A mixture of local and quadratic approximation variable selection algorithm in nonconcave penalized regression - Archive ouverte HAL
Article Dans Une Revue Revue Africaine de Recherche en Informatique et Mathématiques Appliquées Année : 2013

A mixture of local and quadratic approximation variable selection algorithm in nonconcave penalized regression

Résumé

We consider the problem of variable selection via penalized likelihood using nonconvex penalty functions. To maximize the non-differentiable and nonconcave objective function, an algorithm based on local linear approximation and which adopts a naturally sparse representation was recently proposed. However, although it has promising theoretical properties, it inherits some drawbacks of Lasso in high dimensional setting. To overcome these drawbacks, we propose an algorithm (MLLQA) for maximizing the penalized likelihood for a large class of nonconvex penalty functions. The convergence property of MLLQA and oracle property of one-step MLLQA estimator are established. Some simulations and application to a real data set are also presented.
Fichier principal
Vignette du fichier
Vol.16.pp.29-46.pdf (862.41 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01299521 , version 1 (07-04-2016)

Identifiants

Citer

Assi N'Guessan, Ibrahim Sidi Zakari, Assi Mkhadri. A mixture of local and quadratic approximation variable selection algorithm in nonconcave penalized regression. Revue Africaine de Recherche en Informatique et Mathématiques Appliquées, 2013, Volume 16, 2012, pp.29-46. ⟨10.46298/arima.1962⟩. ⟨hal-01299521⟩
82 Consultations
1107 Téléchargements

Altmetric

Partager

More