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Introduction

The family of so-called Strichartz estimates is a powerful tool to study nonlinear Schrödinger equations. Those estimates give a control of the size of the solution to a linear problem in term of the size of the initial data. The "size" notion is usually given by a suitable functional space L p t L q x . Such inequalities were first introduced by Strichartz in [START_REF] Strichartz | Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations[END_REF] for Schrödinger waves on the Euclidean space. They were then extended by Ginibre and Velo in [START_REF] Ginibre | Smoothing properties and retarded estimates for some dispersive evolution equations[END_REF] (and the endpoint is due to Keel and Tao in [START_REF] Keel | Endpoint Strichartz estimates[END_REF]) for the propagator operator associated with the linear Schrödinger equation in R d . So for an initial data u 0 , we are interested in controlling u(t, . ) = e it∆ u 0 which is the solution of the linear Schrödinger equation:

i∂ t u + ∆u = 0 u |t=0 = u 0 .
It is well-known that the unitary group e it∆ satisfies the following inequality:

e it∆ u 0 L p L q ([-T,T ]×R d ) ≤ C T u 0 L 2 (R d )
for every pair (p, q) of admissible exponents which means : 2 ≤ p, q ≤ ∞, (p, q, d) = (2, ∞, 2), and

(1.1)

2 p + d q = d 2 .
The Strichartz estimates can be deduced via a T T * argument from the dispersive estimates

(1.2) e it∆ u 0 L ∞ (R d ) |t| -d 2 u 0 L 1 (R d ) .
If sup T >0 C T < +∞, we will say that a global-in-time Strichartz estimate holds. Such a globalin-time estimate has been proved by Strichartz for the flat Laplacian on R d while the local-in-time estimate is known in several geometric situations where the manifold is non-trapping (asymptotically Euclidean, conic, or hyperbolic, Heisenberg group); see [BT07, Bou11, HTW06, ST02, BGX00] or with variable coefficients [START_REF] Robbiano | Strichartz estimates for Schrödinger equations with variable coefficients[END_REF][START_REF] Tataru | Outgoing parametrices and global Strichartz estimates for Schrödinger equations with variable coefficients[END_REF].

The situation for compact manifolds presents a new difficulty, since considering the constant initial data on the torus u 0 = 1 ∈ L 2 (T) yields a contradiction in (1.2) for large time.

Burq, Gérard, and Tzvetkov [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF] and Staffilani and Tataru [START_REF] Staffilani | Strichartz estimates for a Schrödinger operator with nonsmooth coefficients[END_REF] proved that Strichartz estimates hold on a compact manifold M for finite time if one considers regular data u 0 ∈ W 1/p,2 (M). Those are called "with a loss of derivatives": e it∆ u 0 L p L q ([-T,T ]×M) ≤ C T u 0 W 1/p,2 (M) .

An interesting problem is to determine for specific situations, which loss of derivatives is optimal (for example the work of Bourgain [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations[END_REF] on the flat torus and [START_REF] Takaoka | On 2D nonlinear Schrödinger equations with data on R × T[END_REF] of Takaoka and Tzvetkov). For instance, the loss of 1 p derivatives in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF] is shown to be optimal in the case of the sphere. An important remark is that, by Sobolev embedding, the loss of 2/p derivatives is straightforward. Indeed, by Sobolev embedding, we have W 2 p ,2 ֒→ L q since 2 p -d 2 = 0 -d q so that (1.3)

e it∆ u 0 L q e it∆ u 0 W 2 p ,2 ≤ u 0 W 2 p ,2
and taking the L p ([-T, T ]) norm yields e it∆ u 0 L p L q ≤ C T u 0 W 2 p ,2 . Therefore Strichartz estimates with loss of derivatives are interesting for a loss smaller than 2/p.

Let us now set the general framework of our study. We consider (X, d, µ) a metric measured space equipped with a nonnegative σ-finite Borel measure µ. We assume moreover that µ is Alfhor regular, that is there exist a dimension d, and two absolute positive constants c and C such that for all x ∈ X and r > 0

(1.4) cr d ≤ µ(B(x, r)) ≤ Cr d ,
where B(x, r) denote the open ball with center x ∈ X and radius 0 < r < diam(X). Thus we aim our results to apply in numerous cases of metric spaces such as open subsets of R d , smooth d-manifolds, some fractal sets, Lie groups, Heisenberg group, . . . Keeping in mind the canonical example of the Laplacian operator in R d : ∆ = 1≤j≤d ∂ 2 j , we will be more general in the following sense: we consider a nonnegative, self-adjoint operator H on L 2 = L 2 (X, µ) densely defined, which means that its domain

D(H) := {f ∈ L 2 , Hf ∈ L 2 } is supposed to be dense in L 2 .
One of the motivation of our paper is to study the connection between the wave equation and the Schrödinger equation. We define the wave propagator cos(t √ H) as follows: for any f ∈ L 2 , u(t, . ) := t → cos(t √ H)f is the unique solution of the linear wave problem

(1.5)      ∂ 2 t u + Hu = 0 u |t=0 = f ∂ t u |t=0 = 0.
One can find the explicit solutions of this problem in [START_REF] Folland | Introduction to partial differential equations[END_REF] for the Euclidean case and in [START_REF] Bérard | On the wave equation on a compact Riemannian manifold without conjugate points[END_REF] for the Riemannian manifold case through precise formula for the kernel of the wave propagator. Up to our knowledge, those explicit solutions are not available in our abstract setting. It would be of great interest to be able to compute exact expression of the solution of the wave equation in such a general case. The remarkable property of this operator comes from its finite speed propagation: for any two disjoint open subsets U 1 , U 2 ⊂ X, and any functions

f i ∈ L 2 (U i ), i = 1, 2, then (1.6) cos(t √ H)f 1 , f 2 = 0 for all 0 < t < d(U 1 , U 2 ). If cos(t √ H
) is an integral operator with kernel K t , then (1.6) simply means that K t is supported in the "light cone" D t := {(x, y) ∈ X 2 , d(x, y) ≤ t}. We assume that H satisfies (1.6). In [START_REF] Coulhon | Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem[END_REF], Coulhon and Sikora proved that this property is equivalent to the Davies-Gaffney estimates

(1.7) e -tH L 2 (E)→L 2 (F ) e -d(E,F ) 2 4t
for any two subsets E and F of X, and t > 0.

It is known that -H is the generator of a L 2 -holomorphic semigroup (e -tH ) t≥0 (see [START_REF] Davies | Non-Gaussian aspects of heat kernel behaviour[END_REF]). We will also assume that the heat semigroup (e -tH ) t≥0 satisfies the typical upper estimates (for a second order operator): for every t > 0 the operator e -tH admits a kernel p t with (DUE)

|p t (x, x)| 1 µ(B(x, √ t)) , ∀ t > 0, a.e. x ∈ X.
It is well-known that such on-diagonal pointwise estimates self-improve into the full pointwise Gaussian estimates (see [Gri97, Theorem 1.1] or [CS08, Section 4.2] e.g.)

(UE) |p t (x, y)| 1 µ(B(x, √ t)) exp -c d(x, y) 2 t , ∀ t > 0, a.e. x, y ∈ X.
One can find in [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF] and the references therein some examples where the previous estimates hold.

When dealing with Schrödinger equation on a manifold or a more general metric space, the L 1 -L ∞ estimate (1.2) seems out of reach. In [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF], the authors show how to replace it by a H 1 -BMO estimate, with the Hardy space H 1 and the Bounded Mean Oscillations space BMO both adapted to the semigroup. We do not recall the definition of those spaces here, but refer to [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF] for more details.

For any integer m ≥ 0 and x ∈ R + we set ψ m (x) = x m e -x . It forms a family of smooth functions that vanish at 0 (except when m = 0) and infinity, which allows us to consider a smooth partition of unity, using holomorphic functionnal calculus (and requiring C ∞ 0 -calculus). The main assumption of our work is the following Assumption 1.1. There exist κ ∈ (0, ∞] and an integer m such that for every s ∈ (0, κ) the wave propagator cos(s √ H) at time s satisfies the following dispersion property

(1.8) cos(s √ H)ψ m (r 2 H) L 2 (B)→L 2 ( B) r r + s d-1 2 ,
for any two balls B, B of radius r > 0.

This estimate is microlocalized in the physical space due to the balls B and B at scale r and in frequency at scale 1 r through ψ m (r 2 H), thus respecting the Heisenberg uncertainty principle. The parameter κ is linked to the geometry of the space X (its injectivity radius for instance).

In the Euclidean space R d , the L 2 (B) -L 2 ( B) dispersion phenomenon seems only to depend on the distance d(B, B). Indeed, the intuition is that, in an isotropic medium a wave propagates the same way in all the directions. That is what leads us to think that Assumption 1.1 could be proved without using a pointwise explicit formula of its kernel, but with a more general approach, using functional tools only, that could be extend to other settings. To our knowledge the study of such behavior is not known and could be a good direction to investigate.

We mentioned that the finite speed propagation property (1.6) gives us the idea that after time s the solution to the wave problem (1.5) with initial data supported in a ball of radius r is supported in a ball of radius r + s. Given that r ≤ s (otherwise L 2 functional calculus yields Assumption 1.1) and the fact that waves propagate the same way in all directions in an isotropic medium, if we cover the sphere of radius r + s by N ≃ r+s is the natural dispersion one can hope for such waves, if we look for a uniform estimate (depending only on r, s).

Indeed we also emphasize that Assumption 1.1 is weaker than the one in [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF], namely: There exist κ ∈ (0, ∞] and an integer m such that for every s ∈ (0, κ) we have

(1.9) cos(s √ H)ψ m (r 2 H) L 2 (B)→L 2 ( B) r r + s d-1 2 r r + |s -L| d+1 2
, where L = d(B, B), which describes more precisely the dispersion inside the light cone. However (1.9) can be difficult to prove in an abstract setting. That is why we are interested in proving what Assumption 1.1 could imply as far as Strichartz estimates are concerned. Estimate (1.8) should indeed be much easier to prove in concrete examples. For more on Assumption 1.1, see Subsection 2.4. Consequently the results we obtain will be weaker too. We recall Theorem 1.3 from [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF] in order to compare it with our Theorem 1.3.

Theorem 1.2 ([BS14]). Suppose (1.4) with d > 1, (DUE) and Assumption (1.9) with κ ∈ (0, ∞].
Two cases occur:

• if κ = ∞ then we have Strichartz estimates without loss of derivatives;

• if κ < ∞ then for every ε > 0, every 0 < h ≤ 1 with h 2 ≤ |t| < h 1+ε we have Strichartz estimates with loss of 1+ε p derivatives.

To prove this, the authors first reduced the H 1 -BMO estimation to a microlocalized L 2 -L 2 estimate, and then showed how dispersion for the wave propagator implies dispersion for the Schrödinger group. Theorem 3.1 is playing that role in the present paper.

Our main theorem follows the routine of [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF] to deduce Strichartz inequalities from L 2 -L 2 estimates.

Theorem 1.3. Assume (1.4) with d > 2, (DUE), and Assumption 1.1. Then for every 2 ≤ p ≤ +∞ and 2 ≤ q < +∞ satisfying

2 p + d -2 q = d -2 2 ,
and every solution u(t, . ) = e itH u 0 of the problem

i∂ t u + Hu = 0 u |t=0 = u 0 , we have • if κ = ∞, then u satisfies local-in-time Strichartz estimates with loss of derivatives (1.10) u L p ([-1,1],L q ) u 0 W 2( 1 2 -1 q ),2 ; • if κ < ∞, then for every ε > 0, u satisfies local-in-time Strichartz estimates with loss of derivatives (1.11) u L p ([-1,1],L q ) u 0 W 1+ε p +2( 1 2 -1 q ),2
. We would like to point out that the straightforward loss of derivatives given by Sobolev embeddings when

2 p + d -2 q = d -2 2 is 2 p + 1 - 2 q .
Thus the loss is nontrivial here. For more on the loss of derivatives, see Remarks 3.7 and 3.8. It is interesting to see how a weak dispersion property on the wave propagator implies dispersion for the Schrödinger operator.

The idea of the proof here is similar to the one in [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF]. More particularly it is due to a precise tracking of the constants in some key estimations (from [START_REF] Keel | Endpoint Strichartz estimates[END_REF] for instance). The aim of this paper is to give a better understanding of how dispersion for the wave propagator implies dispersion for the Schrödinger equation, and what Strichartz inequalities ensue in some contexts, where we do not have precise dispersive estimates on the wave propagators. In other words if one can compute, even inaccurate, information about the wave propagator in general settings, it would allow to have some knowledge of the Schrödinger equation in that framework.

The organization of the paper is as follow: In Section 2 we set the notations used throughout the paper and recall some preliminary facts concerning the semigroup, Hardy and BMO spaces, as well as some motivations of our hypothesis. Then Section 3 is dedicated to the proofs of the Theorems.

Preliminaries

2.1. Notations. We denote diam(X) := sup x,y∈X d(x, y) the diameter of a metric space X. For B(x, r) a ball (x ∈ X and r > 0) and any parameter λ > 0, we denote λB(x, r) := B(x, λr) the dilated and concentric ball. As a consequence of (1.4), a ball B(x, λr) can be covered by Cλ d balls of radius r, uniformly in x ∈ X, > 0 and λ > 1 (C is a constant only depending on the ambient space). If no confusion arises, we will note L p instead of L p (X, µ) for p ∈ [1, +∞]. For s > 0 and p ∈ [1, +∞], we denote by W s,p the Sobolev space of order s based on L p , equipped with the norm

f W s,p := (1 + H) s 2 f L p .
We will use u v to say that there exists a constant C (independent of the important parameters) such that u ≤ Cv and u ≃ v to say that both u v and v u. If Ω is a set, 1 Ω is the characteristic function of Ω, defined by

1 Ω (x) = 1 if x ∈ Ω 0 if x / ∈ Ω.
Throughout the paper, unless something else is explicitly mentioned, we assume that d > 2 and that (1.4), (DUE), (1.7), and Assumption 1.1 are satisfied.

2.2. The heat semigroup and associated functional calculus. We consider a nonnegative, self-adjoint operator H on L 2 = L 2 (X, µ) densely defined. We recall the bounded functional calculus theorem from [RS72]:

Theorem 2.1. H admits a L ∞ -functional calculus on L 2 : if f ∈ L ∞ (R + )
, then we may consider the operator f (H) as a L 2 -bounded operator and

f (H) L 2 →L 2 ≤ f L ∞ .
From the Gaussian estimates of the heat kernel (UE) and the analyticity of the semigroup (see [START_REF] Carron | Gaussian estimates and L p -boundedness of Riesz means[END_REF]) it comes that for every integer m ∈ N and every t > 0, the operator ψ m (tH) has a kernel p m,t also satisfying upper Gaussian estimates:

(2.1) |p m,t (x, y)| 1 µ(B(x, √ t)) exp -c d(x, y) 2 t , ∀ t > 0, a.e. x, y ∈ X.
We now give some basic results about the heat semigroup thanks to our assumptions. The detailed proofs can be found in Section 2 of [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF].

Proposition 2.2. Under (1.4) and (DUE), the heat semigroup is uniformly bounded in every L p -spaces for p ∈ [1, ∞]; more precisely for every f ∈ L p , we have

sup t>0 e -tH f L p f L p .
Moreover, for m ∈ N and t > 0, since ψ m (tH) also satisfies (DUE) we have

sup t>0 ψ m (tH) L p →L p 1.
Let us now define some tools for the Littlewood-Paley theory we need in the sequel. For all λ > 0 we set

ϕ(λ) := +∞ λ ψ m (u) du u , φ(λ) := λ 0 ψ m (v) dv v = 1 0 ψ m (λu) du u .
Remark 2.3. Notice that ϕ is, by integration by parts, a finite linear combination of functions ψ k for k ∈ {0, .., m}. Moreover for every λ > 0,

φ(λ) + ϕ(λ) = +∞ 0 u m-1 e -u du = Γ(m) = constant.
The following theorem will be useful to estimate the L p -norm through the heat semigroup:

Theorem 2.4. Assume (1.4) and (DUE). For every integer m ≥ 1 and all p ∈ (1, ∞), we have

f L p ≃ ϕ(H)f L p + 1 0 |ψ m (uH)f | 2 du u 1 2 L p . So if q ≥ 2 f L q ϕ(H)f L q + 1 0 ψ m (uH)f 2 L q du u 1 2
.

Such a result can be seen as a semigroup version of the Littlewood-Paley characterization of Lebesgue spaces. A proof of this theorem can be found in [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF] (look for Theorem 2.8 in [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF]).

2.3. Hardy and BMO spaces. We now define atomic Hardy spaces adapted to our situation (dictated by a semigroup) using the construction introduced in [START_REF] Bernicot | New abstract Hardy spaces[END_REF]. Again we sum up the definitions and properties we need without proofs. A more detailed explanation with proofs is provided in [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF].

Let M be a large enough integer.

Definition 2.5. A function a ∈ L 1 loc is an atom associated with the ball Q of radius r if there exists a function f

Q whose support is included in Q such that a = (1 -e -r 2 H ) M (f Q ), with f Q L 2 (Q) ≤ (µ(Q)) -1 2 .
That last condition allows us to normalize f Q in L 1 . Indeed by the Cauchy-Schwarz inequality

f Q L 1 ≤ f Q L 2 (Q) µ(Q) 1 2 ≤ 1.
Moreover, (1 -e -r 2 H ) M is bounded on L 1 so every atom is in L 1 and they are also normalized in

L 1 : (2.2) sup a a L 1 1,
where we take the supremum over all the atoms. We may now define the Hardy space by atomic decomposition Definition 2.6. A measurable function h belongs to the atomic Hardy space H 1 ato , which will be denoted H 1 , if there exists a decomposition

h = i∈N λ i a i µ -a.e.
where a i are atoms and λ i real numbers satisfying

i∈N |λ i | < +∞.
We equip the space H 1 with the norm

h H 1 := inf h= i λ i a i i∈N |λ i |,
where we take the infimum over all the atomic decompositions.

For a more general definition and some properties about atomic spaces we refer to [Ber10, BZ08], and the references therein. From (2.2), we deduce Corollary 2.7. The Hardy space is continuously embedded into L 1 :

f L 1 f H 1 .
From [BZ08, Corollary 7.2], the Hardy space H 1 is also a Banach space.

We refer the reader to [BZ08, Section 8], for details about the problem of identifying the dual space (H 1 ) * with a BMO space. For a L ∞ -function, we may define the BMO norm

f BMO := sup Q - Q |(1 -e -r 2 H ) M (f )| 2 dµ 1/2
, where the supremum is taken over all the balls Q of radius r > 0. If f ∈ L ∞ then (1-e -r 2 H ) M (f ) is also uniformly bounded (with respect to the ball Q), since the heat semigroup is uniformly bounded in L ∞ (see Proposition 2.2) and so f BMO is finite.

Definition 2.8. The functional space BMO is defined as the closure

BMO := {f ∈ L ∞ + L 2 , f BMO < ∞} for the BMO norm.
Following [BZ08, Section 8], it comes that BMO is continuously embedded into the dual space (H 1 ) * and contains L ∞ :

L ∞ ֒→ BMO ֒→ (H 1 ) * . Hence (2.3) T H 1 →(H 1 ) * T H 1 →BMO ,
and we have the following interpolation result:

(2.4) ∀θ ∈ (0, 1), (L 2 , BMO) θ ֒→ (L 2 , (H 1 ) * ) θ .
The following interpolation theorem between Hardy spaces and Lebesgue spaces is essential in our study.

Theorem 2.9. For all θ ∈ (0, 1), consider the exponent p ∈ (1, 2) and q = p ′ ∈ (2, ∞) given by

1 p = 1 -θ 2 + θ and 1 q = 1 -θ 2 .
Then (using the interpolation notations), we have

(L 2 , H 1 ) θ = L p and (L 2 , (H 1 ) * ) θ ֒→ L q ,
if the ambient space X is non-bounded and

L p ֒→ L 2 + (L 2 , H 1 ) θ and L 2 ∩ (L 2 , (H 1 ) * ) θ ֒→ L q ,
if the space X is bounded. The same results hold replacing (H 1 ) * by BMO thanks to (2.4).

Remark 2.10. We will not mention the case of a bounded space X in the proofs since interpolation is more delicate in that case. One can find the corresponding interpolation theorem (Theorem 2.17 in [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF]) and check that the results apply in that case.

2.4. Motivation of the hypothesis. This section is dedicated to the motivation of Assumption 1.1. As we said in the Introduction, this hypothesis is weaker than the one in [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF], namely

(2.5) cos(s √ H)ψ m (r 2 H) L 2 (B)→L 2 ( B) r r + s d-1 2 r r + |s -L| d+1 2
, where L = d(B, B). Therefore in all the situations where (2.5) is satisfied, we can assure that Assumption 1.1 is valid. When we have a good knowledge of the wave propagator, we can also affirm that Assumption 1.1 holds. This is the case thanks to a parametrix in [START_REF] Bérard | On the wave equation on a compact Riemannian manifold without conjugate points[END_REF] in the following cases:

• The Euclidean spaces R d with the usual Laplacian H = -∆ = -d j=1 ∂ 2 j ; • A compact Riemannian manifold of dimension d with the Laplace-Beltrami operator;

• A smooth non-compact Riemannian d-manifold with C ∞ b -geometry and Laplace-Beltrami operator;

• The Euclidean space R d equipped with the measure dµ = ρdx and H = -1 ρ div(A∇), where ρ is an uniformly non-degenerate function and A a matrix with bounded derivatives; Moreover we can check that for a non-trapping asymptotically conic manifold with H = -∆ + V the assumption holds. Therefore we recover, with another proof, the result of [START_REF] Hassell | Global-in-time Strichartz estimates on nontrapping, asymptotically conic manifolds[END_REF].

However in [START_REF] Ivanovici | Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case[END_REF] the authors proved that for the Laplacian inside a convex domain of dimension d ≥ 2 in R d , there was a loss of s 1 4 in the dispersion, namely

(2.6) cos(s √ H)ψ m (r 2 H) L 2 (B)→L 2 ( B) r r + s d-1 2 + 1 4 r r + |s -L| d+1 2
.

This loss indicates a difficulty when dealing with boundaries of a domain. The authors used oscillatory integrals techniques and a careful study of the reflections on the boundary of the domain.

A remark of J.-M. Bouclet to get around the use of a parametrix leads us to investigate Klainerman's commuting vectorfields method. It can be found in detail in [START_REF] Klainerman | A commuting vectorfields approach to Strichartz-type inequalities and applications to quasi-linear wave equations[END_REF] and [START_REF] Christopher | Lectures on nonlinear wave equations[END_REF]. Briefly, if one can find enough vectorfields commuting with the wave operator, using a version of Sobolev inequalities, also know as Klainerman-Sobolev inequalities, one can obtain dispersion estimations for the wave propagator. In our setting, we would obtain (see [Sog95, Remark 1.4]) the following dispersion property:

(2.7) cos(s √ H)ψ m (r 2 H) L 2 (B)→L 2 ( B) r r + s d-1 2 r r + |s -L| 1 2 .
It is very close to our Assumption 1.1, but it takes into account the dispersion inside the light cone. In that sense, it is intermediate between our Assumption 1.1 and estimate (2.5). A question we would like to pursue investigating is to find enough well-suited vectorfields to apply this method in generals settings. The framework inwhich one is interested in verifying (2.7) is when H is a given by divergence form, namely H = -div(A∇). When A = I d the identity matrix of size d, H is the usual Laplacian. In this case and the one where A has C 1,1 coefficients, Klainerman obtained in [START_REF] Klainerman | A commuting vectorfields approach to Strichartz-type inequalities and applications to quasi-linear wave equations[END_REF] a dispersion property of the form (2.7). It is not new since it was already proven in [START_REF] Hart | A parametrix construction for wave equations with C 1,1 coefficients[END_REF]. But the novelty in [START_REF] Klainerman | A commuting vectorfields approach to Strichartz-type inequalities and applications to quasi-linear wave equations[END_REF] is to get around the use of a parametrix.

Proofs of the Theorems

This section is dedicated to the proofs of the announced result. It is divided into two main theorems. The first one shows which L 2 -L 2 dispersion property we can recover thanks to Assumption 1.1. In the second theorem we obtain Strichartz inequalities using such dispersive estimates. We recall that our goal is to investigate which properties (in terms of Strichartz inequalities) for the Schrödinger operator can be deduced from a weak assumption on the wave operator. 

e itH ψ m ′ (h 2 H)ψ m (r 2 H) L 2 (B)→L 2 ( B) r d |t| d-2 2 h 2
, for all m ′ ≥ 0 and where

0 < |t| ≤ 1 if κ = +∞ and h 2 ≤ |t| ≤ h 1+ε if κ < +∞.
This shows how dispersion for the wave propagator implies dispersion for the Schrödinger group. The main tool to link those two operators is Hadamard's transmutation formula

(3.2) ∀z ∈ C, Re(z) > 0, e -zH = +∞ 0 cos(s √ H)e -s 2 4z ds √ πz .
Proof. Let B, B be balls with radius r > 0. We start our proof with some easy reductions.

First remark that we can restrict ourselves to prove the theorem for h ≤ r. Indeed if the theorem is true for h ≤ r then for all h > r

e itH ψ m ′ (h 2 H)ψ m (r 2 H) L 2 (B)→L 2 ( B) = r 2m ( h 2 2 + r 2 ) m e itH ψ m ′ ( h 2 2 H)ψ m ′ (( h 2 2 + r 2 )H) L 2 (B)→L 2 ( B) r h 2m e itH ψ m ′ ( h 2 2 H)ψ m ′ (( h 2 2 + r 2 )H) L 2 (Bρ)→L 2 ( Bρ)
where

ρ = h 2 2 + r 2 > r, B ρ = ρ r B and B ρ = ρ r B are of radius ρ. Since h 2 2 + r 2 ≥ h 2 2 we then obtain e itH ψ m ′ (h 2 H)ψ m (r 2 H) L 2 (B)→L 2 ( B) r h 2m ρ d |t| d-2 2 h 2 .
We conclude using ρ h and

r 2m h d h 2m = r d r h 2m-d ≤ r d .
Moreover we only need to prove the theorem for m ′ = 0. Indeed if we show

e itH ψ 0 (h 2 H)ψ m (r 2 H) L 2 (B)→L 2 ( B) r d |t| d-2
2 h 2 then for all m ′ ≥ 0 we have

e itH ψ m ′ (h 2 H)ψ m (r 2 H) L 2 (B)→L 2 ( B) = h r 2m ′ e itH ψ 0 (h 2 H)ψ m+m ′ (r 2 H) L 2 (B)→L 2 ( B) r d |t| d-2 2 h 2 since h ≤ r
Finally it is sufficient to consider r 2 ≤ t because if r 2 > t then by bounded functional calculus we have

e itH ψ m ′ (h 2 H)ψ m (r 2 H) L 2 (B)→L 2 ( B) 1 ≤ r 2 |t| d-2 2 ≤ r d |t| d-2 2 h 2 .
In summary, we fix h ≤ r, m ′ = 0, and r 2 ≤ t.

In order to avoid nonzero bracket terms in the forthcoming integrations by parts, we introduce

a technical function χ ∈ C ∞ (R + ) such that      0 ≤ χ ≤ 1 χ(x) = 1 if x ∈ [0, |t| r ] χ(x) = 0 if x ∈ [2 |t| r , +∞]
.

Moreover we have ∀n ∈ N, ∀x ∈ R + , |χ (n) (x)| r |t| n . Thus we split (3.2) into (3.3) e -zH = +∞ 0 χ(s) cos(s √ H)e -s 2 4z ds √ πz + +∞ 0 (1 -χ(s)) cos(s √ H)e -s 2 4z ds √ πz .
We treat the first term by integrations by parts. Making 2n integration by parts (with n to be determined later) we get

∞ 0 cos(s √ H)ψ m (r 2 H)χ(s)e -s 2 4z ds = ∞ 0 cos(s √ H)r 2n ψ m-n (r 2 H) 2n k=0 χ (2n-k) (s)e -s 2 4z c k s k z k + . . . + c n-2⌊ n 2 ⌋ s k-2⌊ k 2 ⌋ z k-⌊ k 2 ⌋ ds,
with (c i ) i being numerical constants playing no significant role. Keeping the extremal terms (one when k = 0 and two when k = 2n) we have to estimate

2 |t| r 0 cos(s √ H)ψ m-n (r 2 H) L 2 (B)→L 2 ( B) r 2n r |t| 2n + s 2n |t| 2n + 1 |t| n ds |t| .
By continuity of our operators

cos(s √ H)ψ m-n (r 2 H) L 2 (B)→L 2 ( B) 1,
we can estimate

2 |t| r 0 r 2 |t| 2n ds |t| r 2 |t| 2n-1 2 and 2 |t| r 0 r 2n |t| n ds |t| r 2 |t| n-1 2 .
Using (1.1) we have

2 |t| r 0 r r + s d-1 2 rs |t| 2n ds |t| ≤ 2 |t| r 0 r d-1 2 +2n |t| 2n+ 1 2 s 2n-d-1 2 ds ≃ r 2 |t| d-2 2 .
Thus, the intermediate terms having the same behaviour, for large enough n

∞ 0 cos(s √ H)ψ m (r 2 H)χ(s)e -s 2 4z ds √ z L 2 (B)→L 2 ( B) r 2 |t| d-2 2 .
Moreover, since h ≤ r we have

r 2 |t| d-2 2 ≤ r d |t| d-2 2 h 2 .
To estimate the second term in (3.3), we treat separately the cases s < κ and s > κ.

+∞ 0

(1 -χ(s)) cos(s √ H)e -s 2 4z ds √ πz = κ |t| r cos(s √ H)e -s 2 4z ds √ πz + I κ ,
where

I κ = 0 if κ = +∞ +∞ κ cos(s √ H)e -s 2 4z ds √ πz if κ < +∞ .
We use the exponential decay for s > κ. Noting z = h 2 -i|t|, and using the L 2 -boundedness of the cos(s √ H)ψ m (r 2 H) operator:

+∞ κ cos(s √ H)ψ m (r 2 H)e -s 2 4z ds √ z L 2 (B)→L 2 ( B) +∞ κ e -s 2 8 Re 1 z e -s 2 8 Re 1 z ds |z| +∞ κ 8 Re 1 z e -u 2 du |z| Re 1 z e -κ 2 Re 1 z 8 +∞ 0 e -u 2 du |t| h e -κ 2 h 2 16t 2 h 2 t 2 -N
|t| h for all N ≥ 1 as large as we want and where we used |z| ≃ |t| and Re

1 z ≥ h 2 2t 2 . Moreover |t| 2N + 1 2 h 2N +1 ≤ h d |t| d-2 2 h 2 ≤ r d |t| d-2 2 h 2 as soon as |t| 2N + d-2 2 + 1 2 ≤ h 2N +d-1 that is |t| ≤ h 1+ d-1 2 2N+ d-1 2 . Which is true since |t| ≤ h 1+ε ≤ h 1+ d-1 2 2N+ d-1 2
for N large enough.

Remark 3.2. We point out that this is the only moment we use that |t| ≤ h 1+ε . That is why we do not need it when κ = +∞ since this term does not step in. Therefore the loss of derivatives in Theorem 1.3 is better when κ = +∞.

We use Assumption 1.1 when s < κ. Indeed it yields

κ |t| r cos(s √ H)ψ m (r 2 H)e -s 2 4z ds √ z L 2 (B)→L 2 ( B) κ |t| r r r + s d-1 2 e -s 2 4 Re 1 z ds |t| .
When d-1 2 > 1 (i.e. d > 3) we have

κ |t| r r r + s d-1 2 ds |t| ≤ r d-1 2 |t| ∞ |t| r s -d-1 2 ds r d-1 2 |t| |t| r -d-1 2 +1 ≤ r d-2 |t| d-2 2 ≤ r d |t| d-2 2 h 2 h 2 ≤ r d |t| d-2 2 h 2 since h 2 ≤ 1. When d-1 2 < 1 (i.e. d < 3), since Re 1 z h 2 t 2 we have κ |t| r r r + s d-1 2 e -c s 2 h 2 t 2 ds |t| r d-1 2 |t| ∞ h r e -u 2 |t|u h -d-1 2 |t| h du r d-1 2 h d-3 2 |t| d-2 2 ∞ 0 u -d-1 2 e -u 2 du r d |t| d-2 2 h 2 h d-3 2 h 2 r d+1 2 ≤ r d |t| d-2
since h ≤ r. When d-1 2 = 1 (i.e. d = 3) we have

κ |t| r r r + s e -s 2 4 Re 1 z ds |t| r |t| κ h |t| h r |t|u h -1 e -u 2 |t| h du ≤ r |t| e -h 2 2r 2 r h +∞ 0 e -u 2 2 du r 2 |t|h h r -1 = r 3 |t|h 2 = r d |t| d-2 2 h 2 .
In the end, summing all the parts up, we have 

e itH ψ m ′ (h 2 H)ψ m (r 2 H) L 2 (B)→L 2 ( B) r d |t| d-
(H m (A)) T ψ m (r 2 H) L 2 (Br)→L 2 ( Br) Aµ(B r ) 1 2 µ( B r ) 1 2
for some m ≥ d 2 . Then T is bounded from H 1 to BM O and from L p to L p ′ for p ∈ (1, 2) with

T H 1 →BM O A and T L p →L p ′ A 1 p -1 p ′
if the ambient space X is unbounded and

T H 1 →BM O max(A, 1) and T L p →L p ′ max(A 1 p -1 p ′ , B)
if the ambient space X is bounded, and where, for the last inequality, we assumed that T L p →L 2 B.

As we mentioned previously, we do not use the part where X is bounded. We apply the Theorem with T = e itH ψ m ′ (h 2 H) and A = |t| -d-2 2 h -2 . In view of (1.4) we can reformulate (H m (A)) (see [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF]) as

(3.4) e itH ψ m ′ (h 2 H)ψ m (r 2 H) L 2 (B)→L 2 ( B) r d |t| d-2
2 h 2 which we just proved in the previous section under our assumption. Therefore we obtain

e itH ψ m ′ (h 2 H) H 1 →BM O |t| -d-2 2 h -2 ,
and for all p ∈ (1, 2)

e itH ψ m ′ (h 2 H) L p →L p ′ h -2 |t| -d-2 2 1 p -1 p ′ .
We now recall a slightly modified version of a result of Keel-Tao in [START_REF] Keel | Endpoint Strichartz estimates[END_REF]:

Theorem 3.4. If (U (t)) t∈R satisfies sup t∈R U (t) L 2 →L 2 1
and for some σ > 0 ∀t = s, U (t)U (s

) * H 1 →BMO ≤ C|t -s| -σ .
Then for all 2 ≤ p ≤ +∞ and 2 ≤ q < +∞ satisfying

1 p + σ q = σ 2 we have U (t)f L p t L q x C 1 2 -1 q f L 2 .
Proof. We just sum up the main steps of the proof in [START_REF] Keel | Endpoint Strichartz estimates[END_REF] to keep track of the constant in the last estimation.

• By symmetry and a T * T argument, it suffices to show s<t

U (s) * F (s), U (t) * G(t) dsdt C 2 F L p ′ t L q ′ x G L p ′ t L q ′ x .
• By the interpolation Theorem 2.9 we have

U (t)U (s) * L q ′ →L q C 1-2 q |t -s| -2 p .
• We conclude by Hölder and Hardy-Littlewood-Sobolev inequalities.

We use this theorem with C = 1 h 2 and σ = d-2 2 to obtain the following result. Theorem 3.5.

Under Assumption 1.1, if 2 ≤ p ≤ +∞ and 2 ≤ q < +∞ satisfy 2 p + d -2 q = d -2 2 ,
and f ∈ L 2 and 0 < h ≤ 1 we have

• if κ = +∞ then for all m ′ ∈ N e itH ψ m ′ (h 2 H)f L p ([-1,1],L q ) 1 h 2( 1 2 -1 q ) ψ m ′ (h 2 H)f L 2 ; • if κ < +∞ then for all 0 < ε < 1 and m ′ ∈ N e itH ψ m ′ (h 2 H)f L p ([-1,1],L q ) 1 h 1+ε p h 2( 1 2 -1 q ) ψ m ′ (h 2 H)f L 2 .
Proof. The following proof is a slight modification of the one of Theorem 4.2 and 4.3 of [START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF]. We rewrite it here for more readability. We only deal with the case κ < +∞ since it is more technical. We leave the minor modifications to obtain the case κ = +∞ to the readers. Fix an interval J ⊂ [-1, 1] of length |J| = h 1+ε , m ′ ∈ N, and consider

U (t) = 1 J (t)e itH ψ m ′ (h 2 H).
We aim to apply Theorem 3.4 with C = 1 h 2 and σ = d-2 2 . By functional calculus we have sup

t∈R U (t) L 2 →L 2 1.
The estimation (3.4) which we proved in Theorem 3.1 will lead to the second hypothesis of Theorem 3.4. First

U (t)U (s) * = 1 J (t)1 J (s)e itH ψ m ′ (h 2 H)(e isH ψ m ′ (h 2 H)) * = 1 J (t)1 J (s)e i(t-s)H ψ 2m ′ (2h 2 H)
because H is self-adjoint. Since J has length equal to h 1+ε then U (t)U (s) * is vanishing or else |t -s| ≤ h 1+ε . Hence, by Theorem 3.1 we deduce

U (t)U (s) * H 1 →(H 1 ) * 1 h 2 1 |t -s| d-2 2 .
Up to the change of 2m ′ into m ′ , Theorem 3.4 (with C = h -2 and σ = (d -2)/2) then leads to

J e itH ψ m ′ (h 2 H)f p L q dt 1 p 1 h 2( 1 2 -1 q ) f L 2 . We then split [-1, 1] into N ≃ 1 h 1+ε intervals J k of length h 1+ε to obtain 1 -1 e itH ψ m ′ (h 2 H)f p L q dt ≤ N k=1 J k e itH ψ m ′ (h 2 H)f p L q dt ≤ N 1 h 2( 1 2 -1 q ) f L 2 p .
Hence

e itH ψ m ′ (h 2 H)f L p ([-1,1],L q ) 1 h 1+ε p h 2( 1 2 -1 q ) ψ m ′ (h 2 H)f L 2 .
We are now able to prove Strichartz estimates with loss of derivatives.

Theorem 3.6. If Assumption 1.1 is satisfied. Then for every 2 ≤ p ≤ +∞ and 2 ≤ q < +∞ satisfying

2 p + d -2 q = d -2 2 ,
and every solution u(t, . ) = e itH u 0 of the problem

i∂ t u + Hu = 0 u |t=0 = u 0 ,
we have • if κ = +∞, then u satisfies local-in-time Strichartz estimates with loss of derivatives

(3.5) u L p ([-1,1],L q ) u 0 W 2( 1 2 -1
q ),2 ; • if κ < +∞, then for all 0 < ε < 1 and 0 < h ≤ 1, u satisfies local-in-time Strichartz estimates with loss of derivatives

(3.6) u L p ([-1,1],L q ) u 0 W 1+ε p +2( 1 2 -1
q ),2 . Remark 3.7. The loss of derivatives in (3.6) is interesting when it is lower than the straightforward loss given by Sobolev embeddings. The relation 2 p + d-2 q = d-2 2 yields W 2 p +1-2 q ,2 ֒→ L q .

Thus e itH u 0 L q e itH u 0 W

2 p +1-2 q ,2 ≤ u 0 W 2 p +1-2 q ,2
and taking the L p ([-1, 1]) norm shows e itH u 0 L p ([-1,1],L q ) u 0 W 2 p +1-2 q ,2 . That is, the loss of derivatives is interesting when it is less than 2 p + 1 -2 q . Hence, for all ε ∈ (0, 1), the loss we obtained is strictly better than the one directly given by Sobolev embeddings. The loss in (3.5) is also nontrivial by the same argument. In order to do so we remark that in (3.4) we could write

r d t d-2 2 h 2 = r 2 t d 2 t h 2 ≤ r 2 t d 2 1 h ,
because t ≤ h. Then the loss of derivatives obtained in (3.6) is 1+ε p + 1( 1 2 -1 q ) that need to be compared to the trivial loss 2 p . Since 1 2 -1 q = 2 dp , the loss is less than 2 p if an only if

d ≥ 2 1 -ε .
That is, as soon as d > 2, one can find ε ∈ (0, 1) such that the loss is nontrivial. We chose to present the previous Theorem in that form because it allows a wider range of exponent q. Indeed, on the one hand

p ≥ 2 ⇒ d -2 q = d -2 2 - 2 p ≥ d -2 2 -1 that is 1 q ≥ 1 2 - 1 d -2 .
On the other hand p ≥ 2 and 2 p + d q = d 2 yields

1 q ≥ 1 2 - 1 d ,
and for all d > 2, 1 2

- 1 d -2 ≤ 1 2 - 1 d .
That is why the relation

2 p + d -2 q = d -2 2
gives a wider range for exponent q.

Proof of Theorem 3.6. Again we only deal with the more difficult case κ < +∞. We apply Theorem 2.4 to u(t) = e itH u 0 . It leads to

u(t) L q ϕ(H)u(t) L q + 1 0 |ψ m ′ (s 2 H)u(t)| 2 ds s 1 2 L q
, with m ′ ≥ 1. Taking the L p ([-1, 1]) norm in time of that expression and using Minkowski inequality yields u(t) L p ([-1,1],L q ) ϕ(H)u(t) L p ([-1,1],L q ) + 1 0 ψ m ′ (s 2 H)u(t) 2 L q ds s 1 2

L p ([-1,1])

.

Thanks to the Gaussian pointwise estimate of ϕ(H) the first term can be estimated as follow ϕ(H)u(t) L p ([-1,1],L q ) e itH u 0 L p ([-1,1],L 2 ) u 0 L 2 u 0 W 1+ε p +2( 1 2 -1 q ),2 .

Since p ≥ 2, Theorem 3.5 and generalized Minkowski inequality allow to bound the second term

1 0 ψ m ′ (s 2 H)u(t) 2 L q ds s 1 2 L p ([-1,1]) 1 0 ψ m ′ (s 2 H)u 2 L p ([-1,1],L q ) ds s 1 2 1 0 s -1+ε p -2( 1 2 -1 q ) ψ m ′ (s 2 H)u 0 2 L 2 ds s 1 2 1 0 s -1+ε p -2( 1 2 -1 q ) |ψ m ′ (s 2 H)u 0 | 2 ds s 1 2 L 2 u 0 W 1+ε p +2( 1 2 -1 q ),2
, where we used m ′ ≥ 1 4 [ 1+ε p + 2(1 -2 q )] since m ′ ≥ 1 and 1+ε p + 2(1 -2 q ) < and the fact that s

-1+ε p -2( 1 2 -1 q ) |ψ m ′ (s 2 H)| 2 = ψ m ′ -1 4 [ 1+ε p +2( 1 2 -1 q )] (s 2 H)H 1 2 [ 1+ε p +2( 1 2 -1 q )] .
Finally, we get u L p ([-1,1],L q ) u 0 W 1+ε p +2( 1 2 -1 q ),2 .

r d- 1

 1 balls of radius r and use Theorem 2.1, we can conjecture that the term r r+s d-1 2

3. 1 .

 1 Dispersive estimates for the Schrödinger operator. The main theorem of this section is the following Theorem 3.1. Assume d > 2, m ≥ ⌈ d 2 ⌉, and that Assumption 1.1 is satisfied, then for all balls B, B of radius r > 0 and all 0 < h ≤ 1 (3.1)

  Remark 3.8. One could work out our estimate with 2 p + d q = d 2 .

  Strichartz inequalities. To obtain Strichartz estimates we are going to use Theorem 1.1 of[START_REF] Bernicot | Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator[END_REF], which we recall here with a slight modification in assuming (1.4), namely Theorem 3.3. Assume (1.4) with (DUE). Consider a self-adjoint and L 2 -bounded operator T (with T L 2 →L 2 1), which commutes with H and satisfies
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