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Abstract

Background: Seven donkey breeds are recognized by the French studbook and are characterized by a black, bay
or grey coat colour including light cream-to-white points (LP). Occasionally, Normand bay donkeys give birth to
dark foals that lack LP and display the no light points (NLP) pattern. This pattern is more frequent and officially
recognized in American miniature donkeys. The LP (or pangare) phenotype resembles that of the light bellied
agouti pattern in mouse, while the NLP pattern resembles that of the mammalian recessive black phenotype; both
phenotypes are associated with the agouti signaling protein gene (ASIP).

Findings: We used a panel of 127 donkeys to identify a recessive missense c.349 T > C variant in ASIP that was
shown to be in complete association with the NLP phenotype. This variant results in a cysteine to arginine
substitution at position 117 in the ASIP protein. This cysteine is highly-conserved among vertebrate ASIP proteins
and was previously shown by mutagenesis experiments to lie within a functional site. Altogether, our results
strongly support that the identified mutation is causative of the NLP phenotype.

Conclusions: Thus, we propose to name the c.[349 T > C] allele in donkeys, the anlp allele, which enlarges the panel
of coat colour alleles in donkeys and ASIP recessive loss-of-function alleles in animals.
Background
Mutations in the gene ASIP (agouti signaling protein) re-
sult in various coat patterns in domestic mammals
(http://omia.angis.org.au) including mouse (www.inform-
atics.jax.org), dog [1], cat [2], rabbit [3], horse [4], sheep
[5-8], rat [9] and alpaca [10]. Only a few coat colours, pat-
terns and textures have been described in domestic don-
keys (Equus asinus). In donkeys, the coat colour can be
white or coloured, i.e. black, bay, grey and red with or
without white spotting; hair texture is variable and in-
cludes the longhair phenotype, in addition to the common
shorthair phenotype. Recently, we started to investigate
the molecular aetiology of these phenotypes and identified
three underlying loss-of-function mutations in the MC1R
(melanocortin 1 receptor) and FGF5 (fibroblast growth
factor) genes that are responsible respectively, for the red
colour and longhair phenotype in donkeys [11,12]. Most
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coloured donkeys are born with a pangare or light points
(LP) pattern that associates cream to grey-white hair on
the belly, around the muzzle and around the eyes. In the
American miniature donkey breed, all coat colours and
patterns are admissible and foals with a no light points
(NLP) coat are often obtained from LP breeding stock
(Figure 1). This has led breeders to suspect a recessive in-
heritance pattern for the NLP pattern. For the seven French
donkey breeds (Pyrenean, Berry Black, Poitou, Cotentin,
Provence, Bourbonnais and Normand), the NLP pattern is
not officially recognized. However, dark NLP donkeys are
occasionally born to bay Normand parents (Figure 1).
Methods
Animals and ethics statement
One hundred and twenty seven donkeys from six breeds
were included in the study. They were all sampled in
France between September 2012 and October 2014
and included Normand (n = 35), Provence (n = 14), Poitou
(n = 13), Pyrenean (n = 13) and Berry Black (n = 2) breeds
and miniature donkeys (n = 50).
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Figure 1 No light points phenotype in donkeys. Most coloured donkeys show a light cream to white coat on their belly and around their
eyes and muzzle (Normand donkey, left). Bay Normand donkeys occasionally give birth to no light points (NLP) donkeys that are not officially
recognized by the studbook (NLP donkeys, middle). The NLP phenotype is recognized in American miniature donkeys (NLP American miniature
donkey, right).
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All donkeys were included at the owners’ request. Pic-
tures and hair samples were sent directly by owners or
collected by a veterinarian (MA). All animals were
client-owned donkeys on which no harmful invasive pro-
cedure was performed; thus, according to the legal defi-
nitions in Europe (Subject 5f of Article 1, Chapter I of
the Directive 2010/63/UE of the European Parliament
and of the Council), no animal experiment was carried
out.

DNA extraction
DNA was extracted from hair roots using a Maxwell® 16
Instrument (Promega Corporation, Madison, USA), ac-
cording to the manufacturer’s protocol.

Sequencing of ASIP and genotyping
Reference genomic sequences were extracted from
Ensembl (Equine ASIP gene, ENSECAG00000004241).
PCR and sequencing primers were designed using Pri-
mer3 [13]. The three exons were amplified using three
sets of primers [See Additional file 1: Table S1]. PCR
amplicons were sequenced using Sanger dideoxy sequen-
cing in both forward and reverse directions by GATC
Biotech (GATC Biotech AG, Konstanz, Germany). Elec-
tropherograms were manually inspected with Chromas
Lite (Technelysium Pty Ltd, South Brisbane, Australia).
Multiple alignments were performed using Multalin
([14]; http://multalin.toulouse.inra.fr).

Protein sequence comparisons and impact of sequence
variations
ASIP amino acid sequences from various species were col-
lected from Ensembl (mouse: ENSMUST00000109697;
horse: ENSECAT00000004772; cow: ENSBTAT00000048
322; sheep: ENSOART00000010128; dog: ENSCAFT0000
0038625; cat: ENSFCAT00000011040; human: ENST000
00568305; chicken: ENSGALT00000044768; zebrafish:
ENSDART00000113083). Multiple alignments were per-
formed using Multalin ([14]; http://multalin.toulouse.inra.
fr). The putative impact of missense mutations was assessed
using three different software, namely PolyPhen-2 (Hum-
Var-trained PolyPhen-2 designed to distinguish mutations
with drastic effects from other variations, including abun-
dant mildly deleterious alleles, ([15]; http://genetics.bwh.
harvard.edu/pph2/), SNAP ([16]; www.rostlab.org/services/
snap/submit) and PROVEAN ([17]; http://provean.jcvi.org/
seq_submit.php). The different domains of ASIP were sche-
matized according to the previously published ASIP struc-
ture in mouse [18].

Accession numbers
Genomic coding sequences of ASIP from bay LP and
NLP Normand donkeys were submitted to GeneBank.
Accession numbers are KJ126712 for the LP allele and
KP717040 for the NLP mutant allele.

Findings
Because whole-genome mapping tools are still lacking
for donkey, we decided to screen directly for variants
that affect ASIP function in two NLP and two LP con-
trol Normand donkeys that originated from a compre-
hensive panel of 127 donkeys from six breeds. The
Ensembl ASIP equine genomic sequence was used to de-
sign three sets of intronic primers [See Additional file 1:
Table S1] that allowed successful amplification of the
three exons of the donkey ASIP gene. Then, we se-
quenced the three ASIP exonic amplicons and per-
formed pair-wise base-to-base comparisons of the
sequences between the LP and NLP donkeys and a horse
reference sequence; we found that the coding sequences
and the sequences that covered intron-exon boundaries
were highly conserved between horse and donkey and
detected only two variants between donkey sequences
and the bay horse reference sequence [See Additional
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Table 1 Genotypes for the c.349T > C variant in donkeys

T/T T/C C/C Total

LP Berry Black donkeys 2 0 0 2

LP Pyrenean donkeys 13 0 0 13

LP Poitou donkeys 13 0 0 13

LP Provence donkeys 12 2 0 14

LP Normand donkeys 26 6 0 32

NLP Normand donkeys 0 0 3 3

NLP miniature donkeys 0 0 6 6

LP miniature donkeys 38 6 0 44

Total 104 14 9 127

LP: light points, NLP: no light points phenotypes. Homozygous mutants are bolded.
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file 1: Table S2]. Only the c.349 T > C SNP (single nu-
cleotide polymorphism) produced a substitution p.
(Cys117Arg) and was consistent with the recessive mode
of inheritance of the NLP pattern. Indeed both NLP
donkeys were homozygous C/C for the mutant allele of
c.349 T > C SNP, while one control donkey was hetero-
zygous C/T, and the other control donkey and the bay
horse were homozygous T/T for the reference allele [See
Additional file 1: Table S2]. The second non-coding vari-
ant was located in the 3’UTR (untranslated region) region
Figure 2 Alignment between ASIP protein sequences from 10 vertebr
collected from Ensembl (mouse: ENSMUST00000109697; horse: ENSECAT00
dog: ENSCAFT00000038625; cat: ENSFCAT00000011040; human: ENST00000
ASIP sequences are identified with the name of the species on the left. The m
Non-conserved residues in the 10 species analyzed are shown in grey. Conser
represented by black dots in other sequences. Dashes represent deletions. Th
murine C113 residue is circled. The 10 functional cysteine residues that have b
stars. Non-agoutimutations identified in other domestic mammalian species a
consist in missense mutations and a 19 amino acids (aa) in-frame deletion. Ra
regulatory mutations are not shown.
of the ASIP gene and was not associated with the NPL
phenotype [See Additional file 1: Table S2].
PROVEAN, PolyPhen-2 and SNAP predicted that the

p.(Cys117Arg) substitution was deleterious. Hence, the
complete cohort of 127 donkeys was genotyped for SNP
c.349 T >C. The nine NLP donkeys, including three NLP
Normand and six NLP miniature donkeys, were all homo-
zygous C/C, while the 118 LP donkeys were either homozy-
gous T/T (n = 104) or heterozygous C/T (n = 14). The three
NLP Normand donkeys were born to a single male mated
with three females, which were all four heterozygous C/T.
The complete concordance between the recessively-
inherited NLP pattern and the c.349 T >C variant (Table 1)
supported our hypothesis that this SNP is associated with
the NLP trait (Chi square test p = 1.86 × 10−29).
To estimate the functional importance of the donkey

ASIP cysteine 117 amino acid, we aligned the donkey ASIP
protein sequence with the ASIP sequences of nine verte-
brates and found that is was fully conserved (Figure 2).
This result confirmed the 100% conservation previously re-
ported for the 10 cysteine amino acids of the C-terminal
Cys-rich domain of ASIP [18-21] the functional role of
which was investigated by mutagenesis experiments. Perry
and collaborators reported that in mouse, 13 mutated ASIP
proteins displayed a partial (n = 4) or a total (n = 9) loss of
activity [21]. In particular, they found that eight of the 10
ate species. ASIP amino acid sequences from various species were
000004772; cow: ENSBTAT00000048322; sheep: ENSOART00000010128;
568305; chicken: ENSGALT00000044768; zebrafish: ENSDART00000113083).
ouse ASIP sequence (reference sequence) is at the top of the alignment.
ved residues are indicated in black within the reference sequence and
e conserved C117 residue in donkey ASIP that corresponds to the
een shown to be involved in the activity of ASIP are indicated with
re reported above the corresponding position. Dog and alpaca mutations
bbit, rat, cat and horse mutations are frameshifts. Mouse and sheep
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cysteines located in the Cys-rich C-terminal tail of ASIP,
including the murine cysteine 113 that corresponds to
the donkey cysteine 117, were critical for protein activ-
ity [21]. Altogether these results strongly support that,
in donkeys, the ASIP cysteine 117 has an essential role
for ASIP function.
In conclusion, the complete association between the

c.349 T > C mutation and the NLP phenotype and its in-
heritance pattern, on the one hand, and the high prob-
ability that the resulting substitution of the conserved
cysteine 117 residue leads to loss of function of the mu-
tated protein, on the other hand, support that this muta-
tion is responsible for the NLP phenotype in donkeys.
We thus propose to name the c.[349 T > C] allele, which
can be easily detected with a DNA test, the anlp allele in
donkeys.

Additional file

Additional file 1: Table S1. PCR and sequencing primers. Sequences
and PCR temperatures from the intronic primers that were used to
amplify and sequence the three ASIP coding exons. Table S2. Genomic
variants in ASIP identified between donkey sequences and the horse
reference sequence. Sequence variants in ASIP identified between two
NLP donkeys, two control donkeys and the horse reference sequence
(coding sequences and 5’end of the 3’UTR).
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