Jakob Puchinger 
email: puchinger|raidl@ads.tuwien.ac.at
  
Günther R Raidl 
  
An Evolutionary Algorithm for Column Generation in Integer Programming: an Effective Approach for 2D Bin Packing

We consider the 3-stage two-dimensional bin packing problem, which occurs in real-world problems such as glass cutting. For it, we present a new integer linear programming formulation and a branch and price algorithm. Column generation is performed by applying either a greedy heuristic or an Evolutionary Algorithm (EA). Computational experiments show the benefits of the EA-based approach. The higher computational effort of the EA pays off in terms of better final solutions; furthermore more instances can be solved to provable optimality.

Introduction

The Two-Dimensional Bin Packing (2BP) problem occurs in different variants in important real-world applications such as glass, paper, and steel cutting. A recent survey on 2D packing problems is given in Lodi et al. [START_REF] Lodi | Recent advances on two-dimensional bin packing problems[END_REF]. Among the algorithms for exactly solving the general 2BP problem are the branch and bound algorithm of Martello and Vigo [START_REF] Martello | Exact solutions of the two-dimensional finite bin packing problem[END_REF] and the hybrid Branch and Price / Constraint Programming algorithm presented by Pisinger and Sigurd [START_REF] Pisinger | Using decomposition techniques and constraint programming for solving the two-dimensional bin packing problem[END_REF].

In many cases there is a special requirement on the cutting patterns: only orthogonal guillotine cuts are allowed, i.e., pieces may only be cut horizontally or vertically from one border to the one opposite. Furthermore, the number of stages of such cuts, i.e., the height of the cutting tree of each bin, is often limited in real-world applications. The case of two-stage cutting was first considered by Gilmore and Gomory [START_REF] Gilmore | Multistage cutting-stock problems of two and more dimensions[END_REF]. More recently two-stage 2BP was considered in Lodi et al. [START_REF] Lodi | Models and bounds for two-dimensional level packing problems[END_REF] and Belov and Scheithauer [START_REF] Belov | A branch-and-cut-and-price algorithm for onedimensional stock cutting and two-dimensional two-stage cutting[END_REF]. Three-stage cutting problems were treated in Vanderbeck [START_REF] Vanderbeck | A nested decomposition approach to a 3-stage 2-dimensional cutting stock problem[END_REF] and Puchinger et al. [START_REF] Puchinger | Solving a real-world glass cutting problem[END_REF], where particular real-world problems with specific additional properties were considered.

In Sec. 2 we present an Integer Linear Programming (ILP) model for classical 3-stage 2BP, based on the model of [START_REF] Lodi | Models and bounds for two-dimensional level packing problems[END_REF]. In Sec. 3 a column generation formulation and a Branch and Price (B&P) framework, based on [START_REF] Pisinger | Using decomposition techniques and constraint programming for solving the two-dimensional bin packing problem[END_REF], are proposed. We describe a greedy heuristic in Sec. [START_REF] Lodi | Models and bounds for two-dimensional level packing problems[END_REF] and an evolutionary algorithm in Sec. 5 for solving the pricing problem within the B&P approach, i.e., for generating new columns. In Sec. 6 experimental results are given and analyzed.

...void space 

Three-Stage Two-Dimensional Bin Packing

The 2BP problem consists of a set of n rectangular items, each having a height h i and a width w i , i = 1, ..., n. The objective is to pack them into a minimum number of rectangular bins, each having height H and width W . Items may not overlap and we do not consider rotation.

A feasible layout for 3-stage 2BP consists of a set of bins, each bin consists of a set of stripes, each stripe consists of a set of stacks, and each stack consists of items having equal width. Every such pattern can be reduced into its so-called normal form by moving each item to its uppermost and leftmost position, so that void space appears only at the bottom of stacks, to the right of the last stack in each stripe and below the last stripe, see Fig. 1. In the sequel we consider only patterns in normal form.

In [START_REF] Lodi | Models and bounds for two-dimensional level packing problems[END_REF] a polynomial-sized ILP model for 2-stage 2BP has been proposed. We extend this model in order to get a polynomial-sized ILP formulation for 3-stage 2BP.

The items are sorted so that h 1 ≥ h 2 ≥ . . . ≥ h n . The order of the items within each stack is not relevant, so they can always be ordered according to their indices. A solution may contain at most n stacks. We label each stack with the index of the highest item it contains, i.e., the smallest item index. Similarly, a solution has at most n stripes, and a stripe's label is the label of its highest stack. Finally at most n bins are needed and we label each of them with the smallest index of the stripes it contains. The model uses the following 0/1-variables:

-α j,i , j = 1, . . . , n, i = j, . . . , n: rectangle i is contained in stack j; -β k,j , k = 1, . . . , n, j = 1, . . . , n: stack j is contained in stripe k; -γ l,k , l = 1, . . . , n, k = l, . . . , n: stripe k is contained in bin l; -δ l,i,j , l = 1, . . . , n -1, i = l + 1, . . . ,
n, and j = l, . . . , i -1: item i contributes to the total height of all stripes in bin l; i.e., item i appears in stack j, stack j appears in stripe j, and stripe j appears in bin l.

The 3-stage 2BP problem can now be stated as the following ILP:

minimize n l=1 γ l,l (1) 
subject to

i j=1 α j,i = 1, ∀i = 1, . . . , n (2) 
n i=j+1 α j,i ≤ (n -j)α j,j , ∀j = 1, . . . , n -1 (3) α j,i = 0, ∀j = 1, . . . , n -1 ∀i > j | w i = w j ∧ h i + h j > H (4) n k=1 β k,j = α j,j ∀j = 1, . . . , n (5) 
n i=j h i α j,i < n i=k h i α k,i + (H + 1)(1 -β k,j ), ∀k = 2, . . . , n, ∀j = 1, . . . , k -1 (6) n i=j h i α j,i ≤ n i=k h i α k,i + H(1 -β k,j ), ∀k = 1, . . . , n -1, ∀j = k + 1, . . . , n (7) 
n j=1 w j β k,j ≤ W β k,k , ∀k = 1, . . . , n (8) 
k l=1 γ l,k = β k,k , ∀k = 1, . . . , n (9) 
n i=l h i   γ l,i + i-1 j=l δ l,i,j   ≤ Hγ l,l , ∀l = 1, . . . , n -1 ( 10 
)
α j,i + γ l,j -1 ≤ δ l,i,j ≤ (α j,i + γ l,j )/2, ∀l = 1, . . . , n -1, ∀i = l + 1, . . . , n, ∀j = l, . . . , i -1 (11) n k=l+1 γ l,k ≤ (n -l)γ l,l , ∀l = 1, . . . , n -1 (12) 
The objective function (1) minimizes the number of used bins. Equations [START_REF] Berkey | Two-dimensional finite bin packing algorithms[END_REF] state that each item has to be packed once. In (3) it is ensured that items are only assigned to a used stack j, i.e., the stack contains item j. The fact that the items packed into the same stack must have identical width is guaranteed by [START_REF] Lodi | Models and bounds for two-dimensional level packing problems[END_REF]. In an implementation, it is not necessary to use all of the α j,i , j = i, but only those for which w i = w j and h i + h j ≤ H. However, we keep them in our model for the sake of clarity. Each used stack is packed exactly once according to [START_REF] Lodi | Recent advances on two-dimensional bin packing problems[END_REF]. Constraints ( 6) and (7) ensure for each stripe k and each contained stack j that the stack's height does not exceed the stripe's height (= stack k's height). Constraints [START_REF] Pisinger | Using decomposition techniques and constraint programming for solving the two-dimensional bin packing problem[END_REF] guarantee that width W is not exceeded and no stacks are packed into unused stripes (β k,k = 0). Equations ( 9) ensure each used stripe being packed into a bin. In [START_REF] Vanderbeck | A nested decomposition approach to a 3-stage 2-dimensional cutting stock problem[END_REF] it is guaranteed that height H is not exceeded and no stripes are packed into unused bins (γ l,l = 0). Constraints (11) force variables δ l,i,j to be set to one iff rectangle i appears in stack j, stripe j is used, and stripe j appears in bin l. In (12) it is ensured that no stripes are packed into an unused bin.

Column Generation Formulation

A general introduction to integer linear programming, B&P, and column generation can be found in Wolsey [START_REF] Wolsey | Integer Programming[END_REF]. Our column generation formulation for 3-stage 2BP is based on the set covering model from [START_REF] Pisinger | Using decomposition techniques and constraint programming for solving the two-dimensional bin packing problem[END_REF] and the ILP from the last section. Let P be the set of all feasible 3-stage packings of a single bin. The 0/1variable x p indicates whether packing p ∈ P appears in the solution. For every rectangle i = 1, . . . , n and every packing p ∈ P, let A p i = 1 iff packing p contains rectangle i; otherwise A p i = 0. The 3-stage 2BP problem can now be formulated as:

minimize p∈P x p (13) subject to p∈P x p A p i ≥ 1 ∀i = 1, . . . , n, (14) 
x p ∈ {0, 1} ∀p ∈ P. ( 15 
)
In general, P is too huge for explicitly considering all variables x p , p ∈ P . Fortunately, we can use delayed column generation to solve the Linear Programming (LP) relaxation of the problem without explicitly considering the majority of the variables [START_REF] Wolsey | Integer Programming[END_REF]. We start with a small set of initial patterns P ⊂ P taken from an initial feasible solution, and solve the LP relaxation of the problem restricted to P . Based on the obtained solution, we search for a new variable/pattern whose inclusion in the restricted problem might improve the result. The extended LP is resolved and the whole process repeated until no further improvements are possible.

In addition, every M -th iteration the restricted problem is solved to integrality by using branch and cut, possibly providing a new incumbent solution (M = 100 turned out to be a reasonable choice).

The reduced costs of a packing p ∈ P are

c π p = 1 - n i=1 A p i π i , ( 16 
)
where π i are the dual variables of the restricted LP-relaxed problem. Only variables with negative reduced costs can improve the current solution of the master problem leading us to the challenge of finding such a variable/pattern.

The Pricing Problem consists of finding a packing p with the smallest reduced costs c π p . It is a 3-Stage 2D Knapsack Packing (2DKP) problem with respect to the profits π i . It can be modeled as follows:

maximize n i=1 π i i j=1 α j,i (17) subject to i j=1 α j,i ≤ 1, ∀i = 1, . . . , n (18) n i=1 h i i j=1 δ i,j ≤ H (19) α j,i + β j,j -1 ≤ δ i,j ≤ α j,i + β j,j 2 ∀i = 1, . . . , n, ∀j = 1, . . . , i
(20) and the constraints: (3), ( 4), ( 5), ( 6), [START_REF] Martello | Exact solutions of the two-dimensional finite bin packing problem[END_REF], and (8).

Variables α j,i and β k,j have the same meaning as in the ILP of Sec. 2. The 0/1variables δ i,j are set to one iff item i contributes to the total height of all used stripes, i.e., iff item i appears in stack j, and stack j appears in stripe j.

Branching If no further variables with negative reduced costs can be determined, and the difference between the solution value of the LP-relaxed restricted problem and the value of the so-far best integer solution is greater than or equal to one, branching becomes necessary. We use a branching rule similar to the one described in [START_REF] Pisinger | Using decomposition techniques and constraint programming for solving the two-dimensional bin packing problem[END_REF]. The solution space is divided into two parts, where two different items i 1 and i 2 have not to be or have to be in the same bin. We always choose the two highest possible items from a pattern/variable with an LP solution value closest to 0.5.

The first branch corresponds to adding the constraint

p∈P x p A p i 1 A p i 2 = 0, (21) 
the second branch corresponds to adding the two constraints

p∈P x p A p i1 (1 -A p i2 ) = 0 and p∈P x p (1 -A p i1 )A p i2 = 0. ( 22 
)
In the actual implementation we do not explicitly add the constraints (21) and ( 22), but the variables violating them are fixed to zero.

The following constraints have to be added to the pricing problem in order to guarantee that patterns violating the branching constraints cannot be generated. In the first branch

i 1 j=1 α j,i 1 + i 2 j=1 α j,i 2 ≤ 1, (23) 
and in the second branch

i1 j=1 α j,i 1 = i2 j=1 α j,i 2 . ( 24 
)
In the sequel, we call i 1 and i 2 conflicting if constraint ( 23) is active and say that i 1 induces i 2 and vice-versa if equation ( 24) is active.

Initial feasible solution

In order to initialize the column generation algorithm, a feasible solution is needed. The packing patterns of its bins are used as initial P . This solution is generated by the order-based Finite First Fit heuristic from [START_REF] Puchinger | Solving a real-world glass cutting problem[END_REF] without considering the additional application-specific constraints described there. The heuristic is called 20n times for different item orders, and the best obtained solution is used. The first five item orders are determined by sorting the items according to decreasing height, width, area, 2h i + w i , and h i + 2w i ; all further orders are random permutations.

Solving the Pricing Problem

The pricing problem is solved by a greedy First Fit heuristic respecting the Branching Constraints (FFBC); see Fig. 2.

Similarly to the initialization heuristic, FFBC considers the items in a given order. One item after the other is packed into the first stack it fits. If the item does not fit into any existing stack, a new stack is created in the first stripe it fits. If no such stripe exists and there is enough space left in the bin, a new stack is created and packed into a new stripe. Otherwise, the algorithm proceeds with the next item. If the addition of an item to a stack would increase the corresponding stripe's height, we check if enough vertical space is left in the bin and actually add the item with a probability of 0.5.

The constraints resulting from branching are handled as follows. If an item is considered for packing, we first check whether there are any conflicts with already packed items in the bin (checkNoConflicts in Fig. 2); if there are, the item is skipped. Otherwise we recursively check if other items are induced, and if any of those stay in conflict with any other induced or already packed item (recursiveCheck in Fig. 2). If such a conflict occurs, none of these items can be packed. Otherwise, we immediately try to also pack all the induced items. If this is impossible we skip the whole chain of items.

FFBC is iteratively applied to up to 100 different item orders until a solution with negative reduced costs is found. The first five orders are determined by sorting the items according to decreasing π i , π i h i •w i , π i h i +w i , π i h i , and π i w i ; all further orders are random permutations.

If the heuristic does not find a packing pattern with negative reduced costs, the general purpose ILP-solver CPLEX is finally called on the pricing problem in order to perform an exact search, eventually proving that no such patterns exist anymore. 

An Evolutionary Algorithm for the Pricing Problem

Since the 2DKP problem is strongly NP-hard, calling the ILP-solver may be very time-consuming. A more sophisticated metaheuristic, performed when FFBC did not find a variable with negative reduced costs and before solving the problem in an exact way, could lead to a faster overall column generation since significantly fewer calls of the ILP-solver may be needed. We decided to apply an Evolutionary Algorithm (EA) operating directly on stripes, stacks, and items.

Structure of the EA We use a standard steady-state algorithm with binary tournament selection and duplicate elimination. In each iteration, one new candidate solution is created by always applying recombination, and applying mutation with a certain probability. The new solution replaces the worst solution in the population if it is not identical to an already existing solution.

Representation and initialization

The chosen representation is direct: Each chromosome represents a bin as a set of stripes, each stripe as a set of stacks, and each stack as a set of item references. Using such a hierarchy of sets makes it easy to ignore the order of items, stacks, and stripes and to avoid symmetries.

Initial solutions are created via the FFBC heuristic using randomly generated item orders. These orders are created in a biased way by assigning each item i a random value r i ∈ [0, 1) and sorting the items according to decreasing r i π i .

Recombination This operator first assigns a random value r s ∈ [0, 1) to each stripe s in the two parent solutions. All these stripes are then sorted according to decreasing r s p s , with p s being the sum of the π i of the items contained in stripe s. The stripes are then considered in this order and packed into the offspring's bin when they fit into it (i.e., their height is smaller than the remaining unused height of the bin). Identical stripes of both parents appear twice in the ordered list, but they are considered at their first appearance only.

When all stripes have been processed, repairing is usually necessary in order to guarantee feasibility. First, the bin is traversed in order to check if items appear twice, the first of these items is deleted. Then, the branching constraints are considered: Items conflicting with others are removed. Afterwards, we try to pack induced items; if this is not possible the corresponding original items are also removed from the bin. Finally, FFBC is applied to the remaining items, possibly improving the solution.

Mutation The mutation operator removes a randomly chosen item i from the bin. If the branching constraints induce other items for i, they are also deleted. Finally, FFBC is applied to the remaining items for local improvement.

Experimental Results

We performed experiments on the benchmark instances from Berkey and Wang [START_REF] Berkey | Two-dimensional finite bin packing algorithms[END_REF] (classes 1 to 6) and Martello and Vigo [START_REF] Martello | Exact solutions of the two-dimensional finite bin packing problem[END_REF] (classes 7 to 10).

We compare CPLEX 8.1 directly applied to the ILP model ( 1) to ( 12) and the two variants of the B&P approach with and without the EA for solving the pricing problem. The B&P algorithm was implemented using the opensource framework COIN/Bcp (version 2004/04) [START_REF] Lougee-Heimer | The Common Optimization INterface for Operations Research: Promoting open-source software in the operations research community[END_REF], the LPs were solved using COIN/Clp. The computational experiments were performed on a Pentium 4 PC with 2.8 GHz. The EA's population size was 100, the mutation was performed with probability 0.75, and the EA terminated when either 1 000 iterations were performed without an improvement of the best solution or after a total of 100 000 iterations. Each of the experiments had a time limit of 1 000 seconds, which was occasionally exceeded because CPLEX is given the same time limit of 1 000 seconds.

Table 1 shows results obtained for the 10 problem classes; in each class there are 50 instances divided into 5 subclasses with n = 20, . . . , 100 items. For each of the considered algorithms (CPLEX, B&P, B&P with EA), average objective values z of finally best integer solutions, numbers of instances solved to provable optimality Opt (out of 10), and average times t in seconds are given. The last rows show totals and averages over all instances.

When CPLEX is directly applied to the ILP model, 335 out of 500 instances could be solved to provable optimality. This is not bad, but substantially less than B&P's 402 instances and in particular the 409 completely solved instances of the EA-enhanced B&P. The differences in the objective values of the finally best integer solutions found by the three algorithms for instances that could not be solved to optimality are in general relatively small. Nevertheless, B&P's solution values are in several cases significantly better than those of CPLEX, and the EAenhanced B&P performs best on average. The two variants of B&P with and without the EA exhibit approximately the same total running times. Applying CPLEX directly was significantly slower in most cases. Thus, the application of the EA within the B&P framework is worth the additional effort.

Conclusions and Future Work

For 3-stage 2BP, we presented a compact ILP model having only O(n 3 ) variables.

In practice, however, the proposed column generation approach having a number of potential variables that grows exponentially with n turns out to be more efficient. Using the described EA as an additional strategy for solving the pricing problem pays off in terms of a higher capability of solving instances to provable optimality, but also slightly better average solution values. The combination of B&P and an EA in this form is also highly promising for other combinatorial optimization problems. Research on more sophisticated interaction and a parallel execution of these algorithms will be done next.
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 1 Fig. 1. A three-stage cutting pattern for one bin in normal form.
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 2 Fig. 2. First fit heuristic respecting the branching constraints.
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 1 Experimental results of the presented algorithms.

				CPLEX			B&P		B&P with EA
	Class	n	z	Opt	t [s]	z	Opt	t [s]	z	Opt	t [s]
		20	7.2 10.0	0.0	7.2 10.0	0.3	7.2 10.0	6.3
		40	13.6	6.0	404.8 13.6	8.0	206.1 13.6	8.0	204.0
	1	60	20.2	3.0	748.9 20.2	8.0	256.9 20.1	8.0	221.6
		80	27.8	0.0 1000.6 27.6	9.0	182.1 27.6	9.0	183.9
		100 32.7	0.0 1001.3 32.3	4.0	845.6 32.0	6.0	590.4
		20	1.0 10.0	0.0	1.0 10.0	0.1	1.0 10.0	0.1
		40	2.0	9.0	100.2	2.0	9.0	113.0	2.0	9.0	118.3
	2	60	2.8	7.0	300.8	2.8	7.0	317.9	2.8	7.0	411.2
		80	3.4	7.0	302.4	3.4	7.0	377.9	3.4	7.0	410.1
		100	4.1	8.0	206.7	4.1	8.0	344.0	4.1	8.0	220.8
			5.4 10.0	0.0	5.4 10.0	0.2	5.4 10.0	0.3
		40	9.7	8.0	307.2	9.8	9.0	124.3	9.7 10.0	7.0
	3	60	14.2	5.0	704.3 14.2	7.0	386.9 14.1	9.0	184.4
		80	20.3	0.0 1000.4 19.5	7.0	423.9 19.3	8.0	280.2
		100 23.9	0.0 1000.8 23.2	2.0	950.1 22.9	3.0	946.9
		20	1.0 10.0	0.0	1.0 10.0	0.1	1.0 10.0	0.1
		40	2.0	9.0	100.1	2.0	9.0	100.7	2.0	9.0	166.6
	4	60	2.6	7.0	353.7	2.7	6.0	413.3	2.7	6.0	736.5
		80	3.3	7.0	300.9	3.3	7.0	402.3	3.3	7.0	303.3
		100	4.0	7.0	302.0	4.0	7.0	378.2	4.0	7.0	306.9
		20	6.6 10.0	0.0	6.6 10.0	0.2	6.6 10.0	0.8
		40	12.3 10.0	24.2 12.3 10.0	23.0 12.3 10.0	3.1
	5	60	18.3 10.0	10.3 18.3 10.0	19.0 18.3 10.0	89.0
		80	25.0	5.0	530.1 24.8	9.0	199.4 24.8	9.0	213.7
		100 29.4	1.0	901.5 28.9	5.0	621.6 28.9	7.0	536.3
		20	1.0 10.0	0.0	1.0 10.0	0.1	1.0 10.0	0.1
		40	1.9 10.0	14.2	1.9	6.0	401.7	1.9	6.0	405.7
	6	60	2.3	8.0	200.2	2.3	8.0	202.2	2.3	8.0	201.3
		80	3.0 10.0	0.4	3.0 10.0	3.1	3.0 10.0	3.1
		100	3.6	6.0	400.8	3.6	6.0	405.5	3.6	6.0	405.6
		20	5.7 10.0	0.0	5.7 10.0	0.3	5.7 10.0	0.7
		40	11.5	6.0	566.3 11.5 10.0	4.9 11.5 10.0	39.7
	7	60	16.2	0.0 1000.2 16.2	9.0	128.5 16.1 10.0	24.7
		80	23.5	0.0 1000.4 23.2 10.0	60.2 23.3	9.0	157.3
		100 28.0	0.0 1000.7 27.1 10.0	292.1 27.1 10.0	269.6
		20	6.1 10.0	0.0	6.1 10.0	0.8	6.1 10.0	0.9
		40	11.4 10.0	0.6 11.5	9.0	133.7 11.4 10.0	120.1
	8	60	16.4 10.0	8.6 16.5	9.0	116.0 16.5	9.0	118.6
		80	22.6	8.0	288.6 22.7	9.0	177.8 22.9	7.0	346.5
		100 28.2	8.0	410.0 28.3	7.0	506.4 28.4	6.0	508.9
		20	14.3 10.0	0.0 14.3 10.0	0.1 14.3 10.0	0.2
		40	27.8 10.0	0.0 27.8 10.0	0.4 27.8 10.0	0.6
	9	60	43.7 10.0	0.1 43.7 10.0	1.4 43.7 10.0	1.5
		80	57.7 10.0	0.2 57.7 10.0	3.6 57.7 10.0	3.8
		100 69.5	8.0	200.3 69.5 10.0	7.9 69.5 10.0	8.5
		20	4.5 10.0	0.0	4.5 10.0	0.7	4.5 10.0	0.5
		40	7.7	9.0	185.8	7.7	9.0	166.1	7.8	8.0	217.4
	10	60	10.7	3.0	822.1 10.7	2.0	857.2 10.5	3.0	825.1
		80	14.0	0.0 1000.4 13.9	0.0 1048.8 13.6	0.0 1114.5
		100 16.9	0.0 1000.7 16.9	0.0 1048.5 16.6	0.0 1151.4
	Total		741.0 335.0 17702.0 737.5 402.0 12254.9 735.9 409.0 12068.2
	Average		14.82 6.70 354.04 14.75 8.04 245.10 14.72 8.18 241.36
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