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Abstract. We present the newly developed core concept for the Mul-
tidimensional Knapsack Problem (MKP) which is an extension of the
classical concept for the one-dimensional case. The core for the mul-
tidimensional problem is defined in dependence of a chosen efficiency
function of the items, since no single obvious efficiency measure is avail-
able for MKP. An empirical study on the cores of widely-used benchmark
instances is presented, as well as experiments with different approximate
core sizes. Furthermore we describe a memetic algorithm and a relaxation
guided variable neighborhood search for the MKP, which are applied to
the original and to the core problems. The experimental results show that
given a fixed run-time, the different metaheuristics as well as a general
purpose integer linear programming solver yield better solution when
applied to approximate core problems of fixed size.

1 Introduction

The Multidimensional Knapsack Problem (MKP) is a well-studied, strongly NP-
hard combinatorial optimization problem occurring in many different applica-
tions. It can be defined by the following ILP:

(MKP) maximize z =
n∑

j=1

pjxj (1)

subject to
n∑

j=1

wijxj ≤ ci, i = 1, . . . , m (2)

xj ∈ {0, 1}, j = 1, . . . , n. (3)

Given are n items with profits pj > 0 and m resources with capacities ci > 0.
Each item j consumes an amount wij ≥ 0 from each resource i. The goal is to
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select a subset of items with maximum total profit, see (1); chosen items must,
however, not exceed resource capacities, see (2). The 0–1 decision variables xj

indicate which items are selected.
A comprehensive overview on practical and theoretical results for the MKP

can be found in the monograph on knapsack problems by Kellerer et al. [8].
Besides exact techniques for solving small to moderately sized instances, see [8],
many kinds of metaheuristics have already been applied to the MKP. To our
knowledge, the method currently yielding the best results, at least for commonly
used benchmark instances, was described by Vasquez and Hao [18] and has
recently been refined by Vasquez and Vimont [19]. Various other metaheuristics
have been described for the MKP [5, 3], including several variants of hybrid
evolutionary algorithms (EAs); see [16] for a survey and comparison of EAs for
the MKP.

We first introduce the core concept for KP, and then expand it to MKP with
respect to different efficiency measures. We then give some results of an empirical
study of the cores of widely-used benchmark instances and present the applica-
tion of the general ILP-solver CPLEX to MKP cores of fixed sizes. Furthermore
we present a Memetic Algorithm (MA) and a Relaxation Guided Variable Neigh-
borhood Search (RGVNS) applied to cores of hard to solve benchmark instances.
We finally conclude by summarizing our work.

2 The Core Concept

The core concept was first presented for the classical 0/1-knapsack problem [1],
which led to very successful KP algorithms [9, 11, 12]. The main idea is to reduce
the original problem by only considering a core of items for which it is hard to
decide if they will occur in an optimal solution or not, whereas the variables for
all items outside the core are fixed to certain values.

2.1 The Core Concept for KP

The one-dimensional 0/1-knapsack problem (KP) considers items j = 1, . . . , n,
associated profits pj , and weights wj . A subset of these items has to be selected
and packed into a knapsack having a capacity c. The total profit of the items
in the knapsack has to be maximized, while the total weight is not allowed to
exceed c. Obviously, KP is the special case of MKP with m = 1.

If the items are sorted according to decreasing efficiency values

ej =
pj

wj
, (4)

it is well known that the solution of the LP-relaxation consists in general of
three consecutive parts: The first part contains variables set to 1, the second
part consists of at most one split item s, whose corresponding LP-values is
fractional, and finally the remaining variables, which are always set to zero,
form the third part. For most instances of KP (except those with a very special
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structure of profits and weights) the integer optimal solution closely corresponds
to this partitioning in the sense that it contains most of the highly efficient
items of the first part, some items with medium efficiencies near the split item,
and almost no items with low efficiencies from the third part. Items of medium
efficiency constitute the so called core.

Balas and Zemel [1] gave the following precise definition of the core of a
one-dimensional 0/1-knapsack problem, based on the knowledge of an optimal
integer solution x∗. Assume that the items are sorted according to decreasing
efficiencies and let

a := min{j | x∗j = 0}, b := max{j | x∗j = 1}. (5)

The core is given by the items in the interval C = {a, . . . , b}. It is obvious that
the split item is always part of the core.

The KP Core (KPC) problem is defined as

(KPC) maximize z =
∑

j∈C

pjxj + p̃ (6)

subject to
∑

j∈C

wjxj ≤ c− w̃, (7)

xj ∈ {0, 1}, j ∈ C, (8)

with p̃ =
∑a−1

j=1 pj and w̃ =
∑a−1

j=1 wj . The solution of KPC would suffice to
compute the optimal solution of KP, which, however, has to be already partially
known to determine C. Pisinger [12] reported experimental investigations of the
exact core size. He moreover studied the hardness of core problems, giving also
a model for their expected hardness in [13].

The first class of core algorithms is based on solving a core problem with an
approximate core of fixed size c = {s − δ, . . . , s + δ} with various choices of δ,
e.g. with δ being a constant or δ =

√
n. An example is the MT2 algorithm by

Martello and Toth [9].
Since it is impossible to estimate the core size in advance, Pisinger proposed

two expanding core algorithms. Expknap [11] uses branch and bound for enu-
meration, whereas Minknap [12] (which enumerates at most the smallest sym-
metrical core) uses dynamic programming. For more details on core algorithms
for KP we refer to Kellerer et al. [8].

2.2 The Core Concept for MKP

The previous definition of the core for KP can be expanded to MKP without
major difficulties. The main problem, however, lies in the fact that there is no
obvious efficiency measure.

Efficiency measures for MKP. Consider the most obvious form of efficiency
for the MKP which is a direct generalization of the one-dimensional case:
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ej(simple) =
pj∑m

i=1 wij
. (9)

Different orders of magnitude of the constraints are not considered and a
single constraint may dominate the others. This drawback can easily be avoided
by scaling:

ej(scaled) =
pj∑m

i=1
wij

ci

. (10)

Taking into account the relative contribution of the constraints Senju and
Toyoda [17] get:

ej(st) =
pj∑m

i=1 wij(
∑n

j=1 wij − ci)
. (11)

For more details on efficiency values we refer to Kellerer et al. [8] where a
general form of efficiency is defined by introducing relevance values ri for every
constraint:

ej(general) =
pj∑m

i=1 riwij
. (12)

The relevance values ri can also be seen as kind of surrogate multipliers.
Pirkul calculates good multipliers heuristically [10]. Fréville and Plateau [4] sug-
gested setting

ri =

∑n
j=1 wij − ci∑n

j=1 wij
, (13)

giving the efficiency value ej(fp). Setting the relevance values ri to the values
of an optimal solution to the dual problem of the MKP’s LP-relaxation was a
successful choice in [3], yielding the efficiency value ej(duals).

The MKP Core. Since there are several possibilities of defining efficiency
measures for MKP, the core and the core problem have to be defined depending
on a specific efficiency measure e. Let x∗ be an optimal solution and assume that
the items are sorted according to decreasing efficiency e, then let

ae := min{j | x∗j = 0}, be := max{j | x∗j = 1}. (14)

The core is given by the items in the interval Ce := {ae, . . . , be}, and the core
problem is defined as

(MKPCe) maximize z =
∑

j∈C

pjxj + p̃ (15)

subject to
∑

j∈C

wijxj ≤ ci − w̃i, i = 1, . . . , m (16)

xj ∈ {0, 1}, j ∈ C, (17)

with p̃ =
∑a−1

j=1 pj and w̃i =
∑a−1

j=1 wij , i = 1, . . . , m.
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In contrast to KP, the solution of the LP-relaxation of MKP in general does
not consist of a single fractional split item. But up to m fractional values give
rise to a whole split interval Se := {se, . . . , te}, where se and te are the first
and the last index of variables with fractional values after sorting by efficiency
e. Note that depending on the choice of the efficiency measure, the split interval
can also contain variables with integer values. Moreover, the sets Se and Ce

can have almost any relation to each other, from inclusion to disjointness. For
a “reasonable” choice of e, we expected them, however, to overlap to a large
extent.

If the dual solution values of the LP-relaxation are taken as relevance values,
the split interval Se resulting from the corresponding efficiency values ej(duals)
can be precisely characterized. Let xLP be the optimal solution of the LP-
relaxation of MKP.

Theorem 1.

xLP
j =





1 if ej > 1 ,

∈ [0, 1] if ej = 1 ,

0 if ej < 1 .

(18)

Proof. The dual LP associated with the LP-relaxation of MKP is given by

(D(MKP)) minimize
m∑

i=1

ciui +
n∑

j=1

vj (19)

subject to
m∑

i=1

wijui + vj ≥ pj , j = 1, . . . , n (20)

ui, vj ≥ 0, i = 1, . . . , m, j = 1, . . . , n, (21)

where ui are the dual variables corresponding to the capacity constraints (2) and
vj correspond to the inequalities xj ≤ 1. For the optimal primal and dual solu-
tions the following complementary slackness conditions hold (see any textbook
on linear programming, e.g. [2]):

xj

(
m∑

i=1

wijui + vj − pj

)
= 0 (22)

vj(xj − 1) = 0 (23)

Recall that ej(duals) = pjPm
i=1 uiwij

. Hence, ej > 1 implies pj >
∑m

i=1 wijui,
which means that (20) can only be fulfilled by vj > 0. Now, (23) immediately
yields xj = 1, which proves the first part of the theorem.

If ej < 1, there is pj <
∑m

i=1 wijui which together with vj ≥ 0 makes
the second factor of (22) strictly positive and requires xj = 0. This proves the
theorem since nothing has to be shown for ej = 1. ut

It follows from Theorem 1 that Se ⊆ {j | ej = 1, j = 1, . . . , n}. It should
be noted that the theorem gives only a structural result which does not yield
any direct algorithmic advantage to compute the primal solution xLP since it
requires knowing the dual optimal solution.
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3 Experimental Study of MKP Cores and Core Sizes

3.1 MKP Cores and Efficiency Measures

In order to analyze the core sizes in dependence on different efficiency values,
we performed an empirical in-depth examination on smaller instances of Chu
and Beasley’s benchmark library3. Chu and Beasley [3] generated the instances
as suggested by Fréville and Plateau [4]. The instance classes consist of ten
instances each with n ∈ {100, 250, 500} items, m ∈ {5, 10, 30} constraints, and
tightness ratios α = ci/

∑n
j=1 wij , α ∈ {0.25, 0.5, 0.75}.

For the empirical results presented in this section, we used the smaller in-
stances, which could be solved to proven optimality in reasonable time using the
ILP-solver CPLEX, with n = 100 and m ∈ {5, 10}, and n = 250 and m = 5.

In Table 1 we examine cores devised using the scaled efficiency e(scaled), the
efficiency e(st), the efficiency e(fp) as defined in equations (12) and (13), and
finally the efficiency e(duals) setting the relevance values ri of equation (12) to
the optimal dual variable values of the MKP’s LP-relaxation. Listed are average
values of the sizes (in percent of the number of items) of the split interval (|Se|)
and of the exact core (|Ce|), the percentage of how much the split interval covers
the core (ScC) and how much the core covers the split interval (CcS), and the
distance (in percent of the number of items) between the center of the split
interval and the center of the core (Cdist).

As expected from Theorem 1, the smallest split intervals, consisting of the
fractional variables only are derived with e(duals). They further yield the small-
est cores. Using one of the other efficiency measures results in significantly larger
split intervals and cores. Furthermore, the smallest distances between the centers
of the split intervals and the cores are produced by e(duals) for almost all the
subclasses. The most promising information for devising approximate cores are
therefore available from the split intervals generated with e(duals), on which we
will concentrate our further investigations.

3.2 A Fixed Core Approach

In order to evaluate the influence of core sizes on solution quality and run-times,
we propose a fixed core size algorithm, where we solve approximate cores using
the general purpose ILP-solver CPLEX 9.0. We performed the experiments on
a 2.4 GHz Pentium 4 computer.

In analogy to KP, the approximate core is generated by adding δ items on
each side of the center of the split interval. We created the cores with the e(duals)
efficiency. The values of δ were chosen in accordance with the results of the previ-
ous section, where an average core size of about 0.2n was observed. Table 2 lists
average objective values and run-times for the original problem, and percentage
gaps to the optimal solution (%opt = 100 · (z∗− z)/z∗), the number of times the
optimum was reached (#), as well as the average run-times %t (in percent of the
run-time required for solving the original problem) for cores of different sizes.
3 http://people.brunel.ac.uk/∼mastjjb/jeb/info.html
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e(scaled) e(st)
n m α |Se| |Ce| ScC CcS Cdist |Se| |Ce| ScC CcS Cdist

100 5 0.25 23.40 30.50 72.69 94.71 4.05 27.20 30.20 78.85 88.11 4.80
0.5 29.50 37.60 71.93 88.45 5.95 27.00 35.60 69.88 89.01 5.90
0.75 24.30 27.00 72.61 83.13 5.05 22.80 25.20 77.72 84.08 4.30

250 5 0.25 17.44 22.40 77.20 97.38 1.88 17.12 22.20 76.91 94.62 2.46
0.5 22.88 29.44 71.71 94.25 3.44 23.76 30.88 74.95 94.69 4.04
0.75 11.44 17.84 56.14 88.45 4.60 11.96 16.64 63.82 85.86 3.62

100 10 0.25 42.60 38.30 92.62 84.39 4.35 43.30 38.20 88.78 79.36 5.55
0.5 39.40 45.20 80.80 91.20 5.30 44.40 46.50 85.43 88.49 5.65
0.75 37.50 34.80 94.29 86.42 2.55 38.60 36.20 93.04 87.16 2.10

Average 27.61 31.45 76.67 89.82 4.13 28.46 31.29 78.82 87.93 4.27

e(fp) e(duals)
n m α |Se| |Ce| ScC CcS Cdist |Se| |Ce| ScC CcS Cdist

100 5 0.25 24.70 30.10 75.50 91.94 4.20 5.00 20.20 28.12 100.00 3.30
0.5 27.10 35.80 70.36 89.74 6.35 5.00 22.10 27.49 100.00 3.45
0.75 23.20 26.10 74.47 84.22 4.55 5.00 19.60 26.95 100.00 3.20

250 5 0.25 16.92 21.72 76.87 95.63 2.24 2.00 12.68 18.16 100.00 2.46
0.5 22.96 29.68 74.79 95.02 3.56 2.00 12.20 18.45 100.00 1.38
0.75 11.40 17.12 59.00 87.27 4.06 2.00 10.40 20.18 100.00 1.56

100 10 0.25 42.10 38.20 90.41 83.74 4.75 10.00 23.20 46.57 100.00 2.90
0.5 41.90 45.60 84.52 90.85 5.15 9.80 25.70 48.17 95.00 3.15
0.75 37.90 35.30 94.55 86.96 2.40 9.70 18.80 55.74 99.00 2.75

Average 27.58 31.07 77.83 89.49 4.14 5.61 18.32 32.20 99.33 2.68

Table 1. Split intervals, core sizes and their mutual coverages and distances for differ-
ent efficiency values (average percent values taken from 10 instances and average over
all problem classes).

Observing the results of CPLEX applied to cores of different sizes, we see
that smaller cores can be solved substantially faster and the obtained solution
values are only slightly worse than the optimal ones given by the no core column.
The best results with respect to average run-times were achieved with δ = 0.1n,
the run-time could be reduced by factors going from 3 to 1000, whereas, most
importantly, the obtained objective values are very close to the respective optima
(0.1% on average). Solving the bigger cores needs more run-time, but almost all
of the optimal results could be reached, with still significant time savings.

4 Applying Metaheuristics to the Core

The question of how the reduction to MKP cores influences the performance of
metaheuristics arises due to the observed differences in run-times and solution
qualities of the previous section. Furthermore the core concept might enable us
to find better solutions for larger instances which cannot be solved to optimal-
ity. We therefore study a memetic algorithm and a relaxation guided variable
neighborhood search for solving the MKP, applied to MKP cores. The results of
Section 3.2 indicate that the obtained solutions should be good approximations
of the overall MKP optimum.
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n m α no core δ = 0.1n δ = 0.15n

z t[s] %opt # %t %opt # %t

100 5 0.25 24197 21 0.097 5 1 0.034 7 9
0.5 43253 27 0.053 4 1 0.018 6 6
0.75 60471 6 0.038 5 4 0.021 7 17

250 5 0.25 60414 1474 0.008 7 36 0.003 9 81
0.5 109293 1767 0.002 8 21 0.000 10 63
0.75 151560 817 0.000 10 17 0.000 10 47

100 10 0.25 22602 189 0.473 1 0 0.152 4 1
0.5 42661 97 0.234 3 0 0.084 5 1
0.75 59556 29 0.036 6 0 0.015 8 3

Average 63778 492 0.105 5.4 9 0.036 7.3 25

n m α δ = 0.2n δ = 2m + 0.1n δ = 2m + 0.2n

%opt # %t %opt # %t %opt # %t

100 5 0.25 0.015 9 32 0.015 9 32 0.000 10 62
0.5 0.002 9 24 0.002 9 24 0.002 9 64
0.75 0.001 9 39 0.001 9 39 0.000 10 61

250 5 0.25 0.000 10 82 0.003 9 69 0.000 10 91
0.5 0.000 10 67 0.000 10 59 0.000 10 73
0.75 0.000 10 72 0.000 10 40 0.000 10 61

100 10 0.25 0.002 9 10 0.000 10 46 0.000 10 66
0.5 0.030 8 13 0.022 8 60 0.000 10 75
0.75 0.011 9 22 0.000 10 54 0.000 10 70

Average 0.007 9.2 40 0.005 9.3 47 0.000 9.9 69

Table 2. Solving cores of different sizes exactly (average over 10 instances and average
over all problem classes).

4.1 A Memetic Algorithm

The MA which we consider here is based on Chu and Beasley’s principles and
includes some improvements suggested in [15, 6, 16]. The framework is steady-
state and the creation of initial solutions is guided by the LP-relaxation of the
MKP, as described in [6]. Each new candidate solution is derived by selecting
two parents via binary tournaments, performing uniform crossover on their char-
acteristic vectors x, flipping each bit with probability 1/n, performing repair if a
capacity constraint is violated, and always performing local improvement. If such
a new candidate solution is different from all solutions in the current population,
it replaces the worst of them.

Both, repair and local improvement, are based on greedy first-fit strategies
and guarantee that any resulting candidate solution lies at the boundary of the
feasible region, where optimal solutions are always located. The repair procedure
considers all items in a specific order Π and removes selected items (xj = 1 →
xj = 0) as long as any capacity constraint is violated. Local improvement works
vice-versa: It considers all items in the reverse order Π and selects items not yet
appearing in the solution as long as no capacity limit is exceeded.

Crucial for these strategies to work well is the choice of the ordering Π. Items
that are likely to be selected in an optimal solution must appear near the end
of Π. Following the results of Section 3.1 we determine Π by ordering the items
according to e(duals), as it has also been previously done in [3].
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4.2 A Relaxation Guided VNS for the MKP

Relaxation Guided Variable Neighborhood Search (RGVNS) [14] is a re-
cently developed Variable Neighborhood Search (VNS) [7] variant where the
neighborhood-order of Variable Neighborhood Descent (VND) is dynamically
determined by solving relaxations of the neighborhoods. The RGVNS used here
for the MKP, is a slightly improved version of the approach described in [14].

Representation and Initialization. Solutions are directly represented by
binary strings, and all our neighborhoods are defined on the space of feasible
solutions only. We denote by I1(xf ) = {j | xf

j = 1} the index-set of the items
contained in the knapsack of a current solution xf and by I0(xf ) = {j | xf

j = 0}
its complement. The initial solution for the RGVNS is generated using a greedy
first-fit heuristic, considering the items in a certain order, determined by sorting
the items according to decreasing values of the solutions to the MKP’s LP-
relaxation; see [16].

ILP Based Neighborhoods. We want to force a certain number of items of
the current feasible solution xf to be removed from or added to the knapsack.
This is realized by adding neighborhood-defining constraints depending on xf

to the ILP formulation of the MKP.
In the first neighborhood, ILP-Remove-and-Fill IRF (xf , k), we force pre-

cisely k items from I1 to be removed from the knapsack, and any combi-
nation of items from I0 is allowed to be added to the knapsack as long as
the solution remains feasible. This is accomplished by adding the equation∑

j∈I1(xf ) xj =
∑

j∈I1(xf ) xf
j − k to (1)–(3).

In the second neighborhood, ILP-Add-and-Remove IAR(xf , k), we force pre-
cisely k items not yet packed, i.e. from I0, to be included in the knapsack. To
achieve feasibility any combination of items from I1 may be removed. This is
achieved by adding

∑
j∈I0(xf ) xj = k to (1)–(3).

As relaxations IRFR(xf , k) and IARR(xf , k) we use the corresponding LP-
relaxations in which the integrality constraints (3) are replaced by 0 ≤ xj ≤
1, j = 1, . . . , n. For searching the (integer) neighborhoods we use a general pur-
pose ILP-solver (CPLEX) with a certain time limit.

Classical Neighborhoods. As first neighborhood we use a simple swap
SWP(xf ), where a pair of items (xf

i , xf
j ), with i ∈ I1 and j ∈ I0, is exchanged,

i.e. xf
i := 0 and xf

j := 1. Infeasible solutions are discarded. Note that this neigh-
borhood is contained in both, IRF (xf , 1) and IAR(xf , 1). Its main advantage is
that it can be explored very fast.

Based on the ideas of Chu and Beasley [3] and as another simplification
of IRF and IAR but an extension of SWP, we define two additional neighbor-
hoods based on greedy concepts. In the first case, the Remove-and-Greedy-Fill
neighborhood RGF (xf , k), k items are removed from xf ; i.e. a k-tuple of vari-
ables from I1(xf ) is flipped. The resulting solution is then locally optimized as
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described in Section 4.1. In the second case, the Add-and-Greedy-Repair neigh-
borhood AGR(xf , k), k items are added to xf ; i.e. k variables from I0(xf ) are
flipped. The resulting solution, which is usually infeasible, is then repaired and
locally improved as previously described.

Relaxation Guided VND. The Relaxation Guided VND (RGVND) is based
on the previously defined neighborhoods and follows a best neighbor strat-
egy. The faster to solve neighborhoods are ordered as follows: N1:=SWP(xf ),
N2:=RGF (xf , 1), N3:=AGR(xf , 1). If none of these neighborhoods leads to an
improved solution, we solve the LP-relaxations of IRF (xf , k) and IAR(xf , k)
for k = 1, . . . , kmax, where kmax is a prespecified upper limit on the number of
items we want to remove or add. The neighborhoods are then sorted accord-
ing to decreasing LP-relaxation solution values. Ties are broken by considering
smaller ks earlier. Only the first βmax ILP-based neighborhoods are explored
before shaking.

Shaking. After RGVND has terminated, shaking is performed for diversifica-
tion. It flips κ different randomly selected variables of the currently best solution
and applies greedy repair and local improvement as previously described for the
MA. As usual in general VNS, κ runs from 1 to some κmax and is reset to 1 if an
improved solution was found. Furthermore, the whole process is iterated until a
termination criterion, in our case the CPU-time, is met.

5 Computational Experiments

We present several computational experiments where we evaluated the influence
of differently sized cores on the performance of CPLEX, the presented MA, and
RGVNS. The algorithms were given 500 seconds per run. Since the MA converges
much earlier, it was restarted every 1 000 000 generations, always keeping the so-
far best solution in the population. In RGVNS, CPLEX was given a maximum
of 5 seconds for exploring the ILP-based neighborhoods, kmax and βmax were set
to 10, and κmax = n. We used the hardest instances of the Chu and Beasley
benchmark set, i.e. those with n = 500 items and m ∈ {5, 10, 30} constraints. As
before, CPLEX 9.0 was used and we performed the experiments on a 2.4 GHz
Pentium 4 computer.

In Table 3 we display the results of CPLEX applied to cores of different sizes.
For comparison CPLEX was also applied to the original problem with the same
time limit. We list averages over ten instances of the percentage gaps to the
optimal objective value of the LP-relaxation (%LP = 100 · (zLP − z)/zLP), the
number of times this core size yielded the best solution of this algorithm (#),
and the number of explored nodes of the branch and bound tree.

First, it can be noticed that CPLEX applied to approximate cores of differ-
ent sizes yields, on average, better results than CPLEX applied to the original
problem. Second, the number of explored nodes increases with decreasing prob-
lem/core size. The best average results are obtained with higher core sizes.
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m α no core δ = 0.1n δ = 0.15n δ = 0.2n

%LP # Nnodes %LP # Nnodes %LP # Nnodes %LP # Nnodes

5 0.25 0.080 5 5.50E5 0.075 9 1.00E6 0.076 9 9.85E5 0.076 8 8.34E5
0.5 0.040 6 5.06E5 0.039 7 1.05E6 0.039 9 1.00E6 0.039 9 8.38E5
0.75 0.025 6 5.36E5 0.024 10 1.05E6 0.025 8 1.02E6 0.025 8 9.04E5

10 0.25 0.206 1 3.15E5 0.198 5 1.10E6 0.195 6 6.99E5 0.198 4 5.68E5
0.5 0.094 4 3.01E5 0.088 8 1.11E6 0.090 6 6.95E5 0.092 5 5.73E5
0.75 0.066 4 3.05E5 0.065 5 1.07E6 0.064 7 6.83E5 0.065 7 5.59E5

30 0.25 0.598 2 1.11E5 0.621 0 4.22E5 0.566 4 3.06E5 0.537 6 2.28E5
0.5 0.258 2 1.15E5 0.246 3 4.50E5 0.243 4 3.28E5 0.250 2 2.38E5
0.75 0.158 2 1.12E5 0.151 6 4.48E5 0.160 1 3.14E5 0.151 5 2.36E5

Average 0.169 3.6 3.17E5 0.167 5.9 8.55E5 0.162 6.0 6.70E5 0.159 6.0 5.53E5

Table 3. Solving cores of different sizes with CPLEX (avgerage over 10 instances and
average over all problem classes, n = 500).

In Table 4 the results of the MA applied to approximate cores of different
sizes are shown. In order to evaluate the benefits of using a core-based approach,
we also applied the MA to the original problem. The table lists (%LP), the
number of times this core size yielded the best solution of this algorithm (#),
and the average numbers of MA iterations.

As observed with CPLEX, the use of approximate cores consistently increases
the achieved solution quality. The core size has a significant influence on the
number of iterations performed by the MA, which can be explained by the
smaller size of the problem to be solved. This also seems to be a reason for the
better results, since more candidate solutions can be examined in the given run-
time. Furthemore, the search space of the MA is restricted to a highly promising
part of the original search space. The best average results were obtained with
δ = 0.15n. The smaller approximate cores yield better results on average.

m α no core δ = 0.1n δ = 0.15n δ = 0.2n

%LP # Niter %LP # Niter %LP # Niter %LP # Niter

5 0.25 0.078 6 1.40E7 0.073 10 5.08E7 0.074 9 4.07E7 0.074 9 3.33E7
0.5 0.040 6 1.35E7 0.039 9 5.07E7 0.039 9 4.07E7 0.040 7 3.33E7
0.75 0.025 7 1.46E7 0.024 9 5.07E7 0.024 10 4.08E7 0.024 9 3.34E7

10 0.25 0.208 5 1.26E7 0.202 5 4.54E7 0.202 6 3.62E7 0.208 4 2.90E7
0.5 0.099 2 1.21E7 0.093 6 4.51E7 0.091 8 3.59E7 0.093 5 2.89E7
0.75 0.066 6 1.31E7 0.065 8 4.53E7 0.067 4 3.59E7 0.068 4 2.87E7

30 0.25 0.604 1 9.10E6 0.573 5 3.08E7 0.575 5 2.39E7 0.569 6 1.92E7
0.5 0.254 3 8.10E6 0.257 1 3.08E7 0.246 7 2.37E7 0.253 3 1.90E7
0.75 0.159 4 8.12E6 0.156 5 3.14E7 0.157 3 2.35E7 0.157 5 1.96E7

Average 0.170 4.4 1.17E7 0.165 6.4 4.23E7 0.164 6.8 3.35E7 0.165 5.8 2.72E7

Table 4. Solving cores of different sizes with the MA (avgerage over 10 instances and
average over all problem classes, n = 500).

In Table 5, the results of RGVNS when applied to approximate cores of
different sizes are shown together with the results of RGVNS on the original
problem. The table also displays the average total number of iterations performed
by RGVND inside RGVNS.
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The results obtained by RGVNS applied to the smaller approximate cores
clearly dominate the results obtained without core and with δ = 0.2n. This can
be explained by the fact that CPLEX is used in RGVNS, and that it is able
to find better solutions when dealing with smaller problem sizes. Interestingly,
the number of iterations stays about the same for the different settings. The
reason is that CPLEX is given the same constant time limit for searching for
the neighborhoods within RGVND.

m α no core δ = 0.1n δ = 0.15n δ = 0.2n

%LP # Niter %LP # Niter %LP # Niter %LP # Niter

5 0.25 0.088 4 230 0.080 5 208 0.080 6 223 0.082 4 230
0.5 0.043 5 236 0.040 7 215 0.040 8 226 0.040 7 239
0.75 0.027 5 246 0.026 8 230 0.026 8 252 0.026 7 240

10 0.25 0.230 0 225 0.198 7 200 0.211 2 193 0.210 3 205
0.5 0.108 1 209 0.096 5 201 0.096 3 199 0.100 1 205
0.75 0.069 2 208 0.066 7 207 0.066 7 211 0.066 4 214

30 0.25 0.595 5 202 0.599 3 196 0.593 4 191 0.609 5 195
0.5 0.263 3 197 0.260 0 198 0.254 6 189 0.261 3 197
0.75 0.168 2 191 0.158 5 191 0.164 3 187 0.164 2 191

Average 0.177 3.0 216 0.169 5.2 205 0.170 5.2 208 0.173 4.0 213

Table 5. Solving cores of different sizes with RGVNS (avgerage over 10 instances and
average over all problem classes, n = 500).

Comparing our results to the best known solutions [19], we are able to reach
the best solutions for m = 5, and stay only 0.5% below these solutions for
m ∈ {10, 30}, requiring 500 seconds, whereas in [19] up to 33 hours were needed.

6 Conclusions

We presented the new core concept for the multidimensional knapsack prob-
lem, extending the core concept for the classical one-dimensional 0/1-knapsack
problem. An empirical study of the exact core sizes of widely used benchmark
instances with different efficiency measures was performed. The efficiency value
using dual-variable values as relevance factors yielded the smallest possible split-
intervals and the smallest cores.

We further studied the influence of restricting problem solving to approx-
imate cores of different sizes, and observed significant differences in terms of
run-time when applying the general-purpose ILP-solver CPLEX to approximate
cores or to the original problem, whereas the objective values remained very
close to the respective optima.

We finally applied CPLEX and two metaheuristics to approximate cores of
hard to solve benchmark instances and observed that using approximate cores
of fixed size instead of the original problem clearly and consistently improves
the solution quality when using a fixed run-time.

In the future, we want to further examine the MKP core concept and possibly
extend it to other combinatorial optimization problems.
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