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Abstract : In this paper, we consider the problem of portfolio optimization. The risk will
be measured by conditional variance or semivariance. It is known that the historical re-
turns used to estimate expected ones provide poor guides to future returns. Consequently,
the optimal portfolio asset weights are extremely sensitive to the return assumptions used.
Getting informations about the future evolution of different asset returns, could help the
inwvestors to obtain more efficient portfolio. The solution will be reached under conditional
mean estimation and prediction. This strategy allows us to take advantage from returns pre-
diction which will be obtained by nonparametric univariate methods. Prediction step uses
kernel estimation of conditional mean. Application on Chinese and American markets are
presented and discussed.

Keywords : Conditional Semivariance, Conditional Variance, DownSide Risk, Kernel Me-
thod, Nonparametric Mean prediction.

1 Introduction

Investment strategies and their profitability have always been a hot topic for people with
an interest in financial assets. The modern asset allocation theory was originated from
the Mean-Variance portfolio model introduced by Markowitz (1952), see also Markowitz
(1959) and Markowitz (1987). The original Markowitz model simply dealt with a static
single period asset allocation problem. Variance is commonly used as a risk measure in
portfolio optimisation to find the trade-off between the risk and return. Variance measures
the deviation above and below the mean return. Investors wish to minimise the risk at
the given return level. Variance and mean are estimated with the data observed before the
portfolio optimization date.

Markowitz’s portfolio optimization requires the knowledge both of the expected return and
the covariance matrix of the assets. It is well known that the optimum portfolio weights are
very sensitive to return expectations which are very difficult to determine. For instance,
historical returns are bad predictors of the future returns (Michaud, 1989 ; Black and Lit-
termann, 1992 and Sigel, 2007). Estimating covariance matrices is a delicate statistical



challenge that required sophisticated methods (see Ledoit and Wolf, 2004). It is fair to
state that, due to the large statistical errors of the input of Markowitz’s portfolio optimi-
zation, its result is not reliable and should be considered very cautiously. This led Levy
and Roll (2010) to turn the usual approach on its head and found that minor adjustments
of the input parameter are needed , well within the statistical uncertainties.

In this paper, we propose radically different perspective by including, in the estimation
step, informations about the possible future returns, obtained by nonparametric predic-
tion. Than, we can improve the quality of portfolio optimisation. Firstly, we exhibit the
classical Markowitz model developed in 1952.

Let us say that there are m assets to constitute a portfolio P and denote by 7j; the

return of asset j on date ¢, t =1,...,T, and M the estimated variance-covariance matrix
of the returns (ry,...,7n),
. (rie — 71)? (r1e — 1) (72t S T2) (r1e = 71) (Pmt — Tm)
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The optimization program is then the following
min w' Mw, subject tow ' p=E*,w'l=1, (2)
w

where w ! = (

the empirical mean returns and E* is a target expected portfolio return.

Using Lagrangian method, the explicit solution of solution of (2) is :
_aET - 0—\E*
T v Ch )

wherea =1"M "1, A=p"M "1 and 0 = " M~ p.

Wi

This model depends strictly on the assumptions that the assets returns follow normal
distribution and investor has quadratic utility function. However, these two conditions
are not satisfied. Many researchers have showed that the assets returns distribution are
asymmetric and exhibit skewness, see Tobin (1958), Arditti (1971), Chunhachinda et al
(1997) and Prakash et al (2003). These authors have proposed a DownSide Risk (DSR)
measures such as Semivariance (SV) and conditional value at risk (CVaR). These DSR
measures are consistent with investor’s perception towards risk as they focus on return
dispersions below specified target return B. Below, we focus only on the Semivariance risk
measure which is often considered as a more plausible risk one than the variance.

The associated optimization program is the following :

min w' Mgrw subject to w' p=E* w'1=1, (4)
w

Wi, . .. ,Wn) is the portfolio vector weight, u' = (71, ...,7m) = (% Zle T1ty. ..

T
9 % Zt:l rmt)



where Mgpg is the matrix with coefficients

;
1
Xijp = 7 ;(m — B)(rjt — B)

such that V is the period in which the portfolio underperforms the target return B.

The major obstacle to get the solution of this problem is that the semicovariance ma-
trix is endogenous (see Estrada 2004, 2008) ; that is, a change in weights affects the periods
in which the portfolio underperforms the target rate of return, which in turn affects the
elements of the Semivariance matrix.

Many authors propose different methods to estimate the elements of Mgg in order to
resolve problem defined in equation (4). Among them, Hogan and Warren (1974) propose
to use the Frank-Wolf algorithm but the main disadvantage of this algorithm is its slow
convergence rate. Moreover, during early iteration, this algorithm tends to decrease the
objective function. Ang (1975) proposes to linearise the Semivariance so that the opti-
mization problem can be solved using linear programming. However, this method ignores
the inter-correlations between securities. Harlow (1991) also considers problem (4) and
generates Mean-Semivariance efficient frontier, where he compares to the Mean-Variance
efficient frontier. Mamoghli and Daboussi (2010) improve Harlow approach. Their model
permits to surmount the problem of inequality of the Semicovariance measures which occur
in the Mean-Semivariance model of Harlow. Markowitz et al (1993) transform the Mean-
Semivariance problem into a quadratic problem by adding fictitious securities. Estrada
(2008) proposes a simple and accurate heuristic approach that yields a symmetric and
exogenous Semicovariance matrix, which enables the determination of Mean-Semivariance
optimal portfolios by using the well-known closed-form solutions of Mean-Variance pro-
blems. Athayde (2001, 2003) proposes an iterative algorithm and uses it to construct a
Mean-DownSide Risk portfolio frontier. Ben Salah et al (2015a, 2015b) improve Athay-
de’s algorithm by introducing nonparametric estimation of the returns in order to better
smooth the efficient frontier.

A knowledgeable investor should have an overview on market development. For a fixed
amount to invest now, he has to predict, day by day (or month by month, ...), the optimal
return that his investment could bring to him.

In this paper, we will develop a rule of decision to optimize his portfolio by reducing
the risk calculated by the classical variance. A new approach, called conditional Markowitz
optimization method, will be used to determine an optimal portfolio. This portfolio is ob-
tained by minimizing the so-called conditional risk. This risk may in turn be broken down
into two versions : Mean-Variance and Mean-Semivariance approaches. The main idea is
to anticipate the values of the assets returns on the date 7'+ 1 (knowing the past) and
incorporate this information in the optimization model.



The rest of the article is organized as follows. Section 2 introduces the nonparame-
tric conditional risk. We start by given a general background on nonparametric regression
and prediction, as well as conditional variance and covariance definitions. The conditional
Mean-Variance and the conditional Mean-Semivariance models are exhibited in this Sec-
tion. Numerical studies based on Chinese and American Market dataset are presented in
Section 3. The last Section is devoted to conclusion and further development.

2 Nonparametric Conditional Risk

Here, we start by giving some general concepts and results concerning nonparametric
regression and prediction. Then, we define the Conditional Mean-Variance and Mean-
Semivariance models and we exhibit the corresponding algorithms to get the optimal port-
folio.

2.1 Nonparametric Regression Model

In the following subsection, we outline the mechanics of kernel regression estimation.

In what follows, we let {Yi,Xi}f\il denote sample pairs of response and explanatory
variables, where Y; is explanatory variables, X; is of dimension m, and T denotes the
sample size. The best prediction of Y based on X = x is the conditional expectation
E(Y | X = z) = g(z). The goal is to estimate the unknown mean response g(x). In
general, the function g(z), is not necessarily linear and the conditional variance in not
necessarily homoscedastic. However , we can always express the data in the form

Y; = g(a) + o(@)e, (5)

where 0?(z) = Var(Y | X = x). Here ¢ has conditional zero mean and unit variance. The
Nadaraya-Watson estimator for g(z) is then :

N
> YK (X5E)
N t=1
I(@) = —F——
X;—
>, K(=55)
i=1
where /C is a multivariate kernel function with m arguments and where h is a sequence of
positive numbers tending to 0 as N tends ton infinity.

: (6)

To simplify the writing and the understanding of previous predictors, we choose the
following multiplicative expression for the multidimensional kernel K :

K(u) = K(uy) X -+ x K(up)



where K is an univariate kernel (density) function. Then (6), for x = (z1,..., %), should
be writing as follows :

M=

}/;K(Xlth_xl) N, K(thh—rm)

~
Il
i

M=

~~
Il

1

Nonparametric smoothing techniques can be applied beyond the estimation of the au-

toregression function. Consider a m-multivariate stationary time series {(rig,...,7mt),
t=1,...,T}. We consider the processes (X;,Y;) defined as follows
Xi=(T1t,- -+ Tmt) Yi = 7j41)s (8)

and we are interested in predicting the return of a given asset j on time T+ 1. This problem
is equivalent to the estimation of the regression function presented above

g(?“lT, e ,rmT) = E(YT ‘ XT = xT) = E(Tj(T+1) ’ RIT =nrT,..- 7RmT = TmT)- (9)
Let N =T — 1. Using the kernel method, we get easily the following estimators for condi-

tional expectation, variance and covariance :

— Conditional expectation :

N
Z:lrj(t-l-l)K(rlt?LrlT) X oo X K(Tmt;TmT)
t=

chj = N ? (]‘0)
Z:lK(Tlt7L7”1T) X oo X K(Tmt;TmT)
t—

— Conditional variance :

M=

(1) = Teg) B (PHFRE) x o x K (Pmind)
: .

N
Z K(Tlt?LTIT) X oo X K(Tmt?LTmT)
t=1

t

é}ij(rlT, ce TT) =

— Conditional covariance :

N
t;(m(m) — Tei) (Tj(e41) — Te ) B (FEFHE) X - oo x K (Pmigrnl)
Geij(T1Ts -+ s i) = — ~
t; K(Tlt?LTlT) X oo X K(T’mt;rmT)

(12)

Comments

1. To estimate conditional expectation, variance and covariance, we supposed that the
future depends on the immediate past. This hypothesis, considered as 1-Markovian
condition, is natural because the future returns are strongly correlated to the recent
past.



2. In Statistics literature, Many other multivariate kernels are proposed like the Spherical /radial-
symmetric kernel or the multivariate Epanechnikov (spherical) one.

3. Nonparametric methods are typically indexed by a bandwidth or tuning parameter
which controls the degree of complexity. The choice of bandwidth is often critical
to implementation : under- or over-smoothing can substantially reduce precision.
The standard approach to the bandwidth problem is to choose a bandwidth that
minimizes some measure of global risk for the entire regression function, usually Mean
Integrated Squared Error (MISE), i.e. the expected squared error integrated over the
entire curve. The optimal bandwidth is then estimated either using plug-in estimators
of the minimizer of the asymptotic approximation to MISE or using an unbiased data-
based estimator of the MISE . This is the cross-validation method. This method was
analyzed in Sarda (1993). It is recommended by Altman and Leger (1995) when large
samples are available. As to the estimation of the conditional covariance matrix, one
may use different bandwidths for different elements of this matrix. However, the
resulting estimate with different bandwidths cannot be guaranteed to be positive
definite (Li et al, 2007). In practice, the positive definiteness is a desirable property.
Thus, we suggest using the same bandwidth for all elements.

2.2 Conditional Mean-Variance Model

Our goal here is to constitute an optimal portfolio using conditional criterion. In our
opinion, it is natural to use conditional informations to provide a timely and effective
solution.

We suppose that they are, as in the previous section, m assets to be used for construc-
ting a well diversified portfolio. Optimizing asset allocation is simply defined as the process
of mixing asset weights of a portfolio within the constraints of an investor’s capital resources
to yield the most favourable risk-return trade-off. The risk here is defined by conditional
variance the portfolio return.

Let w = (wi,...,wm)! be the portfolio weight vector and Tpt = W1T1¢ + wargs + ... +
WmTme,t = 1...,T, T-realisations of the the portfolio return R,. Using conditional mean-
variance criterion, the optimization model is

min w' Maw, subject to w' pre = E*,w'1 =1, (13)
w
where p. = (Te1,... ,Fc’m)T, E* is a given expected return and M, is the conditional
covariance matrix whose elements are 6. (r17,...,"m7).

Using Lagrangian method, an explicite solution of (13) is given by :

acE* — A
wc*7¥Mc_1ﬂc+

O — \E* |
i M1, (14)

acfe— N2 €

where o, = lTMc_ll, Ae = ,u;rMc_ll and 0. = NIMc_lﬂo



Then the conditional risk, CR, is given by

CR = (w;Mcwc,*). (15)

2.3 Conditional Mean-Semivariance Model

Let us recall that the main criticism to variance, used by Markowitz (1952) as measure
of risk is, in essence, that it gives the same importance and the same weight to gains
and losses, also the use of variance suppose that returns are normally distributed . That
is why Markowitz (1959) argues for another more plausible measure of risk that he calls
the Semivariance wich takes into consideration the assymetry and the risk perception of
investors. For motivations, details and theortical result on this method, see for example
Vasant et al. (2014).

Let B the Benchmark (a threshold which captured the risk perspectives from inves-
tors to investors). It is a target return which can be equal to 0. The conditional mean-
Semivariance model is the following :

min wTM{QSR}w subject to w! pe = E*,w'1 =1, (16)
w

where My, gr} is the matrix with coefficients

M=

(rig — B)(rjy — B)K (51T ) x -+« x K (Tmigiml)
1
, (17)
%
L K(P55E) o x K (Patza)

t

0ijB =

such that V is the period in which the portfolio underperforms the target return B.

Remark. The coefficients &;;p are computed differently of those of (12). To do it
in the same way, we should reindex the observations (such that portfolio underperforms
the target return B) in order to get a new time series process and then apply (12). This
modification is not very helpful given the abundance of data.

Resolving this problem is not easier. Based on Athayde algorithm (2001), we develop,
in the following, an iterative algorithm that could resolve the optimization problem without
enormous difficulties. The principle is the use of Lagrangian method at each step.

e Step O :
— Start with weo = (Wh, - - -, wl),
— compute rgt = wéjorlt +Fwlgrme, t=1,...,T,

select the set Sy of time indices portfolio return observations in which this portfolio
we,0 had negative deviations i.e. rgt — B <O0.
— Construct the following positive (m x m) semi-definite matrix My, gr o} :



1

T - T —T, X
Etesé K( 1(t—1h) IT)X---XK( m(t—lh) mT)

My sroy =

Diesy | oo (ri— B)(rj — B)K (P ) x K (Pt

(18)
where S| = Sp or Sop = Sy \ {1} (if 1 € Sp).
e Step 1 : find the portfolio w.; that solves the following problem :
min wTM{C7SR70}w subject to w' pe = F*,w'1 = 1. (19)
w
Using Lagrangian Method , the solution to the problem (19) will be given by :
a1 B — A 1 Oc1 — A1 B -1
We1=—"——""(M + ——(M 1, 20
c,1 Cotlo1 — )\g’l( {c,SR,O}) He alor — )\2’1 ( {c,SR,O}) (20)

where Q1 = ]-T(M{C,SR,O})il]-; )\c,l = ,Ull (M{C,SR,O})ill and 90,1 = MI(M{QSR,O})il,Uc-

e Step 2 :
— compute r;t = wélrlt +oFwli e, t =107,
— select the set S of index observations in which this portfolio w.; had negative
deviations i.e. rzl,t - B <0,

— construct the following positive (m x m) semi-definite matrix M. gg 1y :

1

X
T1(t—1)""1T "m(t—1) " "mT
> tes) K(%)XMXK(%)

M{c,SR,l} =

ey | oo (rie— B)(rjp — B)K(PETI0) x x K (DT ]

(21)
where S} = S7 or S; = 51\ {1} (if 1 € Sy).
— find the portfolio w2 that solves the following problem :
min wTM{CysRyl}w subject to w' pe = E*,w'1 = 1. (22)

Using Lagrangian Method , the solution to the problem (22) will be given by :

90,2 - )\0,2 E*

oo B — )\0,2
s - 5
acec72 - AC,2

(Mo spay) ™ e + (Mi.sr1y) 'L (23)



e Step 3 : iterate the previous process to construct a sequence of matrices My, sr 1
until getting the first matrix M. gr py satisfying the criterion My, gr ry = M{c sp F11}-
The Optimal portfolio will be given by :

ac,FE* - )\C,F 90,F - )\c,FE*

M, -1, (24
OZCQC,F _ )\iF ( { ,SR,F}) ( )

We, F+1 = (M{C7SR7F})71MC +

2
ac,Fec,F - >‘c,F

and the Conditional Semi Risk value , C'SR, will be
CSR = w/ p 1 M. sp pywe,Fi1 (25)

Remarks.

1. There is a finite number of iterations to get the optimal solution.

2. In the prediction step (to get the an unobservable values of the returns), we treated
separately the evolution of each asset. It is possible to make multivariate (or vectorial)
prediction and get jointly the an unobservable values for all the assets.

3. Short selling is allowed in this model, i.e. the optimal portfolio can have a ne-
gative weight for some assets. To forbid short selling, the additional constraint
wj >0 for j =1,...,m. is necessary.

3 Empirical Analysis

In this section, the performance of the proposed methods are investigated. Classical Mar-
kowitz and DownSide methods are compared to the proposed method. It is supposed that
there is no transaction costs, no taxes and the Benchmark B = 0.

3.1 Data

A dataset, drawn from Reuters, was used for this analysis. The original Data consist on
daily stock returns belonged to two markets :
— the Chinese market (emerging market) with 16 assets. They are 897 daily observa-
tions (returns) for each asset from November, the 14th, 2011, to July, 8th, 2015,
— the American market (developed market) with 19 assets. They are 788 daily obser-
vations (returns) for each asset from June, 18th, 2012 to July, 8th, 2015.
To compare the efficiency and the performance of the proposed methods, we use the daily
values of
— the Hang Seng Index-HSI that aims to capture the leadership of the Hong Kong
exchange, and covers approximately 65% of its total market capitalization,
— the S&P 500 Index that tracks 500 large U.S. companies across a wide span of
industries and sectors. The stocks in the S&P 500 represent roughly 70 % of all the
stocks that are publicly traded.



The assets returns are calculated from stock prices observed on Thomson Reuters Platform
as follows :
ry = bt — ptq7 (26)
Pi—1
with
— p¢ @ Stock price at date t,
— p¢—1 : Stock price at date t — 1

The prices p;, t =1,...,T; are adjusted for dividends.

The historical statistics of the asset markets are summarised below.

3.2 Historical statistics

In this subsection, historical statistics are proposed. The goal is to check the normality
or not of the returns distribution in order to decide which risk measure is more appropriate
to determine the optimal portfolio.

3.2.1 Chinese Market

Let us start by the Chinese Market. Over the past two decades, the Chinese economy
and financial markets have undergone a remarkable transformation and seen significant
growth. More specifically, the Chinese equity market has grown from a once very rudi-
mentary and closed market to one of the largest equity markets in the world. Although
most of the Chinese equity market still remains in the hands of controlling parties and
domestic investors, authorities have made significant progress in opening the market to
foreign capital and increasing the tradable float outstanding-meaning the Chinese equity
market has the potential to become a top dominant force within global portfolios.

10



TABLE 1 — Chinese historical analysis

Abbreviation Min Mean Sd Skewness Kurtosis Max

HangSeng HSI -5.84  0.03 1.01 -0.22 1.86  3.80
Agricultural.Bk A.Bk -9.90 0.06 1.61 0.70 9.93 10.12
Bank.of.China B.Ch -10.98  0.09 1.78 0.69 11.31 10.14
Ind.And.Com.Bank TACB -9.90  0.04 1.48 0.06 9.18 9.04
Petrochina Pet -9.21  0.04 1.68 0.87 12.09 10.04
China.life.insurance Ch.L.I. -10.01  0.10 2.40 0.71 4.02 10.04
China.petroleum Ch.P. -10.04  0.04 1.88 0.28 6.85 10.04
Bank.of.Com. Bk.C. -10.00  0.08 1.97 0.74 8.88 10.10
Citic.securit Ci.Se -7.14  0.00 1.81 1.14 6.81 12.95
China.telecom Ch.T. -4.85  0.01 1.81 0.48 1.49  9.28
China.pacific Ch.P. -9.98  0.08 2.38 0.55 3.51 13.50
Chinarailway Ch.R. -10.14  0.19 2.92 2.65 20.68 26.59
Huaneng Hua -10.35 0.11 2.35 0.21 5.90 14.83
Greatwall Gre -10.00  0.18 2.63 0.19 1.38 10.63
Dong.feng Do.F. -6.96 -0.01 2.19 0.26 0.55  8.13
China.nat.buil Ch.N.B -8.96 -0.03 2.16 0.45 2.39 11.12
Tsingtao Tsi -10.04  0.01 1.79 0.27 6.86 12.79

Taking all assets together, we observe that

—10.98 < Min < —4.85
3.80 < Mazx < 26.59
—0.03 < Mean < 0.19
1.01 < SD <292

0.55 < Kurtosis < 20.68
—0.22 < Skwenes < 2.65

It means that the behaviour of assets return is different from an asset to another. Howe-
ver, the returns distribution are more peaked than a Gaussian distribution (the Skewness
# 0). This statement should favour the use of the DSR methods to optimize a portfolio.
As a first time, we process the data as they are normally distributed. Our first goal is to
compare the efficiency of classical Markowitz Mean-Variance method versus the proposed
Conditional-Mean-Variance method. The second one is to compare the Mean-DownSide
Risk method to the Conditional one.

To analyse the possible correlation between the different assets, It is helpfull to know
the correlation matrix. This matrix is presented in Table (2)

11



TABLE 2 — China Correlation Matrix

A.Bk B.ChTACB Pet C.L.I Ch.P. Bk.C. Ci.Se Ch.T. Ch.P. Ch.R. Hua Gre Do.F. CN.B Tsi

ABk 1.00 0.82 0.800.57 0.49 0.59 0.76 0.04 0.04 0.25 0.18 0.01-0.03 0.01
B.Ch 0.82 1.00 0.760.55 0.49 0.57 0.74 0.03 0.00 0.23 0.23-0.00-0.04 -0.01
IACB 0.80 0.76 1.000.60 0.45 0.60 0.72 0.02 0.05 0.20 0.16-0.01-0.03 0.01
Pet 0.57 0.55 0.601.00 0.54 0.74 0.52 0.02 0.06 0.23 0.18 0.00 0.00 0.02
C.LI 049 049 0.450.54 1.00 045 0.49 -0.01 0.04 0.23 0.23 0.03-0.02 0.01
Ch.P. 0.59 0.57 0.600.74 0.45 1.00 0.57 0.09 0.04 0.19 0.18 0.02-0.00 0.06
Bk.C. 0.76 0.74 0.720.52 0.49 0.57 1.00 0.03 0.01 0.26 0.19-0.01-0.03 0.00
Ci.Se 0.04 0.03 0.020.02 -0.01 0.09 0.03 1.00 0.10 0.05 0.03-0.01-0.01 0.12
Ch.T. 0.04 0.00 0.050.06 0.04 0.04 0.01 0.10 1.00 0.01 0.05-0.01-0.02 0.12
Ch.P. 0.25 0.23 0.200.23 0.23 0.19 0.26 0.05 0.01 1.00 0.15-0.03 0.01 0.00
Ch.R. 0.18 0.23 0.160.18 0.23 0.18 0.19 0.03 0.05 0.15 1.00 0.05 0.00 0.01
Hua 0.01 -0.00 -0.010.00 0.03 0.02 -0.01 -0.01 -0.01 -0.03 0.05 1.00 0.00 0.01
Gre -0.03 -0.04 -0.03 0.00 -0.02 -0.00 -0.03 -0.01 -0.02 0.01 0.00 0.00 1.00 0.02
Do.F. 0.01 -0.01 0.010.02 0.01 0.06 0.00 0.12 0.12 0.00 0.01 0.01 0.02 1.00
C.N.B 0.03 -0.02 0.050.06 0.03 0.11 -0.00 0.13 0.40 0.01 0.01 0.06 0.03 0.12
Tsi 0.09 0.05 0.090.09 0.09 0.06 0.11 0.03 -0.03 0.13 0.16 0.08 0.03 0.00

0.03 0.09
-0.02 0.05
0.05 0.09
0.06 0.09
0.03 0.09
0.11 0.06
-0.00 0.11
0.13 0.03
0.40-0.03
0.01 0.13
0.01 0.16
0.06 0.08
0.03 0.03
0.12 0.00
1.00-0.01
-0.01 1.00

It appears that the returns are not correlated between each other similarly. For example,
Agricultural.Bk is strongly correlated to Bank.of.China and Ind.And.Com.Bank assets, and
very weakly correlated to Dong.feng and China.nat.buil assets. More generally, the correla-
tion between two stocks is larger when they are from banking sector than when they belong
to different industries. The use of Principal Component Analysis (PCA) could reduce the
number of assets to constitute the optimal portfolio. This step is omitted in this paper.

Remark.
We have excluded, in this matrix, the correlation between the HangSeng Index and the
other assets because we will use it as a benchmark to compare its return to the optimal
portfolio one.

3.2.2 The Americain Market : S&P 500

The S&P 500 is designed to be a leading indicator of U.S. equities and is meant to
reflect the risk/return characteristics of the large cap universe. Companies included in the
index are selected by the S&P Index Committee, a team of analysts and economists at
Standard & Poor’s. The S&P 500 is a market value weighted index, each stock’s weight is
proportionate to its market value.

Similar historical statistics are done for this Market. In the beginning, we exhibit and
comment the descriptive statistics, then we exhibit and comment the correlation matrix.
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TABLE 3 — USA Historical Statistics
Abbreviation Min Mean SD Skewness Kurtosis Max

SP500 S&P -2.50 0.06 0.73 -0.15 0.99 2.54
Apple App -12.37 0.07 1.62 -0.54 6.81  8.20
Google Goo -8.09 0.09 1.34 1.28 16.27 13.86
Microsoft Mft -11.40 0.06 1.44 -0.23 11.57 10.40
Exxon Exx -4.18 0.00 0.94 -0.11 1.57 3.22
Berkshire Ber -0.90 0.03 042 -1.3 14.29 9.34
Wellsfargo Wel -4.98 0.08 1.04 0.07 1.92  4.37
Johnson Joh -2.88 0.05 0.84 -0.22 0.85  2.57
General.Electric Gel -5.35 0.04 1.07 0.33 4.74 7.34
JP.Morgan JPM -5.49 0.08 1.24 -0.07 1.49  5.48
Facebook Fbk -12.12 0.17 2.73 2.18 21.88 29.56
Wallmart Wal -4.36 0.01 0.89 -0.23 2.81 4.72
Procter.and.Gramble PaG -6.44 0.04 0.88 -0.20 5.68 4.01
Pfizer Pfi -4.41 0.06 0.97 0.00 1.58 4.23
Amazon Ama -11.10 0.10 1.87 0.54 11.98 14.11
Walt.Disney WDi -8.21 0.12 1.22 042 10.48 9.89
Coca.Cola CCO -5.96 0.01 0.92 -0.08 4.65 5.44
Gilead.sciences GiS -14.34 0.21 1.89 -0.06 8.52 13.72
Visa Vis -7.14 0.11 1.27 0.59 7.33  10.29
Citi.group CGr -6.22 0.10 1.48 0.16 1.50 6.42

Taking all assets together, we observe that

—14.34 < Min < —-0.90
2.54 < Max < 29.56

0.0 < Mean <0.21
0.73< 85D <273

0.85 < Kurtosis < 21.88
—0.54 < Skwenes < 2.18

The behaviour of assets return is different from an asset to another. However, Most of
distributions are more peaked than a Gaussian distribution (the Skewness # 0). The SP
500 index could be considered as is normally distributed (Skewness=-0.15 , Kurtosis=0.99).

Table (4) is devoted to the Correlation Matrix :
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TABLE 4 — USA Correlation Matrix

App Goo Mft Exx Ber Wel Joh Gel JPM Fbk Wall PaG Pfi Ama WDi CCo Gis

Vis CGr

App 1.00 0.23 0.21 0.19 0.010.27 0.16 0.01 0.22 0.16 0.20 0.16 0.02 0.16 0.21 0.16 0.16 0.04 0.20
Goo 0.23 1.000.35 0.32-0.03 0.40 0.33 0.08 0.36 0.24 0.25 0.26 0.10 0.49 0.36 0.25 0.28 0.09 0.39
Mft 0.21 0.351.00 0.34 0.000.37 0.29 0.06 0.36 0.12 0.27 0.27 0.05 0.29 0.30 0.27 0.18 0.12 0.33
Exx 0.19 0.320.34 1.00 0.06 0.56 0.48 -0.02 0.51 0.11 0.29 0.40 0.02 0.30 0.40 0.38 0.29 0.08 0.48
Ber 0.01 -0.03 0.00 0.06 1.00 0.04 -0.02-0.04-0.01 0.01 0.00-0.03 0.01-0.01 0.03-0.00 0.09 0.05 0.02
Wel 0.27 0.40 0.37 0.56 0.04 1.00 0.53 0.00 0.69 0.16 0.36 0.34 0.02 0.35 0.54 0.38 0.34 0.07 0.66
Joh 0.16 0.33 0.29 0.48-0.02 0.53 1.00-0.00 0.44 0.15 0.41 0.50 0.01 0.29 0.43 0.44 0.37-0.01 0.43
Gel 0.01 0.08 0.06 -0.02 -0.04 0.00 -0.00 1.00 0.01-0.04-0.01-0.04 0.41 0.03-0.03 -0.04-0.02 0.36 0.01
JPM 0.22 0.36 0.36 0.51-0.010.69 0.44 0.01 1.00 0.19 0.31 0.32 0.02 0.32 0.44 0.34 0.29 0.06 0.77
Fbk 0.16 0.24 0.12 0.11 0.01 0.16 0.15-0.04 0.19 1.00 0.05 0.06 -0.04 0.22 0.21 0.07 0.24-0.02 0.17
Wal 0.20 0.25 0.27 0.29 0.00 0.36 0.41-0.01 0.31 0.05 1.00 0.43 0.02 0.20 0.41 0.38 0.20 0.02 0.31
PaGr 0.16 0.26 0.27 0.40-0.03 0.34 0.50 -0.04 0.32 0.06 0.43 1.00-0.05 0.17 0.34 0.49 0.26-0.04 0.32
Pfi 0.02 0.100.05 0.02 0.01 0.02 0.01 0.41 0.02-0.04 0.02-0.05 1.00 0.04 0.01-0.03 0.06 0.39 0.01
Ama 0.16 0.490.29 0.30-0.010.35 0.29 0.03 0.32 0.22 0.20 0.17 0.04 1.00 0.36 0.20 0.27 0.09 0.33
WDi 0.21 0.36 0.30 0.40 0.03 0.54 0.43-0.03 0.44 0.21 0.41 0.34 0.01 0.36 1.00 0.39 0.26 0.07 0.42
CCo 0.16 0.250.27 0.38 -0.00 0.38 0.44 -0.04 0.34 0.07 0.38 0.49-0.03 0.20 0.39 1.00 0.19 0.01 0.34
Gis 0.16 0.280.18 0.29 0.090.34 0.37-0.02 0.29 0.24 0.20 0.26 0.06 0.27 0.26 0.19 1.00 0.07 0.32
Vis 0.04 0.09 0.12 0.08 0.050.07-0.01 0.36 0.06 -0.02 0.02-0.04 0.39 0.09 0.07 0.01 0.07 1.00 0.06
CGr 0.20 0.390.33 0.48 0.020.66 0.43 0.01 0.77 0.17 0.31 0.32 0.01 0.33 0.42 0.34 0.32 0.06 1.00

The correlation between two stocks is larger when they are from similar sectors, for
example Facebook, Google, Amazon and JP Morgan, City Group and Johnson are positi-
vely correlated. There is no significant negative correlation. All the correlation are low or
medium.

3.3 Portfolio Optimisation

Using the data of the two markets, we will use the Conditional Mean-Variance and the
Conditional Mean-Semivariance models to get optimal portfolios that we can invest in each
market. The idea is to anticipate the future knowing the past. In the classical methods,
Mean, Variance and Semivariance take no account the forthcoming data.

Our methodology consists on dividing the data into two samples : one for making the opti-
mization (optimization sample) and the other for testing the efficiency of the methods (test
sample). The optimization sample is used to determine the optimal weights for each me-
thod (classical Mean-Variance, Conditional Mean-Variance, Classical Mean-Semivariance
and Conditional Mean-Semivariance). These weights are used for computing the optimal
portfolio returns for each method.

In order to measure the performance of the proposed methods we use the sample test. The
optimal portfolio returns are compared to the naive one and they are also used to assess
performance against the HangSeng index and S&P 500 one.

The following parameters and considerations will be used throughout this section :

e Optimal portfolio is determined for one period,
e for the expected return E*, many values are tested. We have decided to present only
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results with E* = 0.075%
e the Benchmark B =0,

o the kernel K is the multivariate Gaussian density, K(x) = Wexp - (M),

e the bandwidths h are chosen by cross validation method and depend on each asset
return observations (see previous chapters). This choice is motivated by its popula-
rity in nonparametric literature (see Arlot and Celisse (2010)).

e there is no transaction cost,

e short selling is allowed.

To test our methods, we used the following procedure :

— to determine the optimal portfolio, we use all the data collected until May, 31th,
2015,

— returns collected from June, the 1st, 2015 until July, the 7th, 2015 are used to com-
pare naive portfolio return (obtained using w; = %) to those obtained by the other
methods.

For the Chinese Market, results are summarized in Table (5). Table (7) is devoted to
the American Market. From now on, the following abreviation will be used :

M-V= Classical Mean-Varince Model

— C.M-V= Conditional Mean-Varince Model

— M-DSR= Classical Mean-Semivarince Model

— C.M-DSR= Conditional Mean-Semivarince Model
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TABLE 5 — Chinese Portfolio return (%)

Time M-V.
2015-06-01 1.50
2015-06-02 0.67
2015-06-03 2.02
2015-06-04 -0.40
2015-06-05 -0.59
2015-06-08 1.07
2015-06-09 -2.22
2015-06-10 -0.66
2015-06-11 0.50
2015-06-12 0.71
2015-06-15 -1.94
2015-06-16 -2.47
2015-06-17 0.48
2015-06-18 -1.24
2015-06-19 -1.77
2015-06-22 2.41
2015-06-23 1.83
2015-06-24 -0.69
2015-06-25 -4.00
2015-06-26 0.90
2015-06-29 0.20
2015-06-30 -1.41
2015-07-02 1.05
2015-07-03 -0.32
2015-07-06 1.23
2015-07-07 -1.90

C.M-V DSR C.M-DSR Naive
141 1.55 1.60 1.32
0.75 076  0.95 0.85
218 225 249 1.28
-0.32 -0.23 -0.20 -0.33
-0.81 -0.52 -0.64 -0.22
295 176  3.07 3.79
-1.77 -1.56 -1.16 -1.87
-1.01 -0.57 -0.17 -0.87
0.71 059 029 -049
0.75 079 0.70 -0.21
-2.12 -1.94 -1.25 -1.50
-2.06 -2.01 -2.71 -2.62
0.60 0.76  0.85 0.58
-1.15 -0.98 -1.30 -2.63
-4.09 -1.74 -4.05 -4.17
3.38 259  3.53 1.75
1.83 1.85 1.95 1.61
-0.36 -0.54 -0.25 -1.10
-2.60 -1.96 -2.04 -4.54
290 196 1.73 0.17
1.89 190 2.23 0.62
-0.40 -1.33 -290 -3.05
152 196 1.95 1.27
-0.48 -0.17 -0.22 -3.83
1.25 098 1.27 4.56
-1.58 -1.13 -2.36 -2.82

From Table (5) this table, we can extract the following comparative Table (6) which
could inform us about the efficiency of each method compared to effective return obtained
by a naive portfolio, computed day after day starting from June, the 1st, 2015. Below, the
numerator of the fraction is the number of days on which methods perform better than
the naive one.

TABLE 6 — Naive versus the other portfolio optimization methods in the Chinese Market

Naive M-V. C.M-V M-DSR C.M-DSR
Naive 26/26 16/26 20/26 21/26 22/26

In the same spirit and using the same conditions, the portfolio optimization processes,
in the American Market, are summarized in Table (7)
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TABLE 7 — American Portfolio return (%)
Time M.V.C.M.V. DSR C.DSR Naive
2015-06-01 -0.12 -0.11 -0.10 0.12 0.41
2015-06-02 -0.08 -0.02 -0.02 -0.03 -0.04
2015-06-03 -0.03 0.13 0.05 0.15 0.07
2015-06-04 -0.77 -0.60 -0.57 -0.51 -0.80
2015-06-05 -0.91 -0.68 -0.85 -0.65 -0.88
2015-06-08 0.07 -0.15 0.07 0.08 -0.58
2015-06-09 0.22 0.26 0.27 0.57 0.21
2015-06-10 0.50 0.73 0.48 0.80 0.75
2015-06-11 -0.20 -0.19 -0.24 -0.15 0.13
2015-06-12 -0.75 -0.62 -0.70 -0.55 -0.68
2015-06-15 -0.78 -0.81 -0.81 -0.67 -0.69
2015-06-16 0.67 0.81 0.78 0.85 0.63
2015-06-17 0.45 0.51 044 0.56 0.15
2015-06-18 0.73 0.77 0.88 0.95 1.19
2015-06-19 -0.37 -0.51 -0.37 -0.28 -0.75
2015-06-22 0.09 0.62 0.41 0.53 0.34
2015-06-23 -0.22 -0.06 -0.22 -0.04 0.44
2015-06-24 -0.38 -0.58 -0.41 -0.25 -0.50
2015-06-25 -0.65 -0.17 -0.67 -0.08 -0.49
2015-06-26 0.07 0.10 0.11 0.22 -0.03
2015-06-29 -1.17 -1.41 -1.20 -1.10 -1.98
2015-06-30 -0.45 -0.45 -0.43 -0.21 -0.55
2015-07-01 0.81 1.28 0.86 1.48 0.73
2015-07-02 0.13 0.11 0.21 0.14 -0.07
2015-07-06 -0.35 -0.28 -0.30 -0.15 -0.17
2015-07-07 1.50 1.22 1.48 1.55 1.47

To compare all the methods, we use , as in Chinese Market, the naive portfolio as the
reference portfolio and the following comparative table (Table 8)

TABLE 8 — Naive versus the other portfolio optimization methods in the American Market
Naive M-V. C.M-V. M-DSR C.M-DSR

Naive 26/26 13/26 17/26 16/26 22,26

General comments

e Chinese Market is more volatile. The portfolio return has varied between -4.17% and
4.56% during the test period. This variation was between -1.98% and 1.47% for the
American Market.

e For this two markets, all the methods perform better than the naive one.

e Conditional methods perform better than the non conditional ones.

17



e The conditional Markowitz method is more interesting (in term of portfolio returns)
than the classical Markowitz one.

e Similarly, the conditional Mean-DownSide risk is much more efficient than the clas-
sical Mean-DownSide optimization method.

3.4 Another Tool to Test The Efficiency of the Proposed Methods

The HangSeng and the S&P 500 indices will contribute to test the efficiency of the
classical and the new portfolio optimization methods. We will compare the daily portfolio
return obtained by the weights which are solutions of different optimization programs using
all the data until May, the 31th ;, 2015. From June, the 1st, 2015 until July, the 7th, 2015,
we compute the portfolio returns and we compare them against the daily HangSeng and
the S&P 500 indices. Results are exhibited in figure 4.1 (Chinese Market) and figure 4.2
(American Market).

— Red color signifies a negative difference between portfolio return and HangSeng
Index (respectively S&P 500 index),

— blue color signifies a positive difference between portfolio return and HangSeng Index
(respectively S&P 500 index),

— Overall performance is the sum of all the differences during the test period.

We note that the comparison is in favour of the Conditional-Mean-Variance and the
Conditional-Mean-Semivariance optimization methods. The overall performance varies de-
pending on the method of portfolio optimization and markets :

— from 0.94% (Classical Markowitz method) to 12.64% (Conditional Mean-Semivariance
method) for the Chinese Market,

— from 0.09% (Classical Markowitz method) to 1.42% (Conditional Mean-Semivariance
method) for the American Market.

These mouthwatering results deserve more practice and more tests over a long period
of time and on different markets using different financial products.
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4 Conclusion

In this paper, we developed two new approaches in order to get an optimal portfo-
lio minimizing two conditional risks. The first risk is based on conditional variance, and
the optimization method using this risk is an extension of the classical Mean-Variance
model. Mean and Variance are replaced by Conditional Mean and Conditional Variance
estimators. The second one is based on Conditional Semivariance, and the optimization
method using this risk is an extension of the classical Mean-Semivariance model. This no-
velty, using conditional risk, gives a new approach and more efficient alternative to get
an optimal portfolio. In fact, all the other methods do not anticipate the future and just
extrapolate to the future what the observe in the past.

In both cases, the optimization algorithm involved using the Lagrangian method. Even, our
results seem interesting, the efficiency of our methods should be confirmed on other mar-
kets and with other various assets. Kernel methods, belonging to nonparametric methods,
are used to estimate Conditional Mean, Variance and Semivariance. Product Gaussian
densities are used as kernel. It will be very helpful to choose typical multivariate kernels.
Similarly, we should develop a global method to choose the bandwidth which is crucial in
nonparametic estimation.

Back to results of this paper : the Conditional Mean-Semivariance seem most appropriate
to get an optimal portfolio using the data of the Chinese and the American markets. By the
way, Conditional Mean-Variance is more efficient than Mean-Variance method. Similarly,
the Conditionam Mean-Semivariance is better than the Mean-Semivariance method. These
conclusions are not definitive and should be confirmed or not under different hypothesis
and on different markets.

Thanks to its robustness, it is also reasonable to substitute the conditional median to the
conditional mean and to propose an optimization model based on Conditional Median and
conditional variance or conditional Median and Conditional Semivariance. This topic will
be treated a matter for future research.
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