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This letter presents a three-dimensional model to describe the complex behavior of nonlinear meso-

scopic elastic materials such as rocks and concrete. Assuming isotropy and geometric contraction

of principal stress axes under dynamic loading, the expression of elastic wave velocity is derived,

based on the second-order elastic constants ðk; lÞ, third-order elastic constants (l, m, n), and a pa-

rameter a of nonclassical nonlinear elasticity resulting from conditioning. We demonstrate that

both softening and recovering of the elastic properties under dynamic loading is an isotropic effect

related to the strain tensor. The measurement of the conditioning is achieved using three polarized

waves. The model allows the evaluation of the third-order elastic constants uncoupled from condi-

tioning and viscoelastic effects. The values obtained are similar to those reported in the literature

using quasi-static loading.VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4945680]

In 1937, Murnaghan1 proposed a general tensorial

description of the nonlinear stress-strain relationship in the

elastic isotropic materials. The constitutive relation of the

materials was derived from the elastic energy and expressed

in terms of the invariants of the Lagrangian finite strain ten-

sor. Hughes and Kelly2 simplified Murnaghan’s theory by

considering the particular case of acousto-elasticity experi-

ments, where a pulse of relatively small amplitude (probe) is

used to probe the local change of elastic wave speed induced

by a large deformation (pump). In these conditions, it is pos-

sible to define the Lagrangian strain tensor in terms of small

perturbations and use an infinitesimal strain superimposed to

a triaxial finite strain. It follows then that the elastic wave

velocities can be expressed as a function of the applied static

stress through the coupling with the triaxial finite strain,

using the third order elastic constants (l, m, n) in the elastic

tensor. Since the 1970s, the experimental determination

of the third order elastic constants under static loading condi-

tions has been successfully conducted for a number of appli-

cations, including the quantification of residual stresses in

solids.3,4 Various authors have also reported the complex

nonlinear behavior of rocks and concrete under dynamic

solicitation.5 In addition to the classical nonlinearity

described by third-order elastic constants, they also reported

nonclassical nonlinearity, including the presence of hystere-

sis with end-point memory in the stress-strain relationship,

phase shifts in resonance experiments, amplitude-dependent

attenuation, and conditioning.6,7 Conditioning refers to the

softening of the material when dynamically loaded. Such

behavior cannot be explained by Murnaghan’s theory.

McCall and Guyer8,9 and Johnson and Sutin10 separated the

effects. A one-dimensional equation of state (r ¼ Kð1þ b�
þ d�2Þ�þ c½�; _��) was proposed to combine classical (b, d)

and nonclassical (c) contributions in the description of the

nonlinear elasticity. Recently, Renaud et al.6,7 developed an

experimental methodology termed Dynamic Acousto-Elastic

Testing (DAET) to obtain the nonlinear parameters of solids

under dynamic loading, using the one-dimensional equation

of state proposed in Ref. 8. It is shown that the parameters

quantifying classical nonlinearity are strain dependent.

However, using the one-dimensional equation of state, the

strain induced anisotropy described by Hughes and Kelly2 is

neglected. Nonlinear anisotropic effects are also reported in

unconsolidated granular media (e.g., packed glass beads)11

during dynamic solicitation, where Hertzian contacts occur

when the strain reaches a sufficiently large amplitude. The

resulting nonlinear behavior is anisotropic and probed with

different polarized waves. However, the equation of state

proposed for unconsolidated granular media is not applicable

to nonlinear mesoscopic elastic materials since it is limited

to one scale (i.e., all beads have the same size) and nonli-

nearity is only governed by the Hertzian contacts between

the beads.

The aim of this paper is to combine Murnaghan’s theory

with a tensorial formulation of nonequilibrium dynamics.

The study describes how conditioning is introduced in the

elastic tensor and its influence on the elastic wave velocities.

The model is validated using DAET experiments. In these

experiments, the sample is probed with three polarized

pulses (probe with low strain) while it is excited in a longitu-

dinal mode of vibration (pump with large strain).

The influence of conditioning appears in the elastic bulk

modulus K.8–10 This effect implies that the local elastic

energy of the solid body is not a constant. It is temporarily

converted into nanoscale potential energy which does not

contribute to the elasticity any more.12–14 The origins of

these effects occur at the microstructural scale within micro-

cracks and grain boundaries.8,15 Mortar is an amorphousa)lott@lma.cnrs-mrs.fr
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medium essentially made of sands and cement paste. The

contact zones appear at grain boundaries. Microstructural

scales of mortar range from lm for cement paste to hundreds

of lm for sand. The length scale of contacts should then be

smaller, ranging from nm to lm. At a macroscopic scale, the

loss and recovery of elastic energy observed in acoustic

experiments is well described by thermodynamic process. In

this process, a volume with a given density of discrete

unformed bonds is represented as a smooth spectrum of

energy barriers.12,16 A uniform distribution of nonlinear

sources implies an isotropic effect on the elastic response.

Under those assumptions, a three-dimensional tensorial

strain field defined by six components (the most general

case) is considered. The symmetric property of the strain ten-

sor implies the existence of principal stress axes through its

diagonalization: locally, the strain effect may always be seen

as “compressive.” To quantify the influence of conditioning,

the stress/strain relationship is written on the principal strain

directions with contracted axes. The tensorial product

between the strain and stress vector bases dij is the natural

basis for the elastic tensor and should now include the condi-

tioning. With ni as a principal strain direction, the condition-

ing is a scalar quantity a and D�i is the strain amplitude in a

basis formed by its principal axes. The new product

dij ¼ nStressi � nStrainj ! dijð1� aðD�iÞÞ ¼ Kij; (1)

may explain the influence of conditioning on the 1st order

elastic tensor. It means that an anisotropy induced by condi-

tioning is actually an isotropic effect relative to the strain

tensor on its principal axes. In case of textured media with

oriented micro-cracks, those assumptions may not be valid

anymore in the sense that a may no longer be a scalar.

Hughes and Kelly2 formulated the elastic isotropic

media with classical nonlinearity under loading as

Cijkl ¼ kþ2 l�k�mð ÞTr �ð Þþ2 kþmð Þ �iþ �kð Þ�2l�i
h i

� dijdkl
� �

þ lþ kþm�lð ÞTr �ð Þþ2l �iþ �jþ �lð Þ
� �

� dikdjlþdildjk
� �

þ
1

2
n
X

v

divljvkþdivkjvl

� �

�v; (2)

where �i is the strain, k and l are the Lam�e elastic constants,

and (l, m, n) the third order elastic constants derived by

Murnaghan’s equation of state. Using Eq. (2) and the new

value of dij defined in Eq. (1), the interaction between the

conditioning and classical nonlinearity can be entirely

described.

Following the experimental procedure used by Renaud

et al.,6 but using three polarized waves, the four nonlinear pa-

rameters ðl;m; n; aÞ are evaluated experimentally in a pris-

matic mortar sample with dimensions 28:5� 2:5� 2:5 cm3.

The Lam�e elastic constants are determined experimentally via

the measurements of the time of flight of compressional and

shear waves: k ¼ 18:5GPa and l¼ 10GPa. The position of

the maximal strain amplitude is found by combining numeri-

cal simulations with experimental verification, according to

the method proposed by Payan et al.17 This location was

selected to position shear and compressional ultrasonic trans-

ducers. A short pulse centered at 1MHz with a repetition rate

of 2.5 kHz was used. Signals were recorded using a 12-bit

Lecroy HDO 4024 oscilloscope at a 50MHz sampling rate.

As specified by Rivière et al.,7 the time of flight of each pulse

needs to be less than a tenth of the period of the low-

frequency excitation (pump), ensuring a quasi-constant strain

during the travel of the ultrasonic probe wave. Seven ampli-

tudes of low-frequency excitation were used and for each of

them, the three velocity measurements are also performed

three times, paying attention that the medium has fully recov-

ered its undisturbed elastic properties between each test. Even

though a steady-state regime is not reached during the experi-

ment, it is assumed that the nonlinear behavior stabilizes after

several cycles of the low-frequency excitation.7 In addition,

the strain field is considered uniform on the entire high-

frequency propagating zone. For the first longitudinal mode,

the strain tensor is already diagonal and can be written as

� ¼

 

� 0 0

0 ��� 0

0 0 ���

!

: (3)

The Christoffel tensor Cil ¼ Cijklnjnk can be calculated using

the strain field given by Eq. (3) and the elastic tensor given

by Eq. (2). Through its diagonalization, the speed of sound

for three polarized waves is obtained in any direction. Fig. 1

presents the “surface speed” obtained for longitudinal and

shear (vertical and horizontal with respect to the geometric

plan (2, 3)) waves. Under dynamic loading, the isotropic sur-

face speed is contracted due to conditioning and oscillates

with the instantaneous strain field � due to the classical non-

linear elasticity. On the “2” axis direction (h¼ 0), the wave

speeds are expressed as

qV2
22 ¼ C2222 ¼ kþ lð Þ þ 2 l� lð ÞTr �ð Þ þ 4 kþ mþ lð Þ�2

� �

K
2
22 4að Þ

qV2
21 ¼ C1212 ¼ lþ kþ m� lð ÞTr �ð Þ þ 2l �1 þ 2�2ð Þ

� �

K22K11 �
n

2
�3K11K22K33 4bð Þ

qV2
23 ¼ C2323 ¼ lþ kþ m� lð ÞTr �ð Þ þ 2l �2 þ 2�3ð Þ

� �

K22K33 �
n

2
�1K11K22K33: 4cð Þ

8

>

>

>

>

<

>

>

>

>

:

Terms in
Q

i;jKij lead to quadratic and cubic effects of ðaD�Þ.
This product is relatively small for mortar (10�3�10�4 with

a � 100 and D� � 10�6).17 KijKkl and KijKklKmn can then be

simplified to dijdklð1� aðD�i þ D�kÞÞ and dijdkldmnð1� a

ðD�i þ D�k þ D�mÞÞ, respectively, in order to keep only lin-

ear dependencies with strain amplitudes. The elasticity
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tensor now depends on the “instantaneous” strain � and the

strain amplitude D�. This leads to the expression of the dif-

ferential dCijkl as

dCijkl ¼
@Cijkl

@�
d�þ

@Cijkl

@D�
dD�: (5)

Under those assumptions, oscillations in the elastic modu-

lus are proportional to a sinusoidal function. Then, the aver-

age over time of d� being zero, the conditioning can be

extracted as

DV2i

V0
2i

� 	

T

¼
1

2

DC2i2i

C0
2i2i

� 	

T

:

Then

DV22
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� 	

T
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� 	

T
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D� 6bð Þ

DV23
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>
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>
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>
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>

<

>

>

>

>

>

>

>

>

:

These expressions give redundant information which allows

verifying the validity of the measurements. For each strain

amplitude variation D�, the relative change in velocity is

evaluated. It is worth mentioning that the material is here

under longitudinal dynamic loading and the principal strain

axes match vectors of the geometric basis ~ni . A moving av-

erage window is applied to the relative wave speed shifting

to remove the effect of the instantaneous strain. The values

obtained for the three polarized pulses are shown in Fig. 2.

A greater effect on the shear pulse W21, polarized along

the axis of maximum strain and a similar one on the shear

W23 and longitudinal W22 pulses, polarized perpendicularly

to the axis of maximum strain are well predicted by Eq. (6).

The conditioning parameter is found to be consistent

over the three polarization measurements with a ¼ 85610.

Murnaghan constants are then obtained by solving for the

three unknowns in Eqs. (4a)–(4c). Velocity measurements

highly depend on the strain and strain rate through the

nonlinear viscosity. Like in rocks, the attenuation of the

probe pulse is different in compression or tension states. By

dispersing the high-frequency pulses, dynamic strain oscilla-

tions should produce some hysteretic effects on the modulus

measurements. Because the elastic model proposed in this

letter is undamped, it is necessary to minimize the effects of

strain induced attenuation when inverting Eqs. (4a)–(4c).

Time of flight is obtained by cross-correlating emitted with

transmitted signals. This measurement method may induce

errors due to dissipative effects.18 With ka< 1 (k the wave

number and a the characteristic length of a scatterer ranging

from 50 to 200 lm) for the probe wave, this experiment is

conducted in a Rayleigh diffusive regime. Considering the

ballistic signals, the cross-correlation method gives an aver-

age of viscoelastic effects on the pulse bandwidth. Relative

Amplitude Modulation (RAM: DA=A0) of the transmitted

pulses for each polarization brings some helpful information

to separate viscosity effects from purely elastic ones. RAM

is calculated starting from the first transmitted pulse, before

low frequency activation. Measured effects are then only

produced by the strain field.19 Effects in the maximum com-

pression zone are close to zero, as in most of the experimen-

tal data available in the literature in similar materials.6,7

Thus, at maximum compressive strain amplitude (negative

values), the low frequency is perfectly in phase opposition

with respect to the relative velocity changes. Consequently,

to avoid viscoelastic effects on the measurement of the

Murnaghan constants, Eqs. (4a)–(4c) are inverted at the com-

pression maximum only. As shown in Fig. 3, the Murnaghan

constants (l, m, n) are independent of the strain amplitude,

thus demonstrating the validity of the model. The average

values of (l, m, n) obtained herein are reported in Table I.

These values are in good agreement with the previously

reported values for concrete obtained using static acousto-

elastic testing. Likewise, Murnaghan constants are negative

in rocks, as measured by Winkler and Xingzhou.20

FIG. 1. “Surface Speed” computed analytically for the three polarized (pres-

sure WP, horizontal WSH, and vertical WSV shear) pulses used in the experi-

ments as a function of the direction of propagation h. Because of

conditioning, the strain amplitude measured by the probe depends on the

wave polarization and direction of propagation.

FIG. 2. Linear regression of h
DVij

Vij
i over strain amplitude D� for the three

polarized (pressureW22, horizontal W23, and verticalW21 shear) waves prop-

agating on the “2” axis direction. The slopes are linked to the conditioning

based on Eq. (6).
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After the low frequency vibration completely vanishes,

a relaxation process occurs in such a class of materials.

TenCate et al.12 suggest a logarithmic time dependency for

the recovery of the Young modulus: DE=E0 ¼ m logðt=t0Þ.
They report a strain amplitude dependence of the slope “m”

as in the present experiments (Fig. 4) using the three polar-

ized waves. As for conditioning, one can observe an aniso-

tropic effect with m21 > m22 ¼ m23. Using the anisotropic

factor extracted from Eq. (1): hDV23=DV21iT ¼ 2�=ð1þ �Þ,
the corrected values for W21 now match m22 and m23. This

result highlights the fact that for both conditioning and slow

relaxation, the induced anisotropy is an isotropic effect

related to the strain tensor, governed by a single scalar

quantity.

In this letter, the three-dimensional nonlinear and none-

quilibrium elasticity under dynamic loading is modeled

using a tensorial approach and is validated experimentally.

The effect of conditioning is uncoupled from the Murnaghan

constants. It is shown that the higher order nonlinear elastic

constants do not depend on the strain amplitude, unlike

previous studies where experimental data are analyzed

with a one-dimensional approximation.6,7 The values of the

Murnaghan constants as well as conditioning reported in

this study are in good agreement with the values reported

for similar materials. The influence of viscoelasticity on the

measurements is highlighted and a way to overcome it is

proposed. It is also reported that despite apparent nonequili-

brium anisotropy, both conditioning and slow dynamics are

actually isotropic effects driven by the strain tensor through

scalar quantities a, l, m, and n. In the future, it would be

interesting to extend the proposed tensorial description of

nonequilibrium dynamics to any kind of dynamic loading

(pump), so that the model applies to not only longitudinal

modes but also torsional and bending modes of vibration.

Such effort would be particularly important to explain the

experimental results presented recently by Remillieux

et al.21 on nonequilibrium dynamics measured globally on

a sample excited by different types of modes. It would also

be interesting to introduce nonlinear viscoelasticity in the

present model, using an approach similar to that proposed

by Favrie et al.22
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