitude response of panels composed of
thick layers were examined in Ref. [254]. Abe et al. [255] used the
first order shear deformation theory to study the one to one
internal resonance between the second and third asymmetric
vibration modes of fully clamped anti symmetric angle ply doubly
curved panels. A three degree of freedom model was obtained by
applying the Galerkin method and was solved by a shooting
technique. Ribeiro [256] discussed the influence of in plane mem
brane inertia and shear deformation on non linear forced vibrations
of clamped cylindrical panels. Non linear first order shear deforma
tion theory was used and the p version finite element method with
hierarchic basis functions was employed to obtain the non linear
governing equations that were then integrated by using Newmark's
technique. Alijani and Amabili [26] used the new theory of Amabili
and Reddy [24] to study the rich non linear dynamics and diverse
internal resonances of thick and deep laminated circular cylindrical
panels. In particular, 1:1, 2:1, 3:1 and 1:1:2 internal resonances were
found between different modes of laminated panels and quasi
periodic, intermittent and chaotic responses were observed in the
vicinity of the internal resonances. Moreover, it was illustrated that
laminates with stronger couplings between in plane and shear
strains exhibit stronger softening and/or hardening behavior.

Non linear vibrations of curved panels subjected to transverse
non periodic dynamic loads were investigated by Shul'ga and Meish
[257], Lentzen et al. [258], Ribeiro and Jansen [259], Nanda and
Bandyopadhyay [260], Li et al. [261], Nanda [244] and Nanda and
Pradyumna [245]. Shul'ga and Meish [257] used the first order shear
deformation theory and a finite difference scheme to obtain the
dynamic response of three layer spherical and ellipsoidal panels to
impulsive loads. Lentzen et al. [258] discussed the non linear
dynamic response of clamped semicircular panels with piezoelectric
layers subjected to line loads using the finite element method.
Ribeiro and Jansen [259] used the non linear first order shear
deformation theory and the p version finite element method to
study the influence of temperature and fiber orientation on the
dynamics of fully clamped panels subjected to uniformly distributed
impulse. They found that fiber orientations have a strong effect on
the thermo mechanical behavior of panels and the response of thick
panels is less influenced by the changes of temperature compared to
thin ones. Fig. 8(a c) shows the effect of fiber orientation on a
symmetrically laminated circular cylindrical panel subjected to a
uniformly distributed rectangular impulse. Nanda and Bandyopad
hyay [260] investigated the non linear transient response of cylind
rical and spherical panels with cut out using the finite element
method. Non linear first order shear deformation theory was used
and the responses of the panel to step and half sine loads were
obtained. The non linear response of shallow sandwich panels
subjected to blast loading was obtained by Li et al. [261] using a
higher order shear deformation theory suitable for panels with
compressible core. Nanda [244] and Nanda and Pradyumna [245]
used the Newmark average acceleration method with the modified
Newton Raphson iteration scheme to perform a transient analysis on
piezo laminated and imperfect composite panels, respectively.

Dynamic buckling of composite panels was investigated by Fu
et al. [262] and Shariyat [227,228]. Fu et al. [262] used the non
linear first order shear deformation theory to study the dynamic
buckling of damaged thick spherical panels under impact load.
Shariyat [227,228] provided various examples for the dynamic
buckling of perfect, imperfect, thick, relatively thin, multilayered
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or sandwich panels with stiff and flexible cores under suddenly
applied thermal and mechanical loads.

Dynamic instability of laminated cylindrical and spherical
panels with piezoelectric layers subjected to in plane periodic
load and electric load was examined by Pradyumna and Gupta
[263] using the finite element method. The theoretical formula
tion was based on the non linear first order shear deformation
theory. It was found that the effect of the location of piezoelectric
layers is significant at higher vibration amplitudes and marginal at
lower amplitudes. Active damping of geometrically non linear
vibrations of laminated curved panels with piezoelectric layers
was studied by Sarangi and Ray [264,265], Karnaukhov et al. [266]
and Shivakumar et al. [267].

5.3. Fluid structure interaction in composite shells

Fluid structure interaction of composite shells and panels is
rarely investigated in the literature. The effects of material ortho
tropy on the non linear vibrations and dynamic instability of
circular cylindrical shells in contact with flowing fluid were
investigated by del Prado et al. [268]. Donnell's non linear shal
low shell theory was used and the fluid was assumed to be non
viscous and incompressible. The equations of motion were
obtained by the Galerkin approach and were solved by a Runge
Kutta technique. An eight degree of freedom model was consid
ered that included the driven, companion, gyroscopic (i.e. the two
modes with two longitudinal half waves) and four axisymmetric

modes. Lakiza [269] studied the non linear vibrations of fluid
filled glass fiber reinforced cylindrical shells subjected to radial
two frequency excitation. Non linear stability of composite shells
in subsonic air flow under radial harmonic excitation was inves
tigated by Li and Yao [270]. Their analysis was based on a rough
single mode Galerkin approximation and the method of multiple
scales.

Geometrically non linear finite element formulation for aero
thermoelastic analysis of piezo laminated cylindrical panels was
given by Oh and Lee [271]. A multi field layer wise theory was
used to study the supersonic flutter characteristics of the compo
site panel. It was found that the critical aerodynamic pressure of
piezo laminated cylindrical panels increases with the increase of
surface temperature. Shin et al. [272] used the finite element
method to study the non linear flutter of aero thermally buckled
laminated cylindrical panels. An arc length method together with
a non linear iteration scheme was used to solve the equations of
motion. The flutter boundaries of various damped composite
panels with different damping treatments, including constrained
and sandwiched viscoelastic layers, were investigated by varying
the thermal loading.

Besides common structural applications, composite shell the
ories are often used to model arteries conveying flow in biome
chanics. As a first attempt to study the non linear response of
human aortic segments, Amabili et al. [273] used the laminated
circular cylindrical shell model and the non linear Sanders Koiter
shell theory to study the non linear stability of an aortic segment

Fig. 8. Transverse displacement of the central point of a [0/θ/�θ/2θ]s circular cylindrical panel subjected to a rectangular impulse uniformly distributed along the panel. (a)
ΔT0 �50 K; (b) ΔT0 0 K; (c) ΔT0 50 K; θ 0; θ 30; θ 45; θ 60; ΔT0 is the average between the top and bottom surface temperatures of the panel,
and θ is the orientation angle. From Ribeiro and Jansen [259].
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under steady flow conditions. The aorta was modeled as a three
layer composite shell, representing the tunica intima, media and
adventitia, and the fluid model contained the unsteady effects of
linear potential flow theory and the steady viscous effects
obtained from the time averaged Navier Stokes equations. It was
shown that the aortic segment loses stability by divergence with
deformation of the cross section at a critical flow velocity for a
given static pressure, exhibiting a strong subcritical behavior with
partial or total collapse of the inner wall.

6. Non-linear vibrations of functionally graded shells

In this section, papers that have dealt with geometrically non
linear vibrations of functionally graded (FG) shells and panels are
reviewed. FGMs are inhomogeneous composites fabricated from a
mixture of metal and ceramic with smooth and continuous
variation of material properties through the thickness. Compared
to isotropic and laminated shells they have reduced thermal
stresses and stress concentrations and have the capability of
withstanding high temperature gradient environments without
losing structural integrity. These advantages, together with their
high strength and light weight, have made functionally graded
materials a suitable replacement for conventional materials in
many industrial applications as thermal barriers. Therefore, study
ing the vibration characteristics of FG structures under large
amplitude thermo mechanical loads has become of paramount
importance in the last decade.

6.1. Closed FGM shells

Darabi et al. [274] studied the dynamic stability of FG shells at
constant temperature subjected to periodic axial loads. Donnell's
non linear shallow shell theory was used and a combination of
the Galerkin and the Bolotin methods was employed to solve the
equations of motion. Axisymmetric modes were neglected in the
displacement expansions, and therefore only hardening type
behavior was obtained.

Mahmoudkhani et al. [275] used multi mode Galerkin approx
imation and the method of multiple scales to study the primary
resonance response of simply supported cylindrical shells. Don
nell's non linear shallow shell theory was used and the displace
ment expansion included driven, companion and axisymmetric
modes. The effect of FG volume fraction exponent, length to radius
and thickness to radius ratios on the trend of non linearity was
discussed; however, temperature effects were neglected.

Non linear free vibrations of FG shells surrounded by Pasternak
foundation were investigated by Shen [276]. Higher order shear
deformation theory was used, but in a version that makes use of
Airy's stress function to condensate in plane displacements, so it
retains transverse and rotary inertia but neglects in plane inertia. The
effective material properties of the FG shell were obtained using the
rule of mixtures (Voigt model) and the Mori Tanaka micromechanics
scheme, which is usually applicable to regions of the graded
microstructure with well defined continuous matrix and discontin
uous particulate phase. It was assumed that temperature varies only
in the thickness direction and the temperature distribution was
obtained by solving a one dimensional steady state heat transfer
equation. A two step perturbation approach was utilized to obtain
the non linear frequencies of the shell, neglecting the effect of
axisymmetric modes. Hardening type non linearity was predicted
for thick shells and it was found that, in most cases, Voigt and Mori
Tanaka models have the same levels of accuracy in predicting the
non linear response of FGM shells. Shen and Xiang [277] also used
the same theory and methodology as described in [276] to study
non linear vibrations of nano tube FG reinforced shells.

Bich and Xuan Nguyen [278] studied non linear free and forced
vibrations of FG shells under pre load compression at constant
temperature. Based on Donnell's shell theory and neglecting in
plane inertia, they employed a single mode Galerkin approxima
tion to discretize the transverse displacement. An averaging
method was used to obtain the backbone curves whereas a
Runge Kutta scheme was utilized to obtain the frequency
response curves. The effects of axisymmetric (i.e. axisymmetric
shell contraction during vibrations) and companion (i.e. 1:1 inter
nal resonance) modes were neglected, and it is well known that
this gives wrong results. Results are presented for a mode with
3 circumferential waves, when it has been established that in
plane inertia should be retained at least for modes up to 3 circum
ferential waves (the condition 1/n2{1 must be satisfied in order
to neglect in plane inertia, where n is the number of circumfer
ential waves).

Non linear dynamics and bifurcations of FG shells subjected to
large amplitude harmonic radial loads were investigated by Hao
et al. [279,280] and Zhang et al. [281]. First order shear deforma
tion theory was used and the Galerkin approach was employed to
obtain a two degree of freedom non linear system that was solved
by a fourth order Runge Kutta method in order to obtain bifurca
tion diagrams, Poincaré sections and time responses of the shell. In
all three papers, the effect of axisymmetric and companion modes
was neglected, again with erroneous results.

Sheng and Wang [282] used the first order shear deformation
theory and the Galerkin multi mode approach together with the
method of multiple scales to study the effects of temperature
change, thickness ratio and volume fraction exponent on the non
linear vibration response of the shell. Companion modes were
neglected but the transverse displacement of the shell was
expanded in the form of Ref. [64] and included axisymmetric
and driven modes.

Rafiee et al. [283,284] studied non linear vibrations of FG shells
with piezoelectric layers in thermal environments and subjected
to supersonic airflow. The method of multiple scales was used and
the analysis was based on a single degree of freedom approxima
tion that showed hardening type behavior. Single mode Galerkin
approximation was also performed by Najafov and Sofiyev [285] to
examine the non linear vibrations of FG truncated conical shells at
constant temperature. Dynamic buckling of FG conical shells
subjected to time dependent compressive axial loads was inves
tigated by Deniz and Sofiyev [286] using the Galerkin and the
Runge Kutta methods.

Recently, Strozzi and Pellicano [287] used the Sanders Koiter
non linear shell theory and a Lagrangian approach to investigate
the forced non linear vibrations of FG circular cylindrical shells
subjected to radial harmonic excitation, neglecting the thermal
effects. Simply supported, clamped and free boundary conditions
were considered and the shell displacements were expanded by
using Chebyshev polynomials. By considering different multi
dimensional models with sufficient asymmetric and axisymmetric
modes, a convergence study was carried out and it was found that
very short and thick, and sufficiently long and thin FG shells
exhibit hardening type non linearity.

6.2. FGM panels

Liew et al. [288] investigated the non linear free vibrations of a
three layer coating FGM substrate cylindrical panel with different
boundary conditions and subjected to a temperature gradient
across the thickness due to steady heat conduction. First order
shear deformation theory was used and the numerical solution
was obtained by using the differential quadrature method. The
effects of geometry, volume fraction exponent, temperature and
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boundary conditions on the non linear fundamental frequency of
cylindrical panels were discussed.

Pradyumna et al. [289] used higher order finite element
formulation to examine the non linear transient vibrations of FG
doubly curved panels with rectangular base. An eight noded C0

element with nine degrees of freedom at each node was used and
the transient response of the system was calculated by the New
mark method. Pradyumna and Nanda [290] also extended their
work by including initial geometric imperfections and thermal
effects.

Chorfi and Houmat [291] investigated the non linear funda
mental frequency of doubly curved shallow shells with clamped
boundary conditions using the p version finite element method
along with the harmonic balance method. They showed that FG
thick panels present a hardening behavior and discussed the effect
of volume fraction exponent on that behavior. In their analysis,
temperature effects on system response were neglected.

A comprehensive study on the non linear vibrations of thin
simply supported FG doubly curved panels at constant tempera
ture was undertaken by Alijani et al. [292]. By deriving the
equations of motion in terms of transverse deflection and Airy
stress function as the only dependent variables, and in order to
overcome the shortcomings of low order Galerkin discretization,
the equations of motion were discretized by the full basis Galerkin
approach using the complete set of eigen functions of the
associated linear system to obtain a system of infinite non linear
ordinary differential equations with quadratic and cubic non
linearities. Then, using the method of multiple scales, the effects
of curvature and FGM volume fraction exponent index on the non
linear behavior were investigated when (i) the excitation fre
quency is close to the fundamental frequency (primary resonance
case) and (ii) twice that frequency (sub harmonic resonance case).
Subsequently, using a numerical scheme, internal resonance and
chaotic vibrations were studied. Later, Alijani et al. [293] extended
their work by including the thermal effects and discussed the non
linear vibration characteristics of doubly curved panels with
conventional non linear higher order shear deformation and
Amabili Reddy non linear higher order shear deformation the
ories [24]. The analysis was based on multi mode Lagrangian
approach and the pseudo arc length continuation scheme was
used to perform bifurcation analysis. It was shown that, for thin FG
spherical panels, the response is softening, turning to hardening
behavior for large vibration amplitudes. However, thick spherical
panels exhibit hardening non linearity. Moreover, it was revealed
that the temperature plays different roles depending on the
thickness and shallowness of the panel. Alijani and Amabili [294]
also studied the chaotic vibrations and internal resonances of
doubly curved FG panels. To classify the complex dynamics, the
maximum Lyapunov exponent and the full spectrum of Lyapunov
exponents were calculated for several multi dimensional models.

Bich et al. [295,296] and Duc [297] investigated the non linear
vibrations and dynamic buckling of eccentrically stiffened FG
panels, neglecting the temperature effects. In the three papers,
the equations of motion were obtained using Donnell's shell theory.
In plane inertia was neglected and the problem was reduced to a
single degree of freedom non linear equation that was solved using
a Runge Kutta technique. In particular, in Ref. [295] only cylindrical
panels were studied, in Ref. [296] the work was extended to doubly
curved panels and in Ref. [297] the panel was assumed to be on
elastic foundation.

7. Non-linear vibrations of hyperelastic shells

Studies dealing with the non linear dynamic behavior of shells
made of rubber like materials were primarily discussed in the

1960s and continue to the present. In fact, rubber like materials
are capable of withstanding large deformations, and therefore, in
addition to geometrical non linearities (non linear strain displa
cement relations), physical or material non linearities based on
hyperelastic models (non linear stress strain relations) should
also be retained in their numerical models [298]. In particular,
strain invariant constitutive models such as neo Hookean,
Mooney Rivlin, Ogden and Fung models should be used to capture
the non linear behavior of hyperelastic materials.

Owing to the complicated nature of these models, reported
studies on the dynamic problems of hyperelastic shells are very
scarce. Early investigations on the large amplitude radial oscillations
of circular cylindrical shells made of incompressible hyperelastic
materials were performed by Knowles [299,300]. In these works the
governing equation of motion was an autonomous single degree of
freedom equation and the free vibrations caused by suddenly applied
and subsequently maintained uniform pressures were studied. Later,
Shahinpoor and Nowinski [301] and Shahinpoor and Balakrishnan
[302] studied the large amplitude vibrations of circular cylindrical
shells made of incompressible materials and Mooney Rivlin type
rubber. In particular, an analytic solution was presented in Ref. [301]
and a numerical study based on a fourth order Runge Kutta techni
que was employed in Ref. [302] for the single degree of freedom
model previously presented by Knowles [299]. Free vibrations of
neo Hookean circular cylindrical shells were studied by Wang and
Ertepinar [303] and Ertepinar and Akay [304]. The finite amplitude
vibrations of non linearly elastic incompressible spherical and
cylindrical shells were examined mathematically by Calderer [305].
Akyuz and Ertepinar [306] investigated the stability and asymmetric
vibrations of pressurized compressible hyperelastic cylindrical shells.
The hyperelastic model that they used was based on Levinson
Burgess polynomial compressible material, which is coincident with
the neo Hookean law for incompressible materials. In order to solve
the problem, they first found the static equilibrium state of the
solution for finite deformations, and then used the small perturba
tions theory to investigate the free vibrations of the shell around the
equilibrium state. A shooting method was also utilized to solve the
governing equations of motion and the numerical solutions were
found to be in good agreement with the finite element results.

Since 2003, new researches performed on hyperelastic shells
have mostly been focused on the stability and buckling of elastic
shells subjected to external/internal pressure. For instance, based
on the non linear theory of elasticity, Zhu et al. [307] discussed the
asymmetric bifurcations of thick shells made of isotropic neo
Hookean materials and under combined axial loading and external
pressure. Zhu et al. [308] extended their previous work [307] by
studying the non linear axisymmetric deformations of incompressi
ble hyperelastic shells subjected to zero displacements on their ends
and pressure on their external lateral surfaces. Recently, the same
authors [309] investigated the three dimensional non linear buck
ling of pressurized circular cylindrical shells using a finite element
algorithm and highlighted the post buckling deformations.

Concerning non linear vibrations of hyperelastic shells, the only
works available since 2003 are those of Sansour et al. [176], Yuan
et al. [310], Yong et al. [151], He et al. [152] and Ren [311,312]. In
particular, Sansour et al. [176] constructed an energy momentum
method to study the non linear dynamics of shells in the framework
of the finite element method and discussed the large amplitude
response of shells considering non linear constitutive laws. Yuan
et al. [310] studied the dynamic inflation of infinitely long cylindrical
tubes subjected to periodic step pressures on the inner surface. The
incompressible Ogden material model was used and the strain
energy density function was reduced to neo Hookean type. Sensitiv
ity of the dynamics to the material parameters, geometry and the
applied pressures was discussed. In Refs. [151,152] the dynamics of
dielectric incompressible neo Hookean spherical and cylindrical
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shells was studied, respectively, and it was found that the system is
more stable when the thickness of the shell increases. Ren [311]
determined the critical applied pressure of an incompressible neo
Hookean circular cylindrical shell subjected to periodic or suddenly
applied constant load on the inner surface. He found that when the
pressure is lower than the critical value, the fixed point is a center
surrounded by a homoclinic orbit, and the shell undergoes non
linear periodic oscillations. On the other hand, when the pressure is
larger than the critical value, the fixed point becomes an unstable
saddle node, and the shell's displacements will ultimately diverge.
The same author [312] also discussed the dynamics of neo Hookean
spherical shells, and by plotting Poincaré maps and phase plane plots
showed that the shell may undergo quasi periodic oscillations once it
is subjected to periodic internal pressure.

8. Experiments on large-amplitude vibrations of shells

Although a vast literature is available on geometrically non
linear vibrations of shells and panels, the experimental investiga
tions are quite scarce. A complete list of experimental works on
non linear vibrations and fluid structure interactions of shell
structures before 2003 can be found in the review study of Amabili
and Païdoussis [5].

Comprehensive experimental analysis on large amplitude vibra
tions of empty and fluid filled circular cylindrical shells subjected
to radial harmonic excitation was carried out by Amabili [56].
Pellicano and Avramov [94] and Pellicano [95] performed experi
ments on cylindrical shells connected to a rigid disk and under base
excitation to obtain damping ratios for numerical simulations.
Pellicano [96] extended his previous experimental tests by follow
ing a stepped sine approach and obtained the experimental stabi
lity diagrams of a shell connected to top mass. Experiments on the
stability of shells subjected to fluid flow were carried out by
Karagiozis et al. [121,122,124,125]. Shells having clamped ends
and subjected to external airflow and internal water flow were
tested. Lakiza [313,314] performed experiments on non linear
vibrations of compound (truncated cone with spherical shell) and
circular cylindrical shells with a gas liquid medium, respectively.

Experiments on non linear vibrations of cylindrical panels have
been conducted by Amabili et al. [157] and Amabili [160]. Geome
trically non linear dynamic behavior of cylindrical panels with
complex base subjected to transverse excitation has been investi
gated by Kurpa et al. [170]. Experimental investigation of chaos in
cylindrical and doubly curved panels has been carried out by Nagai
et al. [180,184] and Maruyama et al. [183]. Thomas et al. [192]
performed experimental tests on a free edge spherical cap in order
to validate the occurrence of a rare modal interaction coupling.

Kubenko and Koval'chuk [222] studied the dynamic stability
of a three layer composite shell experimentally. Mallon [223] and
Mallon et al. [224] performed experiments on an orthotropic
circular cylindrical shell subjected to base (seismic like) excitation.
The only available experimental work on geometrically non linear
vibrations of composite cylindrical panels has been conducted by
Amabili et al. [252].

9. Conclusions

The purpose of this review is (i) to help researchers working in
the field of non linear vibrations of shell structures with the
required references for their research and (ii) to give ideas of
what researches can be undertaken and what researches could be
of paramount importance. In writing this review the authors
have tried to be as complete as possible. However, it is plausible
that some studies are missed out. The authors apologize to the

authors of papers that have accidentally been left out of this
review.

It must be observed that the research performed on large
amplitude vibrations of shell structures, specifically for those made
of advanced materials, is still far from being considered well
established. Regarding isotropic materials, the research on geome
trically non linear vibrations of conical shells and panels is still in
the primary stage and is hoped to be enhanced in the near future.
In case of composite shells and panels (i) experimental investiga
tions and (ii) non linear fluid structure interactions can be rarely
found in the literature, and therefore need particular attention.
For FG shells, most of the studies that are published neglect the
fundamental and preliminary features of shell structures, such as
the effect of axisymmetric modes in closed shells and in plane
modes in curved panels. Thus, in order to clarify the non linear
dynamic behavior of this type of shells, a more careful investigation
is required. Finally, in case of hyperelastic shells, no comprehensive
research has yet been conducted on the dynamic instability and
non linear vibrations of highly pressurized shells taking into
account shear deformation and thickness variation effects.
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