
HAL Id: hal-01299607
https://hal.science/hal-01299607v1

Submitted on 27 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Efficient Scheduling of Real Time Signal
Processing Applications through Combined DVFS and

DPM
Erwan Nogues, Maxime Pelcat, Daniel Menard, Alexandre Mercat

To cite this version:
Erwan Nogues, Maxime Pelcat, Daniel Menard, Alexandre Mercat. Energy Efficient Scheduling of
Real Time Signal Processing Applications through Combined DVFS and DPM . 24th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing (PDP) , Feb 2016,
Heraklion, Greece. �10.1109/PDP.2016.15�. �hal-01299607�

https://hal.science/hal-01299607v1
https://hal.archives-ouvertes.fr

Energy Efficient Scheduling of Real Time Signal
Processing Applications Through Combined DVFS

and DPM

Erwan Nogues, Maxime Pelcat, Daniel Menard and Alexandre Mercat
∗IETR, INSA Rennes, UMR 6164, UEB

35000 Rennes, FRANCE
Email: firstname.lastname@mail.com

Abstract—This paper proposes a framework to design energy
efficient signal processing systems. The energy efficiency is
provided by combining Dynamic Frequency and Voltage Scaling
(DVFS) and Dynamic Power Management (DPM). The frame-
work is based on Synchronous Dataflow (SDF) modeling of signal
processing applications. A transformation to a single rate form is
performed to expose the application parallelism. An automated
scheduling is then performed, minimizing the constraint of
energy efficiency and providing DVFS and DPM decisions. This
framework uses an architecture model including the number of
available cores, the per-actor processing load and the energy per-
cycle, derived from time and power measurements of modelled
applications. After introducing the proposed framework, the
energy characterization of big.LITTLE SoC systems is described.
A generic approach is presented to generate the energy model of
a platform from power measurements as customized polynomials.
Finally, the experimental results on a Samsung Exynos 5410
big.LITTLE processor show that the energy optimal execution
is not obtained by Linux governors that can execute either as-
fast-as-possible or as-slow-as-possible. Instead, the most energy
efficient scheduling is obtained by adapting both DVFS and DPM
to application needs.

I. INTRODUCTION

Signal processing applications (also called stream process-
ing applications) have become one of the major classes of
applications processed by embedded systems. Portable con-
sumer electronics devices incorporate a wide range of signal
processing applications, ranging from telecommunications to
multimedia services. These applications are increasingly com-
plex and manipulate high data rates. In such systems, respect-
ing energy consumption constraints is a challenge. Thanks
to recent advances in microelectronics, modern Systems-on-
a-Chip (SoC) based on multi-core processors offer high pro-
cessing capabilities. The energy efficiency of these SoCs come
primarily from parallel processing combined with adaptive
frequency. Many functions that were traditionally hardwired
can now be implemented in software, bringing flexibility and
short time-to-market for applications deployment.
For multi-core processors, two main power management tech-
niques are provided that minimize the energy consumption.
By combining clock gating and power gating, Dynamic Power
Management (DPM) [2] is used to turn a processing core into a
low power state when it is not in use. To reduce the influence of
dynamic power, Dynamic Voltage Frequency Scaling (DVFS)
[13] reduces both the clock frequency and the supply voltage

until the application real-time constraint is slighly exceeded.
The design of energy efficient systems can be done at sev-
eral levels of abstraction (gate level, register transfer level,
core level, operating system level, SoC level...). Dataflow
programming provides descriptions of signal processing that
exhibit parallelism explicitly. The application is then described
with a graph, where the nodes, named actors, represent the
processing carried-out on the data. The edges are First-In-
First-Out (FIFO) queues with storage capacity that are the
only media for actors to communicate. This paper proposes a
framework for the energy consumption minimization of signal
processing applications that are described with Synchronous
Data Flow (SDF) [14]. The targeted system has the following
properties : a) the system is constrained by a deadline; b) each
actor has a fixed workload; c) the underlying platform supports
dynamic frequency scaling and dynamic power management;
d) the dataflow model is SDF, and thus static.
There are numerous applications that fulfill these conditions
in the signal processing domain [3], [10]. For example, mul-
timedia applications like audio resamplers and video spatial
interpolation procedures use chain of filters that are static and
deadline-constrained. In digital communications, applications
like propagation channel equalization or data error correction
also verify these properties and are deadline-constrained.
The power management techniques provided in the Linux op-
erating system do not benefit from the predictability properties
offered by static dataflow. State-of-the-Art approaches do not
take into account static power [1] or multi-core execution [6],
[15]. In this paper, an energy efficient approach combining
DVFS and DPM is proposed. An energy model is defined
and a convex optimisation framework is used to find the
optimal system clock frequency. We show that the combination
of DVFS and DPM leads to better energy efficiency than
classical approaches executing as-fast-as-possible or as-slow-
as-possible.
The rest of this paper is organized as follows. Section II
presents existing methods to optimize energy in recent proces-
sors. Section III describes how the system energy is modelled.
The platform characterization is presented in section IV. Appli-
cation modeling is described in section V. Finally, section VI
concludes the paper.

II. RELATED WORK

As defined in Linux, a processor can be in two types of
power states named C-states and P-states. In C-states C1 to
C6, the processor is in idle state. The C6 state corresponds
to the deeper sleep state. Clock gating and power gating
techniques consist in pruning the clock tree and switching
off the portions of the circuit which are not in use. The
management of the different running and idle states to reduce
energy consumption is carried-out by the DPM technique [2].
In Linux, the DPM technique is implemented by the CPUidle
subsystem, providing the ability to the user to switch between
different C-states.
In the P-state, the processor is running and energy
consumption can be reduced by adjusting the clock frequency
and the supply voltage. The reduction of processor load
gives opportunities to the operating system to reduce the
clock frequency and hence the supply voltage. In real time
systems, the temporal difference between the end of a task
and its deadline, named slack-time, provides clock frequency
flexibility. In Linux, the DVFS [13] technique is implemented
with the CPUfreq subsystem. This subsystem scales the core
clock frequency and sets the lowest supply voltage compatible
with this clock frequency. This technique is widely used in
embedded sysmtems [16].
For the energy management of dataflow applications, the work
of Nelson et al. [15] can be considered as the closest reference
to this paper to the best of our knowledge. Authors propose to
model the energy of dataflow applications and use a convex
solver to find the best working frequency of the dataflow
actors. However the modeling does not consider the energy
at a MPSoC level and how the system can be scheduled
efficiently from an energy point of view. This paper questions
how an efficient implementation can be obtained considering
both application requirements and platform characteristics
using a fast prototyping framework.
Similarly, De Langen et al. [6] introduce the notion of
energy modeling for DPM and DVFS systems. They propose
heuristics for energy efficient scheduling but only considering
mono-core implementations. We propose a more complete
formulation for multi-core implementations where solvers can
be used to find an optimized scheduling and energy policy.
We also experiment our approach on a cutting-edge platform
using 28 nm silicon process.
Aupy et al. [1] propose several DVFS strategies for real-
time systems under bounded execution time with proofs of
optimality. However, the modeling part only considers the
dynamic power part of the overall power consumption, which
limits the scope of the proposed approach especially because
the modern SoCs are not only dominated by dynamic power.

The next section explains how energy is modeled in the
proposed framework.

III. ENERGY MODEL AND POWER MANAGEMENT

In this section, the power and energy models basis is given
and its application to DVFS and DPM is proposed. Besides,
the different strategies using DVFS, DPM and a combination
of both is described for embedded operating systems.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

N
or

m
al
iz
ed

F
re

qu
en

cy

as-fast-as possible scheduling as-slow-as possible scheduling energy-efficient scheduling

timetime time

deadline deadlinedeadline

Fig. 1. Comparison of scheduling strategies - left: as-fast-as-possible
scheduling - center: as-slow-as-possible - right: Energy Efficient scheduling

A. Power model

The growing offer in terms of high performance embedded
SoCs, many of them being based on ARM cores, makes an
ever larger number of applications executable in software. The
power consumption of the system is a crucial aspect to secure
the application viability, especially in the handheld domain
where systems are battery-powered.
The power consumption of processors is generally split into
two parts: the dynamic part coming from the switching activity
of transistors and the static part coming from transistor leakage
current. Whereas it has been neglected for a long time, the
static part is bound to take a preponderant role in the overall
system when considering new technology generations. In this
paper, we use the power model from Jejurikar et al. [12] where
the total power consumption is given by equation 1.

Ptot = Pdyn + Pstat (1)

where

Pstat = V.Ileak (2) Pdyn = Ceff .fproc.V
2 (3)

and where V is the supply voltage matching with the
processing frequency fproc, Ileak is the leakage current, and
Ceff is the circuit effective capacitance. This model has
been used in several energy efficiency studies [6], [15].

B. Energy model

The capability of the system to shut down processing cores
is a crucial point for energy efficient system design. Low
energy and low power are different objectives. Indeed, one can
argue that minimizing at each instant the processing power
consumption is the most energy efficient strategy. However,
this is not systematically true for systems with shut down
mechanisms because the processing duration and activation
time play a role in energy. For this latter case, the energy
needed per cycle count of processing can serve as a comparison
basis. It is determined as a function of the processing frequency
in equation 4 assuming that the power consumption is close
to null when entering to sleep mode.

Ecycle(fproc) =
1

fproc.T
.

∫ T

0

Ptot(t) dt (4)

Similarly to De Langen et al. in [6], a simple model is used
to illustrate energy modeling with Pdyn(f) = CstA.f

2 and
Pstat = CstB where CstA and CstB can be derived from the

power models of equation 1. Figure 2 is an illustration of the
energy and power dissipations as functions of the processing
frequency. All values are normalized w.r.t to their maximum
value for simplicity reasons.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

Dynamic Energy
Static5 Energy
Total

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1
Dynamic Power
Static Power
Total

N
or

m
al

iz
ed

5P
ow

er
N

or
m

al
iz

ed
5E

ne
rg

y

Normalized5Frequency

Normalized5Frequency

a)

b)

Fig. 2. Power and energy consumption on a mono-processor with DVFS
and DPM. Top figure a): Power consumption (normalized) per frequency
use (normalized) - Bottom figure b): Energy consumption (normalized) per
frequency use (normalized)

In both curves, the convexity of the energy and power
characteristics is outlined. However, the minimum value of
power and energy is not reached for the same processing
frequency. The power model of Figure 2 shows that
the minimum power dissipation happens when using the
minimum frequency while the energy model exhibits an
optimal frequency fefficient at 0.3 that provides a better
energy efficient design than the minimum frequency fminimum

at 0.1. Therefore, using this processing frequency is the most
efficient strategy, providing that the system can enter into a
deep sleep mode when the processing ends.

C. Frequency allocation: as-slow-as-possible, as-fast-as-
possible and energy
efficient schedulings

In standard operating systems such as Linux, the
processing frequency can be configured to different modes
according to system requirements and constraints. Assuming
a simple application which execution shall be terminated
before a deadline, the most common strategies consists to
run as-fast-as-possible at the maximum frequency fmaximum

or to run as-slow-as-possible while respecting the deadline.
The first strategy is implemented by the performance Linux
governor and uses a DPM mechanism when the second
strategy is implemented by the on-demand Linux governor
and uses a DVFS mechanism to scale the frequency correctly
[5].
We introduce a new strategy called energy-efficient scheduling
that reaches the minimum energy such as in Figure 2, aiming
to process at the most energy efficient state.
Figure 1 compares as-slow-as-possible scheduling, as-fast-
as-possible scheduling, and energy-efficient scheduling. The
application is supposed to finish before a deadline that can be
achieved with the minimum frequency.

In the next section, the generation of power and energy
models from a real platform are explained. The objective
of this section is to verify the suitability of the models in
Figure 2 on a State-of-the-Art System-on-Chip (SoC) and find
the frequency fefficient corresponding to the energy efficient
scheduling.

IV. PLATFORM CHARACTERIZATION

A. Platform selection: focus on 28 nm Exynos 5410

In our experiments, an Exynos 5410 SoC is used. This SoC
is based on a big.LITTLE ARM configuration with four ARM
Cortex-A15 cores and four ARM Cortex-A7 cores providing
a set of 17 DVFS configurations from 250 MHz to 1.6 GHz.
Only four cores can run at a time and all cores share the same
working frequency. From 250 MHz to 600 MHz, the SoC uses
the Cortex-A7 cluster. From 800 MHz to 1.6 GHz, the Cortex-
A15 cluster is used. This platform provides DVFS and DPM.

B. Building a power model from measurements

For conciseness reasons, applications are considered to
necessitate all the processing cores in the system. It means
that all the available cores are used. The SoC is considered
as a whole and the power consumption is measured for
an intensive processing. The power model is derived from
effective measurements using the stress benchmark. This
benchmark is widely used for energy characterization because
of its capability to tune the stress parameters [9]. It is run
under Linux on four threads with all the available DVFS
configurations provided by the SoC. In Figure 3, the power
consumption is depicted as a function of the processing
frequency and is normalized versus the maximum frequency
fmax = 1600MHz. As expected, the minimum power state is
attained when the frequency is minimum.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

Normalized Frequency

Po
w

er
co

ns
um

pt
io

n
(W

)

Fig. 3. Power consumption vs. operating frequency with 4 fully loaded cores
on an Exynos 5410

Section III-B establishes the relation between the power
and the energy per cycle of processing. At the system level,
the energy per cycle can be computed as a function of the
processing frequency from power and time measurements.
Figure 4 depicts the energy behaviour of the system. Contrary
to the power, the most energy efficient state is not reached
at the minimum frequency fminimun. The optimal frequency
fefficient is 15 % more energy efficient than the minimum
frequency for the Cortex-A7 cluster. It is also the case for the
complete system that includes both a Cortex-A7 cluster and
a Cortex-A15 cluster. These measurements confirm the initial
model depicted in Figure 2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Normalized Frequency

N
or

m
al

iz
ed

E
ne

rg
y

Four cores

1.0

Cortex A7
Energy Efficient

 frequency

Cortex A15 Cluster

Cortex A7 Cluster

Cortex A15
Energy Efficient

 frequency

Fig. 4. Energy per cycle vs. operating frequency with 4 fully loaded cores
on an Exynos 5410

Approximation of the platform power characteristics: In
order to optimize the frequency, we build a regression model
that computes the power as a function of the processing fre-
quency. The model aims at fitting and interpolating the power
measurement. Since these variables are used in normalized
ranges, they can be considered unit-less and in the range of
[0 - 1]. We used Levenberg-Marquardt’s algorithm [11] to
minimizes the error between the model and the real data. The
goal is to define a curve as close as possible to the data values
in Figure 4. The obtained equation is:

Ecycle(fnorm) = p0
1

fnorm
+ p1fnorm + p2f

3
norm (5)

with p0 = 0.1730, p1 = 0.1564 , p2 = 0.3367.

Figure 6 shows the energy function used in the optimization
problem together with the actual measurements. The modeling
errors are close to the measurement accuracy.

V. APPLICATION MODELING

A. From static Dataflow to real-time constraints estimation

Dataflow modeling is used in this paper to assist the
operating system in finding the adequate processing frequency.
Modeling a real-time application with an SDF enables an off-
line analysis by the designer. For simplification reasons, this
study is limited to SDF graphs with only data parallelism
and a succession of actors such as in Figure 5. Each actor
is annotated by a weight representing the number of processor
cycles necessary to execute it. This number can be either an
exact number in case of a completely deterministic execution
or a Worst Case Execution Time (WCET) in case of varying
loads. For signal processing applications like filtering and
interpolation, the processing is independent from the data
content and static dataflow can be used to model the system
at a high level of abstraction [3]. Thus, the overall complexity
can be estimated and used to compute the energy efficient
frequency of the system. Such a description is a precious
tool to make early-design trade-offs and verification of the
throughput requirements of the application.

For a given number of processing cores, the SDF graph can
provide the number of instructions that need to be executed
by each core before reaching the deadline. The appropriate

in out
actor 2

out
actor 1

in out
actor 3 actor 4

in

w1 = 1000 w2= 10 w3= 4000 w4= 200

Fig. 5. Example of a dataflow application.

processing frequency of operation of the processor fk can
then be derived.fi,k is a vector where each entry matches the
instance of actor k on a given processor i. Because of hardware
and technology constraints, the operating frequency is bound
by a minimum fminimum and a maximum fmaximum. The
vector wk corresponds to the work to be executed for each
actor k (in cycles).

An optimisation process is conducted, based on the appli-
cation SDF graph, the platform model and the energy model.

B. Frequency optimization process

The goal of the optimization is to find the most energy
efficient frequency for each actor in the SDF graph while
satisfying the global application real-time constraints. The
problem can be formulated as follows:

minimize
fi

N∑
i=1

wiEcycle(fnorm)

subject to
N∑
i=1

wi

fi
≤ Deadline

fi ≥ fmin

fi ≤ fmax

(6)

where fnorm is the normalized frequency. The trend of
Ecycle(f) function is convex as shown in Figure 5. The
Ecycle(f) modeling function is computed with the convex
polynomial approximation from equation 5.

0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
x410

−9 Energy4measurements4while4processing

4

measurements
interpolated

E
ne

rg
y4

pe
r4

cy
cl

e4
wJ

/c
yc

le
h

Normalized4Frequency4-4A74cluster

Fig. 6. Energy interpolated function used in the optimization problem

The Disciplined Convex Programming technique [4] is
used to solve the problem. Convex problems are proven to
be solved in polynomial time. The output values are obtained
with the CVX tool [7], a convex optimization solver. The energy
model and constraints are given as formulated in problem 6.

TABLE I. ENERGY MEASUREMENTS OF THE COMPUTE SYSTEM INCLUDING THE APPLICATION, THE RUNNING OPERATING SYSTEM AND THE POWER
MEASUREMENTS

Processing Frequency 250 300 350 400 450 500 550 600
Percentage of processing (%) 100 85 73 64 57 51 47 43
Energy (Joules) 1.15 1.10 1.08 1.19 1.34 1.52 1.71 1.89
Gain vs as-fast-as-possible(%) 39.2 41.6 42.6 37.25 28.90 19.58 9.53 0

C. Experimental Verification on the Exynos SoC

The dataflow example of Figure 5 is implemented on the
Exynos 5410 where the power and energy characteristics are
derived from Figure 6. To illustrate the energy properties of the
scheduling strategies, we focus on the Cortex-A7 cluster. The
Cortex-A7 cluster shows clearly a energy efficient processing
frequency at f = 350MHz.
DVFS is supported from 250 MHz to 600 MHz with steps of
50 MHz. The DPM - or deep sleep mode - is implemented
through cluster migration, i.e. all running processes are mi-
grated to the A15 cluster so the A7 cores can enter into a
deep sleep mode. The time needed to switch frequencies or
to migrate task is small enough on this platform and can be
neglected [8]. The sensor logs the power consumed by the
Cortex-A7 cluster. The application is run on top of of a Linux
operating system.

In Table I, the performance of each available running fre-
quency of the SoC is given. If the operating system uses the as-
fast-as-possible policy, the energy consumption is 1.89J. The
as-slow-as-possible policy reduces the energy consumption by
39%. The most energy efficient normalized frequency, closest
to 0.58 ∗ 600MHz, achieves 6% of further energy savings.
The experimental results thus confirm the theoretical ones.

Compared to the gains obtained by simulation in Figure 4,
the energy gains are slightly under the predicted ones for
several reasons. First, the SoC cannot enter into a zero energy
mode and needs some energy to idle whereas the model
assumes null energy consumption in sleep mode. Moreover,
the energy probes themselves need energy to perform the
measurements. In future work, an external energy probe will
be tested to enhance the accuracy of the measurements.

VI. CONCLUSIONS

This paper proposes a energy efficient programming policy
that exploits the properties static dataflow graphs namely fixed
processing load and bounded by a deadline constraint. We
compare the typical policies as-slow-as possible and as-fast-
as possible of Linux on-demand and performance governors
to a more efficient one using both DVFS and DPM. Thanks
to an energy model of the platform, the operating system
can determine an energy efficient processing frequency that is
different from the minimum system frequency. The model is
tested on a 28 nm big.LITTLE SoC and shows up to 42.6 % of
energy saving compared to the as-fast-as possible scheduling
and 6% when compared to the as-slow-as possible. In future
work, dynamic applications will be considered and on-line
convex optimizer will be included into the operating system.

VII. ACKNOWLEDGMENTS

This work is partially supported by BPI France, Region Ile-
de-France, Region Bretagne and Rennes Metropole through the
GreenVideo Project.

REFERENCES

[1] G. Aupy, A. Benoit, F. Dufossé, and Y. Robert. Reclaiming the energy
of a schedule: models and algorithms. Concurrency and Computation:
Practice and Experience, 25(11):1505–1523, 2013.

[2] L. Benini and G. DeMicheli. Dynamic power management: design
techniques and CAD tools. Springer Science & Business Media, 2012.

[3] S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala.
Handbook of signal processing systems. Springer Science & Business
Media, 2013.

[4] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[5] D. Brodowski. Cpu frequency and voltage scaling code in
the linux(tm) kernel. https://www.kernel.org/doc/Documentation/cpu-
freq/governors.txt, 2013.

[6] P. De Langen and B. Juurlink. Leakage-aware multiprocessor schedul-
ing for low power. In Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, pages 8–pp. IEEE, 2006.

[7] M. Grant, S. Boyd, and Y. Ye. Cvx: Matlab software for disciplined
convex programming, 2008.

[8] S. Holmbacka, J. Keller, P. Eitschberger, and J. Lilius. Accurate energy
modelling for many-core static schedules. In Parallel, Distributed and
Network-Based Processing (PDP), 2015 23rd Euromicro International
Conference on, 2015.

[9] S. Holmbacka, E. Nogues, M. Pelcat, S. Lafond, and J. Lilius. Energy
efficiency and performance management of parallel dataflow applica-
tions. In The 2014 Conference on Design & Architectures for Signal
& Image Processing, 2014.

[10] S. Holmbacka, E. Nogues, M. Pelcat, S. Lafond, D. Menard, and
J. Lilius. Energy-awareness and performance management with parallel
dataflow applications. Journal of Signal Processing Systems, pages 1–
16, 2015.

[11] K. Iondry. Iterative Methods for Optimization. Society for Industrial
and Applied Mathematics, 1999.

[12] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage
scaling for real-time embedded systems. In Proceedings of the 41st
annual Design Automation Conference, pages 275–280. ACM, 2004.

[13] W. Kim, D. Shin, H.-S. Yun, J. Kim, and S.-L. Min. Performance
comparison of dynamic voltage scaling algorithms for hard real-time
systems. In Real-Time and Embedded Technology and Applications
Symposium, 2002. Proceedings. Eighth IEEE, pages 219–228, 2002.

[14] E. Lee, D. G. Messerschmitt, et al. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[15] A. Nelson, O. Moreira, A. Molnos, S. Stuijk, B. T. Nguyen, and
K. Goossens. Power minimisation for real-time dataflow applications.
In Digital System Design (DSD), 2011 14th Euromicro Conference on,
pages 117–124. IEEE, 2011.

[16] E. Nogues, R. Berrada, M. Pelcat, D. Menard, and E. Raffin. A dvfs
based hevc decoder for energy-efficient software implementation on
embedded processors. In Multimedia and Expo (ICME), 2015 IEEE
International Conference on, pages 1–6. IEEE, 2015.

