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Prediction by quantization of a conditional distribution

Jean-Michel Loubes∗ Bruno Pelletier†

February 17, 2017

Abstract. Given a pair of random vectors (X,Y ), we consider the problem of approximating Y
by c(X) = {c1(X), . . . , cM (X)} where c is a measurable set-valued function. We give meaning to
the approximation by using the principles of vector quantization which leads to the definition of a
multifunction regression problem. The formulated problem amounts at quantizing the conditional
distributions of Y given X. We propose a nonparametric estimate of the solutions of the multifunc-
tion regression problem by combining the method of M -means clustering with the nonparametric
smoothing technique of k-nearest neighbors. We provide an asymptotic analysis of the estimate
and we derive a convergence rate for the excess risk of the estimate. The proposed methodology is
illustrated on simulated examples and on a speed-flow traffic data set emanating from the context
of road traffic forecasting.

Index Terms: Regression analysis, vector quantization, nonparametric statistics, clustering, k-
means, set-valued function, multifunction.

1 Introduction

Regression analysis encompasses important statistical methods for exploring the relationship be-
tween a response variable Y and a predictor X. Most commonly, the focus is on estimating (or
modeling) the regression function η(x) := E[Y |X = x] by methods of various sorts (see e.g. Györfi
et al., 2002; Ruppert et al., 2003). Over the years, alternatives to mean regression (that is, esti-
mation of the regression function η) have been proposed and analyzed in the literature. Among
these, median regression (as a special case of quantile regression Koenker, 2005) exhibits properties
of robustness to outliers (Huber and Ronchetti, 2009). Another alternative is modal regression.
In Lee (1989, 1993) (see also Kemp and Santos Silva, 2012; Yao and Li, 2014) the mode of the
conditional distribution of Y given X is modeled as a linear function of x. A related setting is
that considered in Sager and Thisted (1982) where the dependence of the conditional mode on
the predictor x is monotone. Typical nonparametric approaches to conditional mode estimation
resort to first estimating the conditional densities using a nonparametric method, and then to infer
the mode by maximization, as in Collomb et al. (1987) for instance, and Yao et al. (2012) for a
generalization of this approach using local polynomials.

Yet in the situation where the data is heterogeneous, summarizing the conditional distribution
of Y given X by a single measure of location (mean, median, or mode) may be inadequate. As an
illustration, consider the scatterplot represented in Figure 1. The distribution of Y given X is a
mixture of two Normal distributions with equal proportions, equal variances, and means η1(x) <
η2(x), and X follows a uniform distribution over the unit interval. The difference in means η2(x)−
∗Institut de Mathématiques de Toulouse, Université Toulouse III, France
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η1(x) increases with x so that the conditional distribution of Y given X is clustered into two distinct
groups, all the more separate as x is large. By construction, η(x) = 1

2 [η1(x) + η2(x)] and η is an
increasing function of x. Thus the regression function is well representative of the average trend
in the data but provides a limited summary of the distribution of Y given X since it is bimodal.
Instead, the set-valued map, also referred to as a multi-valued function or a multifunction, defined
by x 7→ {η1(x), η2(x)} would better capture the structure of the data than a real-valued map such
as the conditional mean (or mode or median) function.
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Figure 1: Scatterplot of 400 realizations of the pair (X,Y ) where X follows a uniform distribution
over [0, 1], and where the distribution of Y given X is a mixture of two Normal distribution with
weights equal to 1

2 , variances equal to 0.01, and means η1(x) = arctan(8x) (green curve) and
η2(x) = 2 arctan(6x) (red curve). The regression function E[Y |X = x] = 1

2 [η1(x) + η2(x)] is
represented by the dashed curve.

Fitting a finite mixture model is a popular approach for modeling such heterogeneous data.
These models are typically studied in an estimation framework (see e.g. Everitt and Hand, 1981;
McLachlan and Peel, 2000; Titterington et al., 1985) where an application of the maximum likeli-
hood principle defines the estimation method of choice. For purposes of regression analysis, a finite
mixture regression model is obtained by conditioning a finite mixture distribution on a vector of
covariates, as in Khalili and Chen (2007). For instance, the data represented in the scatterplot of
Figure 1 is drawn from a Gaussian mixture regression model with two components, and the inter-
est would be primarily in estimating the mean curves η1(x) and η2(x), in addition to the mixture
proportions and the variances of the components of the model. Finite mixture regression models
provide a flexible way of handling heterogeneous data and are receiving a growing attention from
the statistical community, with recent results giving performance bounds even in a high-dimensional
setting (see e.g. Devijver, 2015; Meynet, 2013; Städler et al., 2010). These models are also known
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as mixture of experts (Jacobs et al., 1991; Jiang and Tanner, 1999) in machine learning.

Another class of methods centered on modal regression has developed to estimate the set of
all the modes of the conditional distribution, that is, the set of points of local maximum of the
conditional density, called the modal set. Following Einbeck and Tutz (2006), Chen et al. (2016)
propose a plug-in nonparametric estimate of the modal set based on a kernel density estimate. This
contrasts with early works on modal regression (e.g. Lee, 1989, 1993; Sager and Thisted, 1982) which
focused primarily on estimating the principal mode motivated by concerns of robustness to outliers.
Formally, Chen et al. (2016) defines the modal set Mod(x) at some point x as the set of points
y in R where the conditional density fY |X=x(y) of Y given X = x satisfies f ′Y |X=x(y) = 0 and

f ′′Y |X=x(y) < 0 and it is assumed that Mod(x) is finite (we note that, as defined, Mod(x) is a subset

of the set of points of local maximum). Hence the map x 7→ Mod(x) is a multivalued function.
From an algorithmic standpoint, Einbeck and Tutz (2006) propose to estimate the modal set with
a conditional version of the mean-shift algorithm, which is a modified version of the mean-shift
algorithm used in the context of density mode clustering (Arias-Castro et al., 2016; Cheng, 1995;
Comaniciu and Meer, 2002), and Chen et al. (2016) prove that the resulting modal set estimate is
consistent.

Arguably, nonparametric modal regression may prove effective especially when the conditional
distributions admit only a limited number of local modes, as in the speed-flow traffic data reported
in Einbeck and Tutz (2006). There, the conditional distribution of the speed of vehicules on a
Californian freeway given the traffic flow is found to be bimodal over a range of small flow values,
and then unimodal for larger values of the flow. In this example, the modal set is composed of at
most two points. However in a situation where the conditional distributions would admit a large
number of local points of maximum, then the modal set might be difficult to interpret (the modal
set may even be uncountable, when this latter is defined as the set of points of local maximum).
Therefore, there is a need for developing a regression methodology which could extract potentially
more than one feature from the data, in a manner similar to modal regression, but while keeping
their number relatively small, or even the control thereof, to preserve the interpretability of these
features.

In this paper, we propose to apply the principles of vector quantization (Gersho and Gray, 1992;
Graf and Luschgy, 2000; Linder, 2002) to the conditional distributions of Y given X in order to
define, given M an integer, a set-valued function x 7→ c(x) := {c1(x), . . . , cM (x)} meant to capture
the underlying structure of the data, thereby extending the regression problem to a multifunction
regression problem. We define optimality in terms of the mean squared error or predictive risk

E(c) = E
[

min
1≤j≤M

‖Y − cj(X)‖2
]

(1)

and we focus on the estimation of a multifunction c? which achieves the infimum of E(c) over the set
of measurable multifunctions of the form x 7→ c(x) := {c1(x), . . . , cM (x)}. We remark that when
M = 1, E(c) coincides with the L2 risk E[|Y −f(X)|2] of a real-valued function f used in regression
analysis. Hence E(c) is a natural extension of the L2 risk to multifunctions. We emphasize that,
even when M = 1, our objective is not to quantize the regression function η, a problem studied in
Györfi and Wegkamp (2008), but to estimate an optimal multifunction c?, which can be represented
by the M real-valued functions x 7→ cj(x), for j = 1, . . . ,M .

Given IID data (X1, Y1), . . . , (Xn, Yn) with the same distribution as (X,Y ), we propose a non-
parametric estimate ĉn(x) := {ĉn,1(x), . . . , ĉn,M (x)} defined by combining the approach of k-means
clustering (see e.g. Duda et al., 2000, Chap. 10) with the smoothing technique of k-nearest neigh-
bors averaging (see e.g. Györfi et al., 2002). Underlying the definition of ĉn is the estimation of
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E(c) with k-nearest neighbors smoothing, followed by minimization of this estimate over the set of
measurable multifunctions x 7→ c(x) := {c1(x), . . . , cM (x)}. As will be argued further in the paper,
the minimization problem over c can be reduced to a collection of quantization problems indexed
by x, which leads to a simple algorithm for evaluating the value of the estimate ĉn(x) at any x.
We measure the performance of the estimate by the excess risk

R(ĉn) = E
[

min
1≤j≤M

‖Y − ĉn,j(X)‖2
]
− inf

c
E
[

min
1≤j≤M

‖Y − cj(X)‖2
]
. (2)

Notice that when M = 1, ĉn reduces to a single valued function ĉn,1 : R → R and R(ĉn) =
E[(ĉn,1(X)− η(X)2], the expectaction of the L2 error of the estimate ĉn,1 of the regression function
η. To summarize, in the present paper, we make in particular the following contributions:

• We state a multifunction regression problem and we study its solutions.

• We propose a nonparametric multifunction estimate ĉn defined by combining the method
of M -means with the smoothing technique of k-nearest neighbors averaging. We propose a
simple companion algorithm to compute the value of the estimate.

• We prove the consistency of the estimate and we derive convergence rates on the excess risk
and on a pointwise version of the excess risk.

• We propose a heuristic for automatically selecting the number of neighbours of the estimate.
We also study the automatic selection of the number of quantization points. We illustrate the
methods on two simulated examples and on a data set of speed records versus the location
along an automobile path in the city of Toulouse, France.

The paper is organized as follows. In section 2, we summarize the foundational principles
of vector quantization and of the design of empirical vector quantizors by minimization of the
empirical risk. In section 3, we define the multifunction regression problem, emphasizing potential
measurability issues that we address. In section 4, we define our proposed estimate ĉn, and in
section 5, we provide an asymptotic analysis of the estimate. First, in Theorem 1, we obtain
a bound on the pointwise version of the excess risk, under a local regularity condition on the
conditional densities. Then we derive a convergence rate on the excess risk in Theorem 2 under
mild regularity conditions. In Theorem 3, we prove a convergence result of the estimte towards
elements of the solution set of the multifunction regression problem. Then in section 6, we report
on practical implementation details on numerical experiments and we also apply the methodology
to speed data along an automobile path in the city of Toulouse, France. The proofs of the theorems
are exposed in section 7.

2 Vector quantization

In this section, we collect foundational materials on vector quantization. We start by formulating
the quantization problem and by defining the notion of an optimal quantizer. Then we describe the
application of the principle of empirical risk minimization to the design of an empirical quantizer
from IID data.

2.1 The quantization problem

Vector quantization refers to the process of discretizing a random vector by a random variable
that can take only a finite number of values (Gersho and Gray, 1992; Graf and Luschgy, 2000;
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Linder, 2002). Known as lossy data compression in information theory and signal processing,
vector quantization forms the basic principle of the method of k-means for data clustering (Pollard,
1982b) and is also used in defining numerical integration schemes (Pagès, 1997). In this section,
and we collect foundational materials on vector quantization.

Let Y be a random vector in Rp with distribution PY . Given M an integer, an M -points
quantizer is a map q : Rp → Rp such that its image is a finite set {c1, . . . , cM} of M points of Rp.
Using the Euclidean norm ‖.‖ on Rp, the performance of a quantizer q is measured by the distortion

D(q;PY ) = E[‖Y − q(Y )‖2]. (3)

An M -points nearest-neighbor quantizer is a quantizer qc of the form qc(x) = arg min1≤j≤M ‖x−cj‖,
where ties are broken arbitrarily, and where c := (c1, . . . , cM ) is a configuration, or codebook, of M
points in Rp. Any quantizer q defines a partition of Rp into the sets q−1(cj), for j = 1, . . . ,M . In
the case of a nearest-neighbor quantizer qc, the partition is called a Voronoi partition and for any
j = 1, . . . ,M , the (closed) Voronoi cell Vj(c) associated with cj is defined by

Vj(c) = {x ∈ Rp : ‖x− cj‖ ≤ ‖x− c`‖ for all 1 ≤ ` ≤M} . (4)

Notice that {V1(c), . . . , VM (c)} does not form a partition of Rp because Vi(c) ∩ Vj(c) is not empty
for all 1 ≤ i 6= j ≤M , but q−1c (cj) ⊂ Vj(c) for all j = 1, . . . ,M .

2.2 Optimal quantizers

The search for an optimal quantizer minimizing the distortion can be restricted to the class of
nearest-neighbor quantizers (Graf and Luschgy, 2000, Lemma 3.1). In the present work, only
nearest-neighbor quantizers are considered, and a nearest-neighbor quantizer qc is referred to by
the configuration c := (c1, . . . , cM ) from which it is defined. A configuration c := (c1, . . . , cM ) will
be called simply a quantizer and the distortion E(c;PY ) of the quantizer c is defined by

E(c;PY ) := D(qc;PY ) = E
[

min
1≤j≤M

‖Y − cj‖2
]
. (5)

An optimal quantizer c? is any minimizer of E(c;PY ) over all c in (Rp)M , that is, such that
E(c?;PY ) = E?(PY ), where

E?(PY ) = inf
c∈(Rp)M

E(c;PY ), (6)

and its existence is guaranteed; see e.g. Theorem 1 in Linder (2002) or Theorem 4.12 in Graf and
Luschgy (2000).

2.3 Approximation of measures

The connection between vector quantization and the Wasserstein distance has long been recognized;
in particular, we have

E?(PY ) = inf {W2(PY , Q) : Q probability measure with |Supp(Q)| ≤M} , (7)

where W2(PY , Q) denotes the L2 Wasserstein distance between the probability measures PY and
Q (Graf and Luschgy, 2000, Lemma 3.4). Hence finding an optimal quantizer for PY is equivalent
to best approximating PY , in the Wasserstein distance, by a discrete measure with support of
cardinality at most M . Under the regularity assumption that, for any optimal quantizer c?, PY does
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not charge the boundaries common to any two adjacent Voronoi cells, that is, if PY (Vi(c
?)∩Vj(c?)) =

0 for all 1 ≤ i 6= j ≤M , then the set of minimizers in (7) coincides with the set of optimal quantizers
minimizing (5) by (Graf and Luschgy, 2000, Lemma 3.1) and (Graf and Luschgy, 2000, Lemma
4.4). Following Graf and Luschgy (2000), any minimizer of (7) is called an M -optimal quantizing
measure. By this equivalence, any M -optimal quantizing measure is of the form PY ◦ q−1c? , that is,
the image measure (pushforward measure) of PY by the quantizer map qc? , and it can be expressed
as PY ◦ q−1c? =

∑M
i=1 P(Y ∈ Vi(c?))δc?i , where c? = (c?1, . . . , c

?
M ).

2.4 Empirical vector quantization

Empirical vector quantization refers to the quantization of the empirical measure of a random
sample and forms the basis for data clustering by the method of k-means (Pollard, 1982b), where
the goal is to automatically partition the data into dissimilar groups of similar items. The setting is
that of a sequence (Yi)i≥1 of independent random vectors with the same distribution as Y . For each

sample size n, denote by P
(n)
Y := 1

n

∑n
i=1 δYi the empirical measure associated with Y1, . . . , Yn. An

empirical quantizer c?n is any minimizer of the distortion for P
(n)
Y , that is, such that En(c?n;PY ) =

E?n := infc∈(Rp)M En(c;PY ) where

En(c;PY ) := E
(
c;P

(n)
Y

)
=

1

n

n∑
i=1

min
1≤j≤M

‖Yi − cj‖2, (8)

with E as in (5). Consistency of c?n is shown in (Pollard, 1981, 1982b). It is shown in (Antos,
2005; Bartlett et al., 1998; Linder et al., 1994) that the excess risk E[E(c?n;PY )] − E?(PY ) of an
empirical quantizer decreases at a rate on the order of O(1/

√
n) under the assumption that PY has

bounded support. This result is extended in Biau et al. (2008) for the quantization over a separable
Hilbert space. Faster convergence rates have been reported in the literature under different kind
of assumptions (see e.g. Antos et al., 2005; Levrard, 2015). We mention that these rates share the
property of depending only on the sample size, and not on the number of quantization points nor
on the space dimension. The dependence on these parameters is only through the constant factors.

3 The multifunction regression problem

Let (X,Y ) be a pair of random vectors taking values in Rd × Rp. Following Rockafellar and
Wets (2009), a set-valued mapping or multifunction c : Rd ⇒ Rp is a map which to each x in Rd
associates a subset c(x) of Rp. The double arrow notation is used to distinguish multifunctions from
single-valued functions and the Euclidean spaces under consideration are endowed with their Borel
σ-fields. A multifunction c : Rd ⇒ Rp is closed-valued if c(x) is closed for each x; it is measurable
if for every open set O ⊂ Rp the set c−1(O) is measurable (Rockafellar and Wets, 2009, Definition
14.1).

Given M an integer, we consider the set FM of measurable multifunctions c : Rd ⇒ Rp such
that c(x) contains exactly M points of Rp for each x, that is,

FM =
{
c : Rd ⇒ Rp : c is measurable and #c(x) = M for each x

}
, (9)

where # denotes the cardinality of a set.
Notice that each multifunction in FM is closed-valued. By (Rockafellar and Wets, 2009, Theorem
14.5), each closed-valued measurable multifunction admits a Castaing representation, meaning in
our context that, for each c in FM , there exists M measurable functions c1, . . . , cM from Rd to Rp
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such that c(x) = (c1(x), . . . , cM (x)) for all x. We define the multifunction regression problem as
the problem of best approximating Y by c(X), for some c in FM , in the sense of the predictive risk
E(c) defined in (1) as

E(c) = E
[

min
1≤j≤M

‖Y − cj(X)‖2
]
. (10)

Notice that E(c) does not depend on the choice of functions (c1, . . . , cM ) used to represent c. Then
we define a solution to the multifunction regression problem as any multifunction c? in FM such
that

E(c?) = inf
c∈FM

E(c).

A notable difference with the conventional regression setting (corresponding to M = 1) is that the
solution set typically contains multiple solutions when M ≥ 2, while when M = 1, the solution is
unique and coincides with the regression function η(x) = E[Y |X = x].

As claimed in the Introduction, minimization over c can be reduced to a collection of quanti-
zation problems indexed by x. This is true in the following sense. Denote by PX the distribution
of X and by SX its support. By conditioning on X in the definition of E(c), let E(c;x) be the
function defined for any x in SX and any c = (c1, . . . , cM ) ∈ Rp × · · · × Rp by

E(c;x) = E
[

min
1≤j≤M

‖Y − cj‖2
∣∣X = x

]
, (11)

which is also equal to the conditional version of (5) (we use the same notation c to denote either
a multifunction Rd ⇒ Rp or a point in Rp × · · · ×Rp when this is clear from the context and there
is no risk of confusion). Thus E(c;x) corresponds to the distortion of the conditional distribution
of Y given X at x by the M -points quantizer with codebook (c1, . . . , cM ). It is clear that E(c;x) is
measurable in x for each c and continuous in c for each x, which imply that E(c;x) is a Carathéodory
integrand (these are the defining conditions). Therefore E(c;x) is a normal integrand in the sense
of (Rockafellar and Wets, 2009, Definition 14.27) and by (Rockafellar and Wets, 2009, Theorem
14.60) on the interchange of minimization and integration, we have

inf
c∈FM

∫
SX
E(c(x);x)PX(dx) =

∫
SX

[
inf

c∈Rp×···×Rp
E(c;x)

]
PX(dx), (12)

and for any c̄ in FM , the following equivalence holds:

c̄ ∈ arg min
c∈FM

∫
SX
E(c(x);x)PX(dx)⇐⇒ c̄(x) ∈ arg min

c∈Rp×···×Rp
E(c;x) for PX -a.e. x.

Thus minimizing E(c) over FM is equivalent to minimizing E(c;x) over c ∈ Rp × · · · × Rp, up to
measurability. This issue can be resolved by considering a measurable selection from the argmin
sets as follows: since E(c, x) is a normal integrand, the multifunction SX ⇒ Rp defined by x 7→
arg minc∈Rp×···×Rp E(c;x) is closed-valued and measurable by (Rockafellar and Wets, 2009, Theorem
14.37), and so it admits a measurable selection (Rockafellar and Wets, 2009, Corollary 14.6), that
is, a measurable function c̄ : SX → Rp × · · · ×Rp such that c̄(x) ∈ arg minc∈Rp×···×Rp E(c;x) for all
x in SX (c̄ is cannonically identified with a multifunction in FM ).

We conclude that any solution c? to the multifunction regression problem can be defined either
directly as a minimizer of E(c) over FM or as a measurable selection (which exists) from the
collection of argmin sets {arg minc∈Rp×···×Rp E(c;x) : x ∈ SX}.
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4 The estimate

In this section, we define our estimate ĉn(x) := (ĉn,1(x), . . . , ĉn,M (x)). We also describe an opti-
mization algorithm to compute the values of ĉn(x) at any point x.

4.1 Definition of the estimate

Let (Xi, Yi)i≥1 be an IID sequence of random vectors with the same distribution as (X,Y ). To
define ĉn(x), we proceed by first estimating E(c;x) and next by minimizing the estimated distortion
over c for each x. Clearly there is ample leeway for the first step, and for computational reasons
exposed in section 4.2, we consider a k-nearest neighbors local averaging estimate of E(c;x) of the
form

En(c;x) =
n∑
i=1

Wn,i(x) min
1≤j≤M

‖Yi − cj‖2, (13)

where {Wn,i(x), i = 1, . . . , n} is the set of weights depending on the observations X1, . . . , Xn defined
as

Wn,i(x) =
1

k
1 {Xi is among the k nearest neighbors of x} . (14)

As for E(c;x) defined in (10), En(c;x) is a Carathéodory integrand (hence a normal integrand) and
so there exists a measurable selection from its argmin sets. Then we define our estimate ĉn as any
measurable selection from the collection {arg minc∈Rp×···×Rp En(c;x) : x ∈ SX}, meaning that ĉn
is measurable and satisfies

En(ĉn(x);x) = inf
c∈Rp×···×Rp

En(c;x), for all x in SX . (15)

4.2 An optimization algorithm

Minimizing En(c;x), or En(c;PY ) in the non conditional setting, is known for being computationally
difficult (it is NP-hard). A popular and tractable optimization algorithm for this purpose is the
k-means algorithm, which proceeds iteratively by constructing a sequence of quantizers converging
to a local optimum.

From a practical perspective, the local averaging estimate En(c;x) defined in (13) can be min-
imized by considering a weighted version of the k-means algorithm, as described in Algorithm 1.
Naturally, weights other than the k-nearest neighbors weights could be used. But when using the
k-nearest neighbor weights (14), the algorithm is equivalent to the standard M -means algorithm

Algorithm 1: Conditional weighted k-means algorithm.

Input: Data (X1, Y1), . . . , (Xn, Yn), weights Wn,i(x), i = 1, . . . , n, and number of quantization points M .

1. Initialize a configuration c(0) = (c
(0)
1 , . . . , c

(0)
M ).

2. Iterate for t ≥ 0 over:

(a) Assignment step: Set I
(t)
j = {1 ≤ i ≤ n : ‖Yi − cj‖ ≤ ‖Yi − c`‖ for all 1 ≤ ` ≤M}, for each

1 ≤ j ≤M ,

(b) Update step: Set c
(t+1)
j =

∑
i∈I

(t)
j

Wn,i(x)Yi∑
i∈I

(t)
j

Wn,i(x)
.

Output: Configuration c = (c1, . . . , cM ) obtained at convergence.
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applied to the Yi’s which correspond to the k nearest neighbors of x among the Xi’s. Thus, the
algorithm is rather simple to implement.

5 Asymptotic analysis

In this section, we study the convergence of the estimate ĉn defined in (15). We assume that (X,Y )
admits a probability density fXY with respect to the Lebesgue measure on Rd × Rp and that Y is
bounded, that is, that there is R > 0 such that ‖Y ‖ ≤ R almost surely.

We shall need the following notation. The conditional density of Y given X = x at y is denoted
by fY |X=x(y). For any m, the closed ball of Rm centered at x and of radius ρ is denoted by Bm(x, ρ).
The closed ball centered at the origin and of radius ρ is denoted by Bm(ρ) and the volume of Bm(1)
is denoted by ωm.

Recall the excess risk defined in (2) by

R(ĉn) = E
[

min
1≤j≤M

‖Y − ĉn,j(X)‖2
]
− inf

c∈FM
E
[

min
1≤j≤M

‖Y − cj(X)‖2
]
, (16)

where the class FM is defined in (9). We also consider the pointwise excess risk defined by

R(ĉn;x) = E
[

min
1≤j≤M

‖Y − ĉn,j(X)‖2|X = x

]
− inf

c∈Rp×···×Rp
E
[

min
1≤j≤M

‖Y − cj‖2|X = x

]
. (17)

We note that by (12),

inf
c∈F

E
[

min
1≤j≤M

‖Y − cj(X)‖2
]

= E
[

inf
c∈Rp×···×Rp

E
[

min
1≤j≤M

‖Y − cj‖2|X
]]
,

and so R(ĉn) = E [R(ĉn;X)] .

5.1 Bounds on the excess risk

In Theorem 1 and Theorem 2, we establish convergence rates on the pointwise excess risk (17)
and on the excess risk (16) of a sequence of estimate ĉn. We consider local and global Lipschitz
regularity conditions on the conditional densities analogous to those used in (Györfi and Kohler,
2007) for the estimation of conditional distributions.

Theorem 1. Let x be a point in SX . Assume that there exists κ > 0 such that

P (‖X − x‖ ≤ ε) ≥ κεd, for all ε > 0. (18)

Assume that there exists δ > 0 and an integrable function h : Rp → R+ such that∣∣fY |X=x̃(y)− fY |X=x(y)
∣∣ ≤ h(y)‖x̃− x‖, for all y ∈ Rp and for all x̃ with ‖x̃− x‖ ≤ δ. (19)

Then there exists a constant C := C(δ, κ, h,R) > 0 such that, for all k and n satisfying k
n ≤

1
C

((
log k
k

) d
2 ∧ δd

)
, and any sequence ĉn of estimate,

R (ĉn;x) ≤
√
C(pM + 1)

2

√
log k

k
+ 8R2 exp

(
−nδ

d

C

)
+ o

(√
log k

k

)
. (20)
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Condition (18) is a regularity condition on the support SX in a neighborhood of the point x
which is used for instance in set estimation to define the notion of a standard set (see e.g. Báıllo
et al., 2000).

The term

√
C(pM+1)

2

√
log k
k in the right-hand side of (20) corresponds to the excess risk of an

empirical quantizer defined on a random sample of size k (Linder et al., 1994). As pointed out in
Bartlett et al. (1998), the log k factor can be eliminated at the price of added technical difficulties,
and we speculate that the same applies here, so that the first term in the righ hand side of (20)
could be sharpened to a constant multiple of 1/

√
k.

With the choice of k � n
2
d+2 , Theorem 1 leads to the following bound on the pointwise excess

risk.

Corollary 1. In the setting of Theorem 1, with k � n
2
d+2 , then

R (ĉn(x);x) = O

((
log n

n

) 1
d+2

)
.

We note that the rate of Corollary 1 is slower than the O(
√

log n/n) rate that would be obtained
in the quantization of a sample of size n without conditioning. Hence we see that a curse of
dimensionality is at play here, as expected.

To bound the excess risk, we consider a global version of the Lipschitz condition (19). We also
assume that the support SX is compact, which is a standard condition in regression estimation
with nearest neighbors.

Theorem 2. Suppose that SX is compact, and that there exists an integrable function h : Rp → R+

such that ∣∣fY |X=x̃(y)− fY |X=x(y)
∣∣ ≤ h(y)‖x̃− x‖, (21)

for all x and x̃ in SX . Let ĉn be a sequence of estimate. Then with k � n
2
d+2 ,

R(ĉn) = O

((
log n

n

) 1
d+2

)
. (22)

We note that the rates in both Corollary 1 and Theorem 2 depend adversely on the dimension d
of the predictor variable X. This results from the smoothing over x used to estimate the conditional
distortions E(c;x). Note also that these rates do not depend on the number of quantization points
M , nor on the dimension p of the response Y ; the dependence on p and M is only through the
constants, as exhibited in the right-hand side of (20) for instance. This is consistent with known
bounds on the excess risk in empirical vector quantization (Antos, 2005; Bartlett et al., 1998; Linder
et al., 1994), as seen in Section 2.4.

In the real-valued regression setting (with M = 1 and p = 1), condition (21) entails the Lipschitz
continuity of the regression function η(x) = E[Y |X = x] by the Lebesgue dominated theorem
combined with the assumption that Y is bounded. Therefore the rate in Theorem 2 is suboptimal
for M = 1 since the minimax rate of convergence of the L2 risk for a Lipschitz continuous regression

function with bounded Y is n−
d
d+2 . Yet a striking difference between the cases M = 1 and M ≥ 2

is that the equality

R(ĉn) = E[(Y − ĉn(X))2]− E[(Y − η(X))2] = E[(ĉn(X)− η(X)]2

in the case M = 1, which allows for the decomposition into the well-known bias/variance sum, with
the bias depending on the regularity of the regression function, does not extend to the case M ≥ 2.
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Therefore when M ≥ 2, the dependence, if any, of the convergence rate of the excess risk on the
regularity of the solution(s) to the multifunction regression problem is unclear. In addition when
M ≥ 2, the solution set of a quantization problem may contain multiple solutions (and as pointed
out in Pollard (1982a), few conditions enforcing uniqueness exist). Thus one might expect that
irregular solutions to the multifunction regression problem do exist. Therefore a deeper analysis of
the convergence rate would necessitate a fine examination of the regularity of the argmin sets of
E(c;x) over x, which is something that we remain curious about. That said, by using the connection
between the quantization problem and the Wasserstein distance, we can state a convergence result
on the solution, as shown in the next Section.

5.2 Convergence in solution

For any x in SX , let C?(x) = arg minc∈Rp×···×Rp E(c;x), the argmin set of E(c;x). Given two
closed-valued multifunctions c1 and c2, we measure the proximity between c1(x) and c2(x) by their
Hausdorff distance dH(c1(x), c2(x)), where the Hausdorff distance between two subsets A and B
of Rp is defined by

dH(A,B) = sup
a∈A

inf
b∈B
‖a− b‖ ∨ sup

b∈B
inf
a∈A
‖a− b‖.

We state the following qualitative result under the local conditions used in Theorem 1.

Theorem 3. Let x be a point in SX and suppose that (18) and (19) hold. Let ĉn be a sequence of
estimate. Suppose that k

n → 0 and k
logn → ∞. Then the set of accumulation points of ĉn(x) is a

nonempty subset of C?(x) and

inf
c∈C?(x)

dH(ĉn(x), c)→ 0 almost surely as n→∞.

Thus, at any x in SX , the accumulation points of ĉn(x) are optimal. In particular, if the
multifunction regression problem admits a unique solution c?, then ĉn(x) converges almost surely
to c?(x) for all x in SX satisfying (18) and (19). We note that (19) holds for all x ∈ SX when
(21) is satisfied, and that (18) holds for all x when the support SX is a standard set in the sense of
Báıllo et al. (2000).

6 Numerical experiments

In this section, we report on practical aspects for the implementation of the empirical conditional
quantizer with k-nearest neighbor weights, as described in Algorithm 1. In particular, through
two simulated examples, we discuss the choice of the parameter k corresponding to the number
of neighbors and of the parameter M corresponding to the number of quantization points. The
methodology is then applied to a real-world data set of speed records as a function of location along
a daily automobile path in the city of Toulouse, France. This data is provided by Mediamobile
(http://www.mediamobile.com).

6.1 Example 1: two-conditional clusters

In this example, we apply the methodology to a sample of n = 2, 500 simulated points for the
distribution represented in Figure 1. In details, X follows a uniform distribution over [0, 1], and
given X, Y follows a mixture of two normal distributions with equal weights, with both variances
equal to 0.01, and with mean functions η1(x) = arctan(8x) and η2(x) = 2 arctan(6x). The number
of quantization points is set to M = 2 for all x in [0, 1].

11
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To select the number of neighbors k, we propose a data-driven method based on the minimization
of an estimate of the average prediction error E[E(ĉn(X);X)] used to define the excess risk. For
this purpose, we split the data into two parts, of size b2n/3c and n−b2n/3c. The first part is used
to construct the model, while the second part is used to estimate the mean prediction error (other
fractions than 2/3− 1/3 could be taken so long as the size of the test set remains smaller than the
size of the learning set). Specifically, given an integer k, for each b2n/3c+ 1 ≤ i ≤ n, we determine
an empirical quantizer ĉn(Xi) by minimization of the quantization error based on the k-nearest
neighbors of Xi among the (Xj , Yj), for 1 ≤ j ≤ b2n/3c, that is, ĉn(Xi) := (ĉn,1(Xi), . . . , ĉn,M (Xi))
minimizes

c 7→ 1

k

n∑
j=1

min
1≤j≤M

(Yj − cn,`)2 1
{
Xj is a k-NN of Xi among X1, . . . , Xb2n/3c

}
.

Using this, we set

ÊP,n(k) =
n∑

i=b2n/3c+1

min
1≤j≤M

(Yi − ĉn,j(Xi))
2 ,

which is an estimate of the average prediction error. The data-driven value of the number of
neighbors is then selected as a minimizer of ÊP,n(k) over k.

In this example, ÊP,n(k) over k has been evaluated for values of k ranging from 10 to 150 by

steps of 5. The graph of ÊP,n(k) as a function of k is represented in the left panel of Figure 2.
The minimum of the estimated prediction error is attained at k = 75. This value is then used to
evaluate empirical conditional quantizers at 100 equally spaced x-values ranging from 0 to 1. The
resulting conditional quantizers are represented as the green and red curves in the right panel of
Figure 2.
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Figure 2: Left: Estimated prediction mean square error versus the number of neighbors k. The
minimum is attained at k = 75. Right: Scatterplot of the data with the curves corresponding to
the empirical quantizers with k = 75.
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Figure 3: Left: Optimal value of k (number of neighbors) selected by minimizing the estimated
mean prediction error as a function of M (number of quantization points). Right: Scatterplot of
the data with the curves of the empirical quantizers. For each x, the number of quantization points
is selected automatically using the gap heuristic Tibshiriani et al. (2001)

6.2 Example 2: one or two conditional clusters

In this example, we consider a pair (X,Y ) where X follows a uniform distribution over [−1, 1], and
where given X, Y follows a mixture of normal distribution with equal proportions, with variances
both equal to 0.01, and with mean functions η1(x) = x2 and η2(x) = −x2. A scatterplot of
n = 1, 200 points simulated from this distribution is represented in the right panel of Figure 3. It
appears that the conditional distribution of Y given X is well concentrated around one cluster when
x is approximately in the range [−0.4, 0.4], while it clusters into two groups outside this interval.
This calls for an automatic selection of both k (the number of neighbors) and M (the number of
quantization points). Here, the goal is have k and M both depend on x.

The problematic of selecting a number a quantization points is standard in clustering analysis,
where it corresponds to the selection of the number of clusters. Several heuristics have been
introduced for that purpose. We shall use the gap heuristic proposed by Tibshiriani et al. (2001),
whereby the number of clusters is selected by comparing the change in the within-cluster variability
to that expected under a null reference distribution, which is not clustered, like a uniform or
unimodal distribution. In the present setting, the difficulty in selecting both M and k lies in the
lack of a global criterion to optimize. Indeed, for each k, the mean prediction error decreases with
M , so this criterion cannot be used to simultaneously select k and M . Moreover, the use of an
empirical heuristic, like the gap heuristic, for selecting M would require k to have been specified
first.

To circumvent these issues, we propose the following method. First, for each M in a given
range, a value of k is selected from the data by minimizing the mean prediction error, as described
in Example 1. Denote this value by k(M). In this example, we let M vary between 1 and 8; the
estimated k(M) are represented in Figure 3 (left) as a function of M . Next, for each x-value, and
for each value of k(M), we applied the gap heuristic (Tibshiriani et al., 2001) to select M . Denote
this value by Mgap(k(M)). The final value of M is then selected by a majority vote. Denote this

value by M̂ . At last, we select k as k̂ := k(M̂). This procedure is repeated for each x-value, so the
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Figure 4: Top-left: Speed records as a function of location along the path. Top-right: Optimal
number of quantization point selected with the gap heuristic as a function of location. Bottom-left:
Quantization points (either 1, 2, or 3) as a function of location.

selected values of k and M both vary with x.
Interestingly in these simulations, for each x, the values {Mgap(k(M)) , M = 1, . . . , 8} where

all equal, therefore the selection of M was particularly robust to the initial value of k. It is also
interesting to note that on this example the pair (k̂, M̂) selected at each x satisfies the stability
relations M̂ = Mgap(k̂) and k̂ = k(M̂).

We applied this selection procedure to 100 x values equally spaced between −1 and 1. This
resulted in either 1 or 2 clusters. The quantization points are represented as curves in the right
panel of Figure 3.

6.3 Example: Speed data

We consider a data set of Floating Car Data (FCD) extracted from GPS devices which record the
speed and location of cars at a frequency of 10 Hz. The raw data is map-matched to a network
of roads. In this example, n = 70 vehicles have been monitored at different times and days while
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moving along a given path, 10 kilometers long, and composed of sections of inner-city roads and of
a freeway. The data is represented in the top-left panel of Figure 4 as 70 curves giving the speed
(in kilometers per hour) as a function of the distance along the path (normalized to unit length).

As an approach to road traffic forecasting, Allain et al. (2009) propose to first cluster the speed-
location curves to define prototypical speed patterns, and next to assign a new individual to the
closest cluster. To implement the clustering approach, it is required that the data correspond to
the same path. Yet when using FCD, vehicles may share only a small section of a trajectory, so
that the number of data for a given path may be limited and this may hamper the prediction in
some cases.

To cope with this issue, we propose to strongly localize the determination of the speed patterns
by inferring the cluster structure of the speed conditionally on the location. It can be noticed from
the top-left panel of Figure 4 that drivers have different behaviors at high speeds while vehicle
speeds with small values present less variability. This difference in variabilities may be explained
by the presence of traffic jams, which has a stronger effect on a freeway ride, where high speeds can
no longer be attained, than on an inner-city ride, where the traffic is already constrained by speed
limits, traffic signals and stop signs. The cluster structure of the traffic flow is well revealed by
the conditional quantization, as represented in the top-right panel of Figure 4. The analysis yields
either one or two cluster conditionally on the location which can be interpreted as corresponding
to free flow and congested flow situations.

7 Proofs

We start in section 7.1 by establishing a uniform concentration inequality on the distortion. The-
orem 1, Theorem 2 and Theorem 3 are proved in sections 7.2, 7.3, and 7.4 respectively.

7.1 Concentration of the distortion

Proposition 1 below gives an upper bound on the uniform deviations of En(c;x) to E(c;x) for each
fixed point x.

Proposition 1. In the context of Theorem 1, let x be a point in the support of the distribution of
X, let κ > 0 satisfying (18) and let δ > 0 and h : Rp → R+ integrable satisfying (19). There exists
a constant C := C(δ, κ, h,R) > 0 such that for any ε > 0, any k and n satisfying k

n ≤
1
C

(
εd ∧ δd

)
,

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)

≤
ωMp 25pM+1R2pM

ωpM
ε−pM exp

(
− kε2

64R2(32R2 + ε)

)
+ exp

(
−nε

d

C

)
+ exp

(
−nδ

d

C

)
.

We shall need the following Lemma which is Lemma 6 in Devroye (1982).

Lemma 1 (Devroye (1982)). Let (Ui)i≥1 be a sequence of independent, zero mean random variables
such that |Ui| ≤ c almost surely. For all real numbers a1, . . . , an ≥ 0 such that

∑n
i=1 ai ≤ 1, and all

ε > 0,

P

(∣∣∣∣∣
n∑
i=1

aiUi

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− ε2

2(c2 + cε)(sup ai)

)
.
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Proof. Given c := (c1, . . . , cM ) ∈ (Rp)M . Set Zi = min1≤j≤M ‖Yi − cj‖2, for i = 1, . . . , n. Then
En(c;x) can be expressed as

En(c;x) =
n∑
i=1

Wn,i(x)Zi.

Let

Ẽn(c;x) =
n∑
i=1

Wn,i(x)E(c;Xi) (23)

be a centering term. We proceed to bound the deviations of |En(c;x) − Ẽn(c;x)| and |Ẽn(c;x) −
E(c;x)| uniformly over c in Bp(R)M .

For any ε > 0, we have

P
(∣∣∣En(c;x)− Ẽn(c;x)

∣∣∣ > ε
)

= E

[
P

(∣∣∣∣∣
n∑
i=1

Wn,i(x) (Zi − E(c;Xi))

∣∣∣∣∣ > ε
∣∣X1, . . . , Xn

)]
.

Note that for each i = 1, . . . , n, the weight Wn,i(x) depends on the distance of x with respect to
the Xi’s hence it is σ(X1, . . . , Xn)-measurable, the random variable Zi is almost surely bounded
by 4R2, and E[Zi − E(c1, . . . , cM ;Xi)|X1, . . . , Xn] = 0 almost surely. So, by applying Lemma 1
with coefficients ai = Wn,i(x), random variables Ui = Zi − E(c;Xi), conditionally on the sample
X1, . . . , Xn, we obtain that for any ε > 0,

P

(∣∣∣∣∣
n∑
i=1

Wn,i(x) (Zi − E(c;Xi))

∣∣∣∣∣ > ε
∣∣X1, . . . , Xn

)
≤ 2 exp

(
− ε2

2[(8R2)2 + (8R2)ε](1/k)

)
,

from which it follows that

P
(∣∣∣En(c;x)− Ẽn(c;x)

∣∣∣ > ε
)
≤ 2 exp

(
− kε2

16R2[8R2 + ε]

)
. (24)

To obtain a uniform bound, we consider a covering of the set {(c1, . . . , cM ) : ci ∈ B(R)} =
Bp(R)M using the distance induced by the Euclidean norm of RpM . Since Bp(R)M is a compact
subset of RpM , the minimal number N (Bp(R)M , η) of balls of radius η that are necessary to cover
Bp(R)M is of order η−pM , i.e., by considering an η-packing of Bp(R)M , we can prove that

N
(
Bp(R)M , η

)
≤
ωMp 2pM

ωpM

(
R

η

)pM
=: C0η

−pM . (25)

Let a1, . . . ,aNη be a covering of {(c1, . . . , cM ) : ci ∈ Bp(R)} = Bp(R)M by balls of radius η > 0
of minimal cardinality, that is, Nη = N (Bp(R)M , η) and for any c ∈ Bp(R)M , there is at least one
a` with components a` = (a`,1, . . . , a`,M ) such that ‖c − ai‖ ≤ η, where the norm is defined by
‖c− a`‖2 = ‖c1 − a`,1‖2 + · · ·+ ‖cM − a`,M‖2. By a union bound, we have

P

(
sup

c∈B(R)M

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣ > ε

)
≤

Nη∑
`=1

P

(
sup

c∈B(a`,η)

∣∣∣En(c;x)− Ẽ(c;x)
∣∣∣ > ε

)
. (26)

Fix 1 ≤ ` ≤ Nη. For any c = (c1, . . . , cM ) in Bp(a`, η)M , and any 1 ≤ j ≤M ,

‖Y − cj‖2 = ‖Y − a`,j‖2 + ‖a`,j − cj‖2 + 2〈Y − a`,j , a`,j − cj〉 ≥ ‖Y − a`,j‖2 − 4Rη, (27)
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since ‖Y − a`,j‖ ≤ 2R and using the fact that ‖c− a`‖ ≤ η implies ‖a`,j − cj‖ ≤ η. Therefore,

min
1≤j≤M

‖Y − cj‖2 ≥ min
1≤j≤M

‖Y − a`,j‖2 − 4Rη,

and by taking the expectation conditionally on X, we deduce that E(c;x′) ≥ E(a`;x
′)−4Rη for any

x′ in the support of the distribution of X. By exchanging cj with a`,j in (27), the same reasoning
leads to the inequality E(a`;x

′) ≥ E(c;x′) − 4Rη. Hence, for any c in Bp(a`, η) and for any x′ in
SX , ∣∣E(c;x′)− E(a`;x

′)
∣∣ ≤ 4Rη,

from which we deduce that∣∣∣Ẽn(c;x)− Ẽn(a`;x)
∣∣∣ ≤ n∑

i=1

Wn,i(x) |E(c;Xi)− E(a`;Xi)| ≤ 4Rη.

Similarly, by considering En in place of E in the steps above, we also have that, for any c in Bp(ai, η),

|En(c;x)− En(ai;x)| ≤ 4Rη.

Therefore, for any 1 ≤ ` ≤ Nη,

sup
c∈Bp(a`,η)

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣ ≤ ∣∣∣En(a`;x)− Ẽn(a`, x)

∣∣∣+ 8Rη. (28)

Then we deduce from (26) and (28) with η = ε/(16R), together with the exponential inequality in
(24) and the bound on the covering number in (25), that

P

(
sup

c∈Bp(R)M

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣ > ε

)
≤ N

(
Bp(R)M ,

ε

16R

)
max

1≤`≤Nε
P
(∣∣∣En(a`;x)− Ẽn(a`, x)

∣∣∣ > ε

2

)
≤ 2C0

( ε

16R

)−pM
exp

(
− kε2

32R2(16R2 + ε)

)
. (29)

Now we proceed to bound the deviations of
∣∣∣Ẽn(c;x)− E(c;x)

∣∣∣ uniformly over c. For any c in

Bp(R)M , we have ∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣ ≤ n∑

i=1

Wn,i(x) |E(c;Xi)− E(c;x)| .

Let δ > 0 and h : Rp → R+ integrable satisfying the regularity (19). Since ‖Y ‖ is bounded by R,
for x̃ with ‖x̃− x‖ ≤ δ and any c in Bp(R)M ,

|E(c; x̃)− E(c;x)| ≤ (4R2)

∫
Rp

∣∣fY |X=x̃(y)− fY |X=x(y)
∣∣ dy ≤ 4R2‖h‖1‖x̃− x‖ =: L‖x̃− x‖, (30)

where ‖h‖1 denotes the L1 norm of the function h.
Denote by X(k,n)(x) the kth nearest neighbor of x among the sample X1, . . . , Xn. Then, for any

c in Bp(R)M , ∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣ ≤ L‖X(k,n)(x)− x‖1{‖X(k,n)(x)− x‖ ≤ δ}

+
∣∣∣Ẽn(c;x)− E(c;x)

∣∣∣1{‖X(k,n)(x)− x‖ > δ}

≤ L‖X(k,n)(x)− x‖1{‖X(k,n)(x)− x‖ ≤ δ}
+8R21{‖X(k,n)(x)− x‖ > δ} almost surely,
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where in the last inequality we used the fact that supc∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣ ≤ 8R2.

Hence, with probability one,

sup
c∈B(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣

≤ L‖X(k,n)(x)− x‖1{‖X(k,n)(x)− x‖ ≤ δ}+ 8R21{‖X(k,n)(x)− x‖ > δ}. (31)

Then,

P

(
sup

c∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣ > ε

)
≤ P

([
L‖X(k,n)(x)− x‖ > ε

2

]
∩
[
‖X(k,n)(x)− x‖ ≤ δ

])
+ P

(
8R21{‖X(k,n)(x)− x‖ > δ} > ε

2

)
≤ P

(
‖X(k,n)(x)− x‖ > ε

2L

)
+ P

(
‖X(k,n)(x)− x‖ > δ

)
. (32)

For any 0 < η ≤ δ, let pη = P(‖X − x‖ ≤ η). Note that pη ≥ κηd where κ > 0 is defined in (18).
Since,

P
(
‖X(k,n)(x)− x‖ > η

)
= P

(
n∑
i=1

1 {‖Xi − x‖ ≤ η} ≤ k − 1

)
,

we deduce by using Chernoff’s bound that, for any 0 < η ≤ δ

P
(
‖X(k,n)(x)− x‖ > η

)
≤ exp

(
−1

2

(
1− k − 1

npη

)2

npη

)
≤ exp

(
−npη

8

)
,

where the last inequality holds whenever k−1
npη
≤ 1

2 , which is implied when

k

n
≤ κ

2
ηd. (33)

Therefore in this case
P
(
‖X(k,n)(x)− x‖ > η

)
≤ exp

(
−κ

8
nηd
)
. (34)

Hence, by reporting (34) in (32), for any ε > 0, and any k and n such that

k

n
≤ κ

2

[( ε

2L

)d
∧ δd

]
, (35)

we have

P

(
sup

c∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣ > ε

)
≤
[
exp

(
−nε

d

C1

)
+ exp

(
−nδ

d

C1

)]
1{ε ≤ 8R2}, (36)

with C1 = 8
κ [1 ∨ (2L)d].

Combining (29) and (36), we obtain that, for any ε > 0, and any k and n satisfying (35),

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)
≤ 2C0

(
ε/2

16R

)−pM
exp

(
− k(ε/2)2

32R2(16R2 + ε/2)

)
+ exp

(
−n(ε/2)d

C1

)
+ exp

(
−nδ

d

C1

)
.

From this, and the fact that (35) is satisfied when k
n ≤

κ
2

(
1

(2L)d
∧ 1
) (
εd ∧ δd

)
, we conclude.
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7.2 Proof of Theorem 1

Let c? be an optimal quantizer, meaning that E(c?, x) = E?. Denote by c?n := ĉn(x) the value of
the estimate ĉn at the point x. Following standard arguments, we have

E(c?n;x)− E?(x) = [E(c?n;x)− En(c?n;x)] + [En(c?n;x)− En(c?;x)] + [En(c?;x)− E(c?;x)]

≤ 2 sup
c∈Bp(R)M

|En(c;x)− E(c;x)| , (37)

so that

E [E(c?n)]− E? ≤ 2E

[
sup

c∈Bp(R)M
|En(c;x)− E(c;x)|

]
. (38)

Given a > 0, and since supc∈Bp(R)M |En(c;x)− E(c;x)| ≤ 8R2 almost surely, we have

E

[
sup

c∈Bp(R)M
|En(c;x)− E(c;x)|

]
=

∫ ∞
0

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)
dε

≤ a+

∫ ∞
a

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)
dε. (39)

By Proposition 1 there exists constants C0 := C0(R, p,M) > 0 and C1 := C1(δ, κ, h,R) > 0 such
that, for any ε > 0, and any k and n with k

n ≤
1
C1

(
εd ∧ δd

)
,

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)

≤ C0ε
−pM exp

(
−kε

2

C1

)
+ exp

(
−nε

d

C1

)
+ exp

(
−nδ

d

C1

)
.

Let a > 0 and suppose that k
n ≤

1
C1

(
ad ∧ δd

)
, Then, since supc∈Bp(R)M |En(c;x)− E(c;x)| ≤ 8R2

almost surely,∫ ∞
0

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)
dε

≤ a+ C0

∫ 8R2

a
ε−pM exp

(
−kε

2

C1

)
dε+

∫ 8R2

a
exp

(
−nε

d

C1

)
dε+ 8R2 exp

(
−nδ

d

C1

)
≤ a+ C0

8R2

apM
exp

(
−ka

2

C1

)
+ 8R2 exp

(
−na

d

C1

)
+ 8R2 exp

(
−nδ

d

C1

)
. (40)

Taking a = c
√

log k
k , with c =

√
C1(pM+1)

2 , we have

1

apM
exp

(
−ka

2

C1

)
= c−pM

1√
k(log k)pM/2

= o

(√
log k

k

)
,

and since k
n ≤

1
C1

(
ad ∧ δd

)
,

exp

(
−na

d

C1

)
≤ exp (−k) = o

(√
log k

k

)
.
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Therefore ∫ ∞
0

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)
dε

≤
√
C1(pM + 1)

2

√
log k

k
+ 8R2 exp

(
−nδ

d

C1

)
+ o

(√
log k

k

)

for all k and n satisfying k
n ≤

1
C1

((
C(pM+1)

2

) d
2
(
log k
k

) d
2 ∧ δd

)
. This inequality is implied when

k
n ≤

1
C1

((
C(pM+1)

2

) d
2 ∧ 1

)((
log k
k

) d
2 ∧ δd

)
and from this we conclude with any choice of constant

C (in the statement of Theorem 1) larger than

[
1
C1

((
C(pM+1)

2

) d
2 ∧ 1

)]−1
∨ C1.

7.3 Proof of Theorem 2

For any x in SX and c in Bp(R)M , let Ẽn(c;x) be defined in (23). Using (37), for any x in SX , we
have

E(ĉn(x);x)− E?(x) ≤ 2 sup
c∈Bp(R)M

|En(c;x)− E(c;x)|

≤ 2 sup
c∈Bp(R)M

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣+ 2 sup

c∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣ .

Hence

E [E(ĉn(x);x)− E?(x)] ≤ 2E

[
sup

c∈Bp(R)M

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣]+ 2E

[
sup

c∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣]

(41)
and we proceed to bound the two terms on the right-hand side of (41).

To bound the first term, we use the concentration inequality (29) from the proof of Proposition 1
to deduce that, for any ε > 0 and for any x in SX ,

P

(
sup

c∈Bp(R)M

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣ > ε

)
≤ Cε−pM exp

(
−kε

2

C

)
,

where C > 0 is a constant not depending on x. Hence, by proceeding as in the first part of (40),
followed by integrating over x, we deduce that

E

[∫
Rd

sup
c∈Bp(R)M

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣]PX(dx) ≤ C

√
log k

k
(42)

for some constant C > 0.

To bound the second term, let h : Rp → R+ be an integrable function satisfying (21). Since
‖Y ‖ is bounded by R, for any c ∈ Bp(R)M and any x and x̃ in SX , we have

|E(c; x̃)− E(c;x)| ≤ 4R2‖h‖1‖x̃− x‖.
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Hence ∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣ ≤ n∑

i=1

Wn,i(x) |E(c;Xi)− E(c;x)| ≤ 4R2‖h‖1‖X(k,n)(x)− x‖

and so

E

[
sup

c∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣] ≤ 4R2‖h‖1E

[
‖X(k,n)(x)− x‖

]
. (43)

Using (Liitiainen et al., 2010, Theorem 3.2), we have

E
[
‖X(k,n)(X)−X‖

]
≤ 2
√
ddiam(SX)

(
k

n

) 1
d

, (44)

where X denotes a random variable with distribution PX and independent from the sample, and
where diam(SX) denotes the diameter of SX . By inserting (44) in (43) we obtain

E

[∫
Rd

sup
c∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣PX(dx)

]
≤ 8R2‖h‖1

√
ddiam(SX)

(
k

n

) 1
d

, (45)

and we conclude by combining (42) and (45).

7.4 Proof of Theorem 3

Let Pn,k =
∑n

i=1Wn,i(x)δYi . By (Graf and Luschgy, 2000, Theorem 4.21), the result will hold if

W2

(
Pn,k, PY |X=x

)
→ 0 almost surely. (46)

Recall that a sequence (Qn) of probability measures converges to Q in the (L2) Wasserstein distance
if (Qn) converges weakly to Q and if

∫
‖y‖2dQn(y)→

∫
‖y‖2dQ(y) as n→∞. Thus, since ‖Y ‖ ≤ R

almost surely, it suffices to show that Pn,k =
∑n

i=1Wn,i(x)δYi converges weakly to PY |X=x almost
surely.

Towards proving this, let g be a continuous and bounded function over Rp and let m(x) =
E[g(Y )|X = x]. Proceeding as in the proof of (24), we get

P

(∣∣∣∣∣
n∑
i=1

Wn,i(x)g(Yi)−
n∑
i=1

Wn,i(x)m(Xi)

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− kε2

4‖g‖∞ (2‖g‖∞ + ε)

)
. (47)

Let δ > 0 and h : Rp → R+ integrable satisfying the regularity condition (19). For any x̃ with
‖x̃− x‖ ≤ δ,

|m(x̃)−m(x)| ≤ ‖g‖∞‖h‖1‖x̃− x‖ =: L‖x̃− x‖.

So∣∣∣∣∣
n∑
i=1

Wn,i(x)m(Xi)−m(x)

∣∣∣∣∣ ≤ L‖X(k,n)(x)−x‖1
{
‖X(k,n) − x‖ ≤ δ

}
+2‖g‖∞1

{
‖X(k,n) − x‖ > δ

}
.

Hence, for any ε > 0,

P

(∣∣∣∣∣
n∑
i=1

Wn,i(x)m(Xi)−m(x)

∣∣∣∣∣ > ε

)
≤ P

(
‖X(k,n)(x)− x‖ > ε

2L

)
+ P

(
‖X(k,n)(x)− x‖ > δ

)
.
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Using (34), for any k and n such that

k

n
≤ κ

2

(( ε

2L

)d
∧ δd

)
, (48)

where κ is defined in (18), we have

P

(∣∣∣∣∣
n∑
i=1

Wn,i(x)m(Xi)−m(x)

∣∣∣∣∣ > ε

)
≤ exp

(
−nε

d

C1

)
+ exp

(
−nδ

d

C1

)
, (49)

with C1 = 8
κ [1 ∨ (2L)d]. Combining (47) and (49), we deduce that for any ε > 0 and k and n

satisfying (48),

P

(∣∣∣∣∣
n∑
i=1

Wn,i(x)g(Yi)−m(x)

∣∣∣∣∣ > ε

)

≤ 2 exp

(
− k(ε/2)2

4‖g‖∞ (2‖g‖∞ + ε/2)

)
+ exp

(
−n(ε/2)d

C1

)
+ exp

(
−nδ

d

C1

)
. (50)

Since k
n → 0, (48) is satisfied for all n large enough. Now for any ε > 0, the last two terms in

the right-hand side of (48) are summable over n, and the first term is summable if k
logn → ∞.

So by the Borel-Cantelli Lemma,
∑n

i=1Wn,i(x)g(Yi) converges almost surely to m(x). Hence Pn,k
converges weakly to PY |X=x almost surely which implies that (46) holds.
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