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Abstract

In the present paper two numerical schemes for propagating waves over a vari-

able bathymetry in an existing High-Order Spectral (HOS) model are intro-

duced. The first scheme was first developed by Liu and Yue (1998), and the

second one is an improved scheme which consider two independent orders of

non-linearity: one for the bottom and one for the free-surface elevation. We

investigate the numerical properties (accuracy, convergence rate, efficiency) of

both schemes with respect to the numerical parameters on a simple configura-

tion. To validate the proposed schemes, we first consider Bragg reflection from

a sinusoidal bottom patch - as an example of a small bottom variation around a

mean water depth. The second validation case focuses on a larger bottom vari-

ation with the study of the shoaling of linear waves. Finally, an application is

performed to demonstrate the applicability of the proposed model to non-linear

cases where the bottom variation is important. In this concern, the very well

documented test case of a 2D underwater bar is studied in details. Comparisons

are provided with both experimental and numerical results.
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1. Introduction

The accurate modelling of surface gravity waves over non-negligible bottom

topography is of major interest in ocean engineering, especially in the field of

marine renewable systems. These marine structures are intended to be deployed

in limited water depth, where the effect of variable bathymetry on local wave5

conditions is very significant. Indeed, when entering shallow water zones, waves

are strongly affected by the bottom through shoaling, refraction, diffraction,

reflection and the resulting variations in local wave speed. Thus, the accurate

description of the wave field over variable depth is a prerequisite for the accurate

prediction of wave loads acting on structures in coastal zones.10

For this purpose, a wide variety of non-linear flow models have been de-

veloped during the last decades. Some of them are based on the solution of

the Reynolds Averaged Navier-Stokes equations, such as the CFD models pre-

sented in Westphalen et al. (2014), but the computational effort with these15

models remains prohibitive. Thus, most of the non-linear flow models for wave

propagation were developed in the framework of the potential flow theory, con-

sidering that the propagation in the ocean is mostly irrotational and inviscid

(neglecting wave breaking at the sea surface and dissipation due to bottom fric-

tion).20

The Boundary Element Model (BEM) (see for instance Grilli et al. (2001))

is one of the methods used to represent wave propagation over non-uniform

depth in wide domains. The problem is solved on the boundaries, allowing

the reduction of the problem size. Moreover, it is a very flexible method as25

it can account for a variable bottom and very complex geometries, including

structures. Nevertheless, it requires the inversion of full matrices, reducing the

efficiency of the method. Some recent developments using the Fast Multiple Ac-

celeration technique (see Korsmeyer et al. (1993); Fochesato and Dias (2006))

intend to improve the efficiency of the BEM model. Finite difference methods30
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(see Engsig-Karup et al. (2009)) are also flexible in terms of geometries, but as

any volume-type method it requires a high number of nodes to represent the

whole computational domain. However, this formulation leads to sparse matri-

ces allowing the use of advanced numerical procedures and resulting in a good

efficiency. Other methods for modelling wave propagation over variable depth35

can also be found in the literature such as Finite Element Methods (Wu and

Taylor (1994); Ma and Yan (2006)) or a recent fully dispersive coupled-mode

model described by Belibassakis et al. (2014). Boussinesq methods were initially

developed for small relative water depths in the framework of weakly non-linear

waves, but the last developments of high order versions of Boussinesq approxi-40

mations developed by Bingham et al. (2004) and Madsen et al. (2006) allow to

account for larger water depths at little extra computational cost which remains

quite attractive.

Interesting properties of spectral methods in terms of convergence have led45

to the development of numerous models. We can first cite the Direct Method,

introduced by Fenton and Rienecker (1982), which solves the problem on the

free-surface (free-surface method) allowing a reduction of one dimension. Nev-

ertheless, the required inversion of a fully populated matrix makes it not very

efficient. The pseudo-spectral σ-transform model introduced by Chern et al.50

(1999) allows the modelling of more complex geometries but still with a high

computational time due to the necessity to discretize the whole fluid domain.

The pseudo-integral/spectral method improved by Fructus et al. (2005) uses a

pseudo-spectral solution added to an integral solution to cope with steeper cases

and variable bathymetries. The DNO (Dirichlet to Neumann Operator) method55

was initiated by Craig and Sulem (2001) for a flat bottom. This method was

extended to a variable bottom by Guyenne and Nicholls (2005) and Craig et al.

(2005) by introducing another operator depending only on the variation of the

bottom. It was then improved numerically by Guyenne and Nicholls (2007).

60

In the present paper, we use the High-Order Spectral (HOS) method. This
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non-linear potential method has been initially developed by West et al. (1987)

and Dommermuth and Yue (1987) for a flat bottom, and extensively validated

for different configurations in the LHEEA Lab., from regular waves up to irreg-

ular multidirectional wavefields (see Ducrozet et al. (2007, 2012b)). This model,65

named HOS-ocean is available as an open-source version1. The HOS formalism

presents expansions identical to the DNO method, as demonstrated in Schäffer

(2008), and several advantages. First of all, the problem is formulated on the

free surface, allowing a reduction of one dimension when solving the problem.

Moreover, it allows the solution of the problem with the fully non-linear free sur-70

face boundary conditions, it shows excellent convergence properties and it has

a low computational cost. Therefore this method is very efficient and accurate,

but is initially limited to simple geometries in both horizontal and vertical direc-

tions. Non-linear potential flow models cited above consider a varying bottom

but few of them were based on the HOS scheme. As demonstrated in Ducrozet75

et al. (2012a), the HOS model appears more efficient than the most advanced

potential flow solvers, when compared for wave propagation on uniform depth.

Thus it appears interesting to extend such a model to a variable bathymetry in

order to broaden its application range, while keeping the numerical efficiency.

Liu and Yue (1998) provided one study with the HOS method which takes into80

account a variable bathymetry, and presented one simulation case but limited

to a small variation of the bottom. The first scheme used in the present paper

is based on their work. The second scheme is an improvement of the first one by

considering two different orders of non-linearity: one for the bottom and one for

the free-surface. This dissociation of the orders of non-linearity was presented85

with the DNO method in Guyenne and Nicholls (2007), and will be adapted

here to the HOS formalism.

The two HOS methods presented (called original method and improved

method) are explained in detail in the present paper. Some of the work with90

1https://github.com/LHEEA/HOS-ocean/wiki
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the original method presented hereafter has already been partially introduced

in Gouin et al. (2015). For documenting the accuracy of both schemes, a test

case with a constant variation of the bottom is computed to check the conver-

gence on a simple geometry with a non-linear reference solution. It is a highly

demanding test case because a constant but wrong depth is imposed in the95

whole domain. Then both methods are applied to 2D monochromatic cases.

Bragg reflection from a sinusoidal bottom patch will first be considered, as an

example of a small bottom variation around a mean water depth. To validate

our models with larger bottom variation, the shoaling of linear waves is studied

in the second case. Finally, two well-documented application cases (both nu-100

merically and experimentally) are provided. We validate and compare the two

methods for realistic and large bottom variations. The first case considers the

transformation of a non-linear, monochromatic wave as it travels up and over

a submerged bar with a mild slope. This validation case has often been used

as a discriminating test case for non-linear models of surface waves propagation105

over a variable bottom because it requires the accurate propagation of waves in

both deep and shallow water. A comparison to the experimental data and to

other numerical results is provided, as well as a comparison of both methods.

The second application case considers the same experimental set-up but with

a steeper slope, and proves the ability of our models to represent cases with110

strong variations of the bathymetry and large bottom gradients.

2. Methods and algorithms

2.1. Hypothesis and formulation of the problem

A 2D rectangular fluid domain and a Cartesian coordinate system with the

origin O located at one corner of the domain are considered. The z axis is vertical115

and oriented upwards, with the level z = 0 corresponding to the mean water

level. z = η (x, t) represents the free surface elevation, h the total water depth,

h0 the mean depth and β (x) the bottom variation, such as −h (x) = −h0+β (x).

Thus, the domain considered is: −h0 + β (x) ≤ z ≤ η (x) (see Fig.1).
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Figure 1: Description of the fluid domain

An infinite domain assumption is adopted with the assumption of periodic120

boundary conditions in the horizontal plane.

A potential flow formalism is used (incompressible and inviscid fluid, irrota-

tional flow). Given these assumptions, the velocity ~V derives from a potential

φ: ~V (x, z, t) = ~∇φ and the continuity equation becomes the Laplace equation

in the fluid domain D:

∆φ = 0 (1)

Following Zakharov (1968), both kinematic and dynamic non-linear free-

surface boundary conditions (FSBC) are written in terms of surface quantities η

and φ̃ (φ̃ (x, t) = φ (x, z = η, t)), and expressed at the exact free-surface position

z = η:

∂η

∂t
=

(
1 +

∣∣∣∣∂η∂x
∣∣∣∣2
)
∂φ

∂z
− ∂φ̃

∂x
.
∂η

∂x
(2)

∂φ̃

∂t
= −gη − 1

2

∣∣∣∣∣∂φ̃∂x
∣∣∣∣∣
2

+
1

2

(
1 +

∣∣∣∣∂η∂x
∣∣∣∣2
)(

∂φ

∂z

)2

(3)

To account for the time evolution of the quantities of interest η and φ̃

one only needs to evaluate the vertical velocity at the free surface W (x, t) =

∂φ
∂z (x, z = η (x, t) , t). This is the purpose of the HOS method described in 2.2.

125

The HOS method was initially developed for a flat bottom but here for a
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non-constant bathymetry the bottom boundary condition reads :

∂φ

∂x

∂β

∂x
− ∂φ

∂z
= 0 on z = −h0 + β (x) (4)

To account for a varying bathymetry, Liu and Yue (1998) introduces an

additional potential. Thus, the total potential φtot solution of the problem

(which was named φ before) is expressed as:

φtot = φh0
+ φβ (5)

φh0
satisfies a Neumann condition on z = −h0, therefore φh0

is solution of

the problem at constant depth h0:

∂φh0

∂z
(x, z = −h0, t) = 0 on z = −h0. (6)

φβ allows the definition of the correct bottom boundary condition (Eq.4)

and satisfies a Dirichlet condition on z = 0:

φβ (x, z = 0, t) = 0 on z = 0. (7)

In 2D, the potentials are expanded on basis functions taking into account

previous boundary conditions and the periodicity of the domain:

φh0 (x, z, t) =
∑
j

Aj (t)
cosh (kj (z + h0))

cosh (kjh0)
eikjx (8)

φβ (x, z, t) =
∑
j

Bj (t)
sinh (kjz)

cosh (kjh0)
eikjx (9)

with kj = j 2π
Lx

and Aj and Bj the modal amplitudes of φh0 and φβ respectively.

2.2. High-Order-Spectral Method

The HOS model is a pseudo-spectral model initially developed in West et al.

(1987); Dommermuth and Yue (1987). The potential is expressed as a truncated
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power series of components φ
(m)
tot for m = 1 to M (M is the order of non-

linearity of the HOS method). Then, the potential evaluated at the free surface

is expanded in a Taylor series with respect to the mean water level z = 0 (Eq.10).

Combining these two expansions gives a triangular set of Dirichlet problems for

the components that can be solved by means of a spectral method (allowing the

use of Fast Fourier Transforms (FFTs) for efficient computations).

φ̃tot = φtot (x, z = η, t) =

M∑
m=1

M−m∑
n=0

ηn

n!

∂nφ
(m)
tot

∂zn
(x, z = 0, t) (10)

∂φtot
∂z

(x, z = η, t) = W (x, t) =

M∑
m=1

m−1∑
k=0

ηk

k!

∂k+1φ
(m−k)
tot

∂zk+1
(x, 0, t) (11)

Equations 11 can be reduced to Eq.(5.7) cited in Liu and Yue (1998) by an

appropriate change of variables.

One more equation (the bottom condition) is needed to find the modal am-130

plitudes of order m : A
(m)
j (t) and B

(m)
j (t). These modal amplitudes are the

Fourier coefficients of the potentials Eqs.(8,9) at order m. Once A
(m)
j (t) and

B
(m)
j (t) are computed (see Fig.2), by evaluating the vertical derivative of the

potential and using the same kind of double expansion, the vertical velocity W

at the free surface can be obtained. Equations (2,3) provide the time deriva-135

tives of the unknowns η and ˜φtot (as presented in Fig.3), which are used in a

time-marching classical fourth-order Runge-Kutta scheme with an adaptative

time step (see Fructus et al. (2005) for the details of the procedure).

Thus, the free surface conditions (Eqs. 2 and 3) are marched in time in a

similar manner as for the initial HOS procedure (see Ducrozet et al. (2007)).140

Note that a careful dealiasing is performed as explained in Bonnefoy et al. (2010)

to ensure the method’s convergence and accuracy, even for high steepnesses.

Indeed, for high non-linearities, a full or total dealiasing allows us to reduce the

errors observed by Dommermuth and Yue (1987). The two following sections

will present the addition due to the consideration of a non-uniform bottom.145
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Figure 2: Use of the bottom condition in the temporal solution.

Figure 3: Temporal solution of the FSBC.

9



2.3. Original method

The way of using the bottom condition to find the modal amplitudes B
(m)
j (t)

(Eq.(5.4) from Liu and Yue (1998)) is depicted in Fig.2 and explained hereafter.

The bottom condition (Eq.4) truncated at the order M reads:

M∑
m=1

∂φ
(m)
tot

∂x

∂β

∂x
−

M∑
m=1

∂φ
(m)
tot

∂z
= 0 on z = −h0 + β (x) (12)

By assuming that β
h0
<< 1 we can write a Taylor expansion with respect to the

mean depth z = −h0:

M∑
m=1

[(
∂φ

(m)
tot

∂x

∂β

∂x

)
−h0

+ β
∂

∂z

(
∂φ

(m)
tot

∂x

∂β

∂x

)
−h0

+ ...+
βM

M !

∂M

∂zM

(
∂φ

(m)
tot

∂x

∂β

∂x

)
−h0

]

=

M∑
m=1

[(
∂φ

(m)
tot

∂z

)
−h0

+ β

(
∂2φ

(m)
tot

∂z2

)
−h0

+ ...+
βM

M !

(
∂M+1φ

(m)
tot

∂zM+1

)
−h0

]
(13)

Since we follow the potential theory (Eq.1) we have in two dimensions: ∂2φtot

∂z2 =

−∂
2φtot

∂x2 , and we obtain:

M∑
m=1

[(
∂φ

(m)
tot

∂x

∂β

∂x

)
−h0

+ ...+
βM

(M)!

∂M

∂zM

(
∂φ

(m)
tot

∂x

∂β

∂x

)
−h0

]

=

M∑
m=1

[(
∂φ

(m)
tot

∂z

)
−h0

− β

(
∂2φ

(m)
tot

∂x2

)
−h0

− ...− βM

M !

[
∂M−1

∂zM−1

(
∂2φ

(m)
tot

∂x2

)]
−h0

]
(14)

We also assume O (β) ≡ O
(
∂β
∂x

)
≡ O (η) and we only keep terms of order η(m):

m−1∑
l=1

βl−1

(l − 1)!

∂l−1

∂zl−1

(
∂φ

(m−l)
tot

∂x

∂β

∂x

)
−h0

=

(
∂φ

(m)
tot

∂z

)
−h0

−
m−1∑
l=1

βl

l!

[
∂l−1

∂zl−1

(
∂2φ

(m−l)
tot

∂x2

)]
−h0

(15)

Thus we find the equations presented in Liu and Yue (1998):

m = 1 :
∂φ

(1)
tot

∂z
(x,−h0, t) = 0
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m = 2, ..M :
∂φ

(m)
tot

∂z
(x,−h0, t) =

m−1∑
l=1

∂

∂x

[
βl

l!

∂l−1

∂zl−1

(
∂φtot
∂x

)(m−l)
]
z=−h0

(16)

Perturbation expansions are truncated at orderM . This development (Eq.(16)

with Eqs.(8, 9)) allows the computation of the modal amplitudes B
(m)
j1

(t) at150

each order as functions of the A
(m)
j1

(t). Modal amplitudes are independent of

the position x, thus FFTs can still be used, preserving the numerical efficiency

of the original HOS scheme.

2.4. Improved method

As described in Schäffer (2008), the HOS method exhibits a formalism simi-

lar to the DNO method. The improved method is based on the extension of the

DNO scheme to a variable bottom proposed by Craig et al. (2005) and Guyenne

and Nicholls (2007). Starting from Eq.(12) and assuming that β
h0
<< 1 we can

write the same Taylor expansion of the bottom boundary condition as before

(Eq.14) but at a different order of truncation Mb:

M∑
m=1

(∂φ(m)
tot

∂x

∂β

∂x

)
−h0

+ β
∂

∂z

(
∂φ

(m)
tot

∂x

∂β

∂x

)
−h0

+ ...+
βMb−1

(Mb − 1)!

∂Mb−1

∂zMb−1

(
∂φ

(m)
tot

∂x

∂β

∂x

)
−h0


=

M∑
m=1

(∂φ(m)
tot

∂z

)
−h0

− β

(
∂2φ

(m)
tot

∂x2

)
−h0

− ...−
βMb

(Mb)!

[
∂Mb−1

∂zMb−1

(
∂2φ

(m)
tot

∂x2

)]
−h0


(17)

In the left-hand side of Eq.17, the expansion is made up to order Mb − 1155

because we assume that O (β) ≡ O
(
∂β
∂x

)
. Thus the left-hand side is of order

Mb, and is consistent to the right-hand side.

Eq.17 can be written as:

M∑
m=1

(
∂φ

(m)
tot

∂z

)
−h0

=

M∑
m′=1

Mb∑
l=1

 ∂

∂x

βl
l!

∂l−1

∂zl−1

∂φ(m′)
tot

∂x


−h0

 (18)

We adopt the hypothesis that each potential φ
(m)
β can be expressed as a trun-

cated power series of components φ
(m,l)
β for l = 0 to Mb (with Mb the order of

11



non-linearity of the bottom):

φ
(m)
β =

Mb∑
l=1

φ
(m,l)
β (19)

and the corresponding modal amplitudes are given by:

B
(m)
j =

Mb∑
l=1

B
(m,l)
j (20)

Thus, at each order m, introducing φ
(m)
tot = φ

(m)
h0

+ φ
(m)
β and keeping only the

terms of maximum order m + Mb (assuming as for the original method that

O (β) ≡ O
(
∂β
∂x

)
≡ O (η)) we get:

(
∂φ

(m)
β

∂z

)
−h0

=

Mb∑
l=1

(
∂φ

(m,l)
β

∂z

)
−h0

=

Mb∑
l=1

{
∂

∂x

βl

l!

[
∂l−1

∂zl−1

(
∂φ

(m)
h0

∂x

)]
−h0

}

+

Mb∑
l=1

l−1∑
p=1

{
∂

∂x

βp

p!

[
∂p−1

∂zp−1

(
∂φ

(m,l−p)
β

∂x

)]
−h0

}
(21)

We can then derive an iterative formula to calculate each B
(m,l)
j at a given160

order m. This expression can be found in the DNO formalism in Guyenne and

Nicholls (2007). Here we use the same formalism to compare our formulas with

the ones given in their paper.

For l odd:

kB(m,l) = −k
[
βl

l!
sech (kh0) kl−1k

]

− k

 l−1∑
p=2,even

βp

p!
kp−2kkB(m,l−p) −

l−2∑
p=1,odd

βp

p!
tanh (kh0) kp−2kkFl−p


+ ik

∂β

∂x

[
βl−1

(l − 1)!
sech (kh0) kl−2k

]

+ ik
∂β

∂x

 l−1∑
p=2,even

βp−1

(p− 1)!
kp−3kkB(m,l−p) −

l−2∑
p=1,odd

βp−1

(p− 1)!
tanh (kh0) kp−3kkB(m,l−p)


(22)

12



And for l even:

kB(m,l) = −k

 l−2∑
p=2,even

βp

p!
kp−2kkB(m,l−p) −

l−1∑
p=1,odd

βp

p!
tanh (kh0) kp−2kkB(m,l−p)


+ ik

∂β

∂x

 l−2∑
p=2,even

βp−1

(p− 1)!
kp−3kkB(m,l−p) −

l−1∑
p=1,odd

βp−1

(p− 1)!
tanh (kh0) kp−3kkB(m,l−p)


(23)

If we compare Eq.(22,23) to the developments obtained by Guyenne and165

Nicholls (2007), one can notice that we obtain an additional part due to the

gradient of the bottom (this part is missing in Guyenne and Nicholls (2007)).

Others terms are identical. Previous equations (22 and 23) should then be used

in the DNO method with bottom variation.

170

In comparison to the original method, we can compute the modal amplitudes

B
(m)
j (t) due to the bottom even for m = 1 (with the original method we have

to begin at m = 2 for the computation of the B
(m)
j (t)).

Moreover, with this improved method, the orders of non-linearity on the

free-surface and on the bottom can be selected independently. This gives a175

better flexibility to the model and should be more convenient to compute cases

with different requirements in bottom variation and free-surface non-linearities.

If we choose Mb = M with the improved method, the results are a bit

different to those obtained with the original method because we do not calculate

the same terms at each sub-step i = 1, ...,M . Section 3.1.3 shows the differences180

on the error made on the vertical velocity with the two methods.

2.5. Lateral boundary conditions and relaxation zones

With the present scheme periodic boundary conditions are required in the x-

direction. However, practical applications often requires non-periodic boundary

conditions (see e.g. the test cases presented). A simple way is to increase the185

size of the computational domain but it is not suitable for long-time simulations.

Here we proposed to use relaxation zones.

Wave generation and absorption is achieved by relaxing the numerical solu-

tion towards a specific solution over regions near the boundary domain. In 2D,

13



these boundary regions are located at the right and left of the domain.190

Relaxation zones are created by defining a relaxation coefficient 0 ≤ Cr(x) ≤

1 and an exact imposed solution (ηimp, φ̃imp) as described in Bingham and Zhang

(2007) and Guyenne and Nicholls (2007). In our cases, the imposed solution will

be either the stream solution of Rienecker and Fenton (1981) (for non-linear reg-

ular wave definition) or the zero solution (for complete absorption).195

After each stage of the time integration in the Runge-Kutta scheme, the

solution in the relaxation zone is redefined by:

η (x, t) = (1− Cr(x)) .ηimp + Cr(x).η (x, t) (24)

φ̃ (x, t) = (1− Cr(x)) .φ̃imp + Cr(x).φ̃ (x, t) (25)

To avoid reflections, Cr should be smooth. A polynomial of order 3 has been

used to define it on zones of several wavelengths.

Moreover, when calculating the derivatives of the bottom, FFTs are used,200

so the bottom needs to be periodic. When computing a non-periodic 2D case,

the bathymetry is thus artificially modify at the end of the domain (in the

direction of propagation) to match the depth at the beginning of the domain

(the same needs to be done in the transverse direction for 3D cases). This does

not affect the results as the modification of the bathymetry will take place in205

the relaxation zones.

3. Regular wave propagation

A non-linear regular wave propagating over a flat bottom is considered.

The initialisation of η and φ̃ is made by a non-linear regular wave solution

of Rienecker and Fenton (1981) built at water depth h. The potential φh0 is210

defined at the mean depth h0 (which differs from h) and the potential φβ must

modify and correct the water depth β (β is a constant) which is introduced
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artificially (cf Fig.4). The goal is to rebuild the potential φtot at the total water

depth −h (x) = −h0 + β (x). This validation case is highly demanding because

an inadequate depth is imposed in the whole domain. Thus if this test case215

shows accurate results, other cases will appear less demanding and should also

work.

3.1. Error on the vertical velocity.

In order to advance in time the unknowns on the free surface η and φ̃

(cf Eqs 2 and 3), we first need to evaluate the vertical velocity W (x, t) =220

∂φ
∂z (x, z = η (x, t) , t) associated to φtot. This test case proposes to study the

error εw = W−WRF

WRF
made on the evaluation of the vertical velocity once η and

φ̃ are known (WRF denotes the reference vertical velocity from Rienecker and

Fenton (1981)). The level of error correctly quantifies the accuracy of the model

in the propagation of such waves, as demonstrated in Bonnefoy et al. (2010).225

The regular wave is described by its steepness ka and the relative water

depth kh. The influence of the following parameters is investigated : ka (from

0.01 to 0.2), kh (from 0.5 to 10), the bottom variation β
h0

, the number of nodes

N and the HOS orders M and Mb. Results will be compared to those obtained

in the case of a finite constant depth ( βh0
= 0%) which was extensively validated230

in Bonnefoy et al. (2010). With the original HOS model on flat bottom, the

error achieved on the vertical velocity presents an exponential convergence in

function of N and M .

This convergence test is used to characterize both methods and has already

been presented in Gouin et al. (2014) for the original method. More details and235

a comparison with the improved method are given hereafter. It allows to assess

the convergence of both schemes on the reconstruction of the vertical velocity

with a wide variety of wave conditions and non-negligible bottom variations.

3.1.1. Original method

We first investigate the accuracy achieved with the original method as a240

function of the number of nodes N and the non-linear HOS order M . We
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Figure 4: Schematic view of the validation case

choose a case where ka = 0.1 and kh = 0.92. This case presents a small relative

water depth and a medium steepness. Indeed, the highest stable wave is given

by Williams (1981) and the parametrized formula of Fenton (1990). In this case

of shallow water conditions (kh = 0.92), the value of the steepness (ka = 0.1)245

represents 33% of the maximum curve.

Fig.5 presents the logarithm of the relative error made on the vertical velocity

as a function of N and M for two values of β
h0

. The lower surface is for β
h0

= 0%

(i.e the initial HOS method) while the upper surface represents the convergence

for a variation of the bottom β
h0

= 25%. We observe that when β
h0

increases,250

the error on the vertical velocity becomes higher than the error with a flat

bottom. Nevertheless, the method still converges exponentially and preserves

the accuracy for perturbations of the bottom equal to 25%. In this particular

case, one can notice that the convergence is more difficult to achieve in the M -

direction, because of the large non-linearities induced by the bottom. The order255

of non-linearity at the bottom probably needs to be larger than the one at the

free-surface, showing a possible advantage of the improved method presented

hereafter.

We can compute cases where β
h0

= 50%. The results are presented in Fig.6.

We still observe the exponential convergence of the method, but with a reduced260

rate compared to the previous case (as we saw just before, the convergence is

16



Figure 5: Error on the vertical velocity in function of N and M - kh=0.916 and ka=0.1.
Lower-surface : β

h0
= 0%. Higher-surface : β

h0
= 25%.

more difficult to achieve in the M -direction). We also computed different com-

binations of the parameters kh, ka, β
h0

. An example of errors achieved with

N = 64, M = 8 and different values of kh and ka is shown in Tab.1.

265
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Figure 6: Error on the vertical velocity in function of N and M - kh=0.916 and ka=0.1.
Lower-surface : β

h0
= 0% Higher-surface : β

h0
= 50%.

We conclude that with the original method, when kh increases (with ka
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kh=0.916
β
h0

k.a=0.01 k.a=0.05 k.a=0.1

0% 1.7 10−14 4.0 10−10 2.5 10−7

5% 4.8 10−12 1.8 10−9 3.0 10−7

25% 5.5 10−8 2.6 10−6 3.4 10−5

50% 3.9 10−6 1.1 10−4 1.2 10−3

ka=0.1
β
h0

k.h=0.67 k.h=3 k.h=10

0% 5.7 10−8 6.3 10−9 6.2 10−9

5% 2.2 10−7 6.3 10−9 6.2 10−9

25% 3.9 10−5 1.8 10−6 2.6 10−7

50% 1.1 10−3 3.8 10−4 1.8 10−4

Table 1: Relative error on W , N = 64, M = 8.

and β
h0

fixed) the convergence rate is better. This result was expected because

when h
λ > 2 (i.e. kh > π), we may consider to be in a deep water problem

with no influence of the bottom on wave propagation. Thus the bottom has less

influence and the convergence rate is higher.270

When ka and β
h0

increase (with the other parameters fixed), the convergence

rate decreases. Of course there is a limit in the admissible values of ka and β
h0

.

The steepness can not exceed the theoretical highest stable wave given by the

formula of Fenton (1990) and β
h0

has to remain lower than 100%.

So this test case (which is very demanding) shows that a quite large range275

of parameters can be treated with the original HOS method.

3.1.2. Improved method

The same test case is studied with the improved method. Remember that the

influence of the order of non-linearity of the bottom Mb has to be investigated

in addition to other parameters. We thus fix N = 32 (we have checked that280

the method converges with N with an exponential convergence rate), and we

observe the influence of M and Mb for different values of the parameters kh,

ka, and β
h0

.

We observed with the original method that the convergence was more dif-

ficult to achieve in the M -direction for the case ka = 0.1, kh = 0.92 and285
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β
h0

= 25%. We guess that with the improved method we have to increase Mb

(more than M) in order to reach the convergence. The error achieved on the

vertical velocity is presented in Fig.7. In this figure, we can clearly see that

the method converges exponentially with M and Mb, which is a very interesting

feature of the new improved scheme. Of course the method also converges expo-290

nentially with N but it can not be seen on the figure. The same conclusions as

before can been drawn with increasing kh, ka and β
h0

and comparisons between

the two approaches are provided in the following section.

M

0
2

4
6

8
10

M_l

0
2

4
6

8
10

lo
g

(erro
r)

-8

-6

-4

-2

0

log(error)

-1.5
-2.5
-3.5
-4.5
-5.5
-6.5

Figure 7: Error on the vertical velocity in function of M and Mb - kh = 0.916, ka = 0.1 and
β
h0

= 25%.

3.1.3. Comparison of the two methods

As both methods present an exponential convergence rate (with N and with295

the different orders of non-linearity M and Mb), it is now interesting to inves-

tigate which method is more accurate, depending on the values of kh, ka, and β
h0

.

Fig.8 and Fig.9 present the error achieved on the vertical velocity as function

of M and Mb for β
h0

= 40%, kh = 0.92 and two different values of ka. In Fig.9,300

from Mb = 10 the error achieved on the vertical velocity is converged so the three

corresponding curves (Mb = 10, Mb = 15 and Mb = 20) are superimposed. Fig.8
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(ka = 0.01) shows that at a fixed value M , we can always find a Mb (threshold)

to get at least the same error on the vertical velocity as with the original method.

Moreover, if Mb is higher than this threshold value, the accuracy is better. Thus305

the improved method can improve the accuracy achieved on the vertical velocity.

For steeper cases, Fig.9, (ka = 0.15) proves that the improved method is always

more accurate than the original one (if Mb > 1). It means, in the case of Fig.9,

that the non-linearities due to the free-surface are more important than in the

case of Fig.8, because of the higher steepness.310

Fig.8 also highlights another distinction between the two methods. Indeed,

one could think that the original method with M = 10 and the improved method

with M = 10 and Mb = 10 would lead to the same results. Nevertheless, when

computing the modal amplitudes B
(m)
j (t) at each step m, the improved method

calculates more terms (if Mb > M), inducing a difference in the error achieved315

on the vertical velocity.

The influence of β
h0

is represented on Fig.10 and Fig.11. In Fig.10, forMb ≥ 3

the error achieved on the vertical velocity is converged so the corresponding

curves are superimposed. For theses cases we see that for a small variation of

the bottom (Fig.10), both methods present the same accuracy. But when β
h0

320

increases, the improved method seems much more accurate, for the same reason

as before: when β
h0

is higher, high non-linearities induced by the bottom are

more important than those due to the free-surface, so a larger Mb is needed.

Fig.11 also shows the capacity of the improved scheme to treat high variations

of the bottom (here β
h0

= 75% with a medium steepness ka = 0.15 and a small325

relative water depth kh = 0.916).

The influence of the relative water depth kh can be seen on Fig.12 and Fig.13.

In Fig.12 the curves corresponding to Mb ≥ 3 are superimposed. For small kh

both methods show almost the same accuracy because the non-linearities on

the free-surface elevation are important, and thus the accuracy is governed by330

the order M . However, for higher kh, the improved method allows a better

accuracy, because as before, the non-linearities induced by the bottom become

more important than those due to the free-surface.
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An important conclusion from these investigations is that, with the improved

method, we can always find numerical parameters to achieve at least the same335

accuracy as with the original method. Thus the improved method is more ac-

curate if the different orders of non-linearity are correctly chosen. Moreover, in

some cases, the use of a couple (M,Mb) rather than a couple (M,M) should

reduce the computational effort, while maintaining the accuracy (see 5.1 below).

340

Once the vertical velocity is correctly computed, one can advance the solu-

tion in time. One way to estimate whether the propagation is correct is to check

the phase shift with respect to the reference numerical solution of Rienecker and

Fenton (1981). A phase shift is usually observed after a long propagation time

with any numerical method. The HOS method is very accurate with respect345

to this phase shift (see Bonnefoy et al. (2010)). It happens even if the bottom

is flat (ie β
h0

= 0%), and we have checked in Gouin et al. (2015) that neither

method induces a prohibitive phase shift.

Figure 8: Error on the vertical velocity as func-
tion of M and Mb - β

h0
= 40% - kh = 0.916 and

ka = 0.01.

Figure 9: Error on the vertical velocity as func-
tion of M and Mb - β

h0
= 40% - kh = 0.916 and

ka = 0.15.

350
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Figure 10: Error on the vertical velocity as
function ofM and Mb - β

h0
= 10% - kh = 0.916

and ka = 0.15.

Figure 11: Error on the vertical velocity as
function of M and Mb - β

h0
= 75% - kh = 0.916

and ka = 0.15.

Figure 12: Error on the vertical velocity as
function of M and Mb - β

h0
= 40% - kh = 0.5

and ka = 0.1.

Figure 13: Error on the vertical velocity as
function of M and Mb - β

h0
= 40% - kh = 3

and ka = 0.1.
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3.2. Computational effort355

The computational effort is directly proportional to the number of FFTs

used in the HOS procedure. For the initial HOS method with a flat bottom

(Eqs. 10 and 11), the number of FFTs required is M M+3
2 . To account for a

variable bathymetry, the additional number of FFTs used in the original method

(Eq.16) is:

n = 2M(M − 1) (26)

While for the improved method this number is:

n = 4MbM (27)

Even if the additional cost induced by a variable bathymetry is in O(M2),

we are confident in the efficiency of the two HOS methods which are very in-

teresting in terms of CPU time compared to other existing non-linear potential

flow solvers.

Moreover, we observe that if M = Mb, the original method will be more

efficient. On the contrary, the improved method should be more adequate if:

Mb <
M − 1

2
or M <

Mb − 1

2
(28)

As we saw just before, the improved method allows to achieve errors on the360

vertical velocity less than or equal to those obtained with the original method,

depending on the value of Mb. Thus, in some cases where the two needed orders

of non-linearities are very different, the use of a couple (M,Mb) rather than a

couple (M,M) will reduce the computational effort (while keeping the accu-

racy).365

In order to confirm the asymptotic scaling of the computational effortNdlog(Nd)

of the proposed models, Fig.14 presents the computational time for 100 periods

with respect to the number of dealiased points Nd in a computational domain

of 50 wavelengths. Here Nd = N M+1
2 as we perform a total dealiasing. This370

23



figure was obtained with a HOS order fixed to M = 8 and a variation of the

bottom β
h0

= 40%. The initial HOS method with a flat bottom and M = 8 is

also presented for comparison. The dashed lines represent the expected linear

scaling in Ndlog(Nd). We observe that the proposed models and the initial HOS

method scale the same way with Ndlog(Nd), which is a very interesting feature375

of the new HOS methods. Moreover, with this choice of parameters (M = 8 and

β
h0

= 40%), the computational time needed to compute a variable bathymetry

is three times the computational effort necessary for a flat bottom. Looking at

the number of FFTs required, the initial method for M = 8 needs n = 44 FFTs

while the original method requires n = 122 + 44 = 156 FFTs (cf Eq.26). The380

theoretical ratio is thus 3.5 which agrees well with the empirical result of 3.
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Figure 14: Computational effort with respect to N . M = 8.

3.3. Partial conclusion

Both methods can compute various cases depending on the value of β
h0

,

kh and ka. They present a good accuracy as well as an attractive scaling of

the computational effort with increasing problem size. Moreover, for increasing385

steepness, the error on the vertical velocity becomes larger and the convergence

is slower, but still exists. The improved method is more flexible as we can disso-

ciate the different orders of non-linearity. Furthermore, we can always find nu-

merical parameters to achieve a better accuracy than with the original method.
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The computational effort, which scales as Ndlog(Nd) (with Nd the number of390

dealiased points), will also probably be reduced in some configurations if the

orders of non-linearity needed on the free-surface and on the bottom are differ-

ent. We will compare the required computational time in the applications cases

given in the following.

Thus this highly demanding test case demonstrates the ability of our meth-395

ods to represent non-negligible variations of the bottom with high accuracy and

efficiency. We are now confident on the applicability of these schemes to realistic

problems.

4. Validation

Two test cases have been treated to demonstrate the ability of the proposed400

schemes to model wave propagation over a variable bathymetry in realistic con-

figurations. As an example of a small bottom variation around a mean water

depth, the first test case considers Bragg reflection from a sinusoidal bottom

patch. The second one intends to focus on a larger bottom variation with the

shoaling phenomenon.405

4.1. Bragg reflection

This case aims at representing a small bottom variation around a mean water

depth in order to satisfy the conditions of the Taylor expansion (see Eq.13). We

consider the development of incident and Bragg reflected waves over a sinusoidal

bottom patch of wavenumber kb (see Fig.15). If the class I Bragg condition is410

satisfied, the reflected wave should be amplified as a result of resonant quadratic

interaction between the incident wave and the bottom variation. This case has

been studied experimentally by Davies and Heathershaw (1984) and numerically

by Bingham and Zhang (2007); Guyenne and Nicholls (2007); Liu and Yue

(1998).415

For small incident waves and small bottom slopes, reflection near Bragg

resonances is well predicted by the multiple-scale perturbation theory of Mei
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(1985). Here we analyse non-linear effects using the original method. Note that

the improved method gives exactly the same results. The conditions of Davies

and Heathershaw (1984) are used to compare with experiments.420

x(m)

z(
m

)

-20 0 20 40

-1.2

-1

-0.8

-0.6

L0

Figure 15: Bottom topography with a patch of 10 sinusoidal ripples of amplitude d = 0.1 and
slope kbd = 0.31.

The bottom ripple patch is defined as the variation around the mean water

depth h = h0 + β(x) by :

β(x) = d sin(kbx) for
−L0

2
≤ x ≤ L0

2
(29)

as depicted in Fig.15. The free surface is located at z = 0m and the mean water

depth is at h0 = 1m. The ripple slope is kbd = 0.31, the ripple amplitude is

d = 0.1m and the length of the patch is L0

λb
= 10 (i.e. we consider a patch of 10

sinusoidal ripples of wavelength λb = 2π
kb

). The incident wave is set at the linear425

resonance condition of k = kb
2 with a wave steepness ka = 0.05.

We perform simulations with N
λ = 16 nodes per wavelength and a HOS order

M = 2 with the original method (the equivalence is obtained with M = 2 and

Mb = 1 for the improved method). The steady-state is reached after t = 41T .

This choice of order of non-linearity on the free-surface and on the bottom430

variation is sufficient to obtain converged results, since main physical phenomena

are accounted for by Class I Bragg reflection which is second order, as explained

in Liu and Yue (1998). The local reflection coefficient R(x) is then extracted
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using the method of Suh et al. (2001) and analysed hereafter.

The results are presented in Fig.16 along with the experimental measure-435

ments of Davies and Heathershaw (1984) and the solution given by the pertur-

bation theory of Mei (1985). Ripples are located in x/λb ∈ [−5; 5]. It appears
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Figure 16: Bragg reflection from a sinusoidal bottom ripple patch over −5λb ≤ x ≤ 5λb with
ka = 0.05 and kbd = 0.31.

clearly that our numerical results accurately reproduce the experiments and are

in excellent agreement with the perturbation theory. Both methods (original

and improved) give exactly the same results as those presented in Liu and Yue440

(1998). Thus the proposed methods are validated for a classical configuration

with a small variation of the bottom ( βh0
= 0.1). We will now focus on the next

test cases with higher bottom variations, to check the ability of the methods to

treat realistic bathymetry profiles with non-negligible variations.

4.2. Shoaling of linear waves445

Here we consider the shoaling of linear waves which are deformed during

their propagation from deep to shallow water (see Fig.17). This validation

case has been run with the improved method only. Indeed, it requires a linear

27



solution at the free-surface (to compare our results to an analytical solution)

and a highly non-linear order at the bottom to account for the influence of the450

Taylor expansion around a mean water depth. This test case has been studied

for instance in Bingham and Agnon (2005); Guyenne and Nicholls (2007).

We used a bottom profile defined by:

β(x) =
h0 − h1

2

[
1 + tanh

(
sin (πx/L)

1− (2x/L)2

)]
, − L

2
≤ x ≤ L

2
(30)

Figure 17: Computed wave profile (scaled by a factor of 10) of a linear wave of amplitude
a0 = 5.10−3m and wavelength λ = 2m over a shoaling bottom profile at steady-state.

with h0 = 0.5 m, h1 = 0.1 m and L = 24 m. Here β
h0

= 0.8 so the hypothesis of

the Taylor expansion Eq.17 is not fulfilled. Nevertheless, we want to investigate

if the method can deal with a high relative variation of the bathymetry. The455

bottom topography and the incident conditions allow a transition from deep to

shallow water (from kh = 1.57 to kh = 0.56). A linear wave of amplitude a0 =

5.10−3 m and wavelength λ0 = 2m is generated at the left end of the domain

and is propagated until a steady-state is reached everywhere. A relaxation zone

at the left of the domain generates the incoming wave and another zone at the460

right of the domain absorbs the waves after shoaling to prevent reflection and to

ensure periodicity. Relaxation zones are thus composed of one absorbing zone

(5 wavelengths), one generation zone (3 wavelengths), the observation zone (12
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wavelengths) and a second absorbing zone (10 wavelengths) (see Fig.17).

The mean water depth h0 is chosen at 0.3 m to reduce the maximum β
h0

465

(from 0.8 to 0.66 at its maximum value) and to ensure a convergence with re-

spect to Mb.

The steady-state is reached after t = 27T . Fig.18 shows the computed steady

state amplitude envelope (M = 1 and Mb = 15 with h0 = 0.3m) and the one

predicted by energy conservation from linear theory:

a

a0
=

[
k (1 + 2h0k0/ sinh(2h0k0))

k0 (1 + 2hk/ sinh(2hk))

]1/2
(31)
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Figure 18: Comparison between the envelope predicted by the linear theory and the envelope
obtained with the computed wave profile.

We see that the amplitude first decreases slightly with the bottom slope,470

and then increases and stabilizes. We note that our model compares accurately

with the linear prediction. The increasing value of the wavenumber as the wave

travels from deep to shallow water is also an expected phenomena (see Bingham

and Agnon (2005)). Thus this test case validates the improved method even for

non-negligible relative bottom variations β
h0

.475
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5. Application : Harmonic Generation over a Submerged Bar

These application cases consider the transformation of a non-linear monochro-

matic wave as it travels up and over a submerged bar. As the waves travel up

the front slope of the bar, they steepen dramatically, and higher harmonics are

generated due to non-linear interactions. These higher harmonics produce an480

irregular pattern behind the bar. These validation cases have often been used

as a discriminating test case for non-linear models of surface wave propagation

over a variable bottom because they require an accurate propagation of waves

in both deep and shallow water. The first case presented considers a bar with

mild slopes while the second one focuses on steeper slopes.485

5.1. Mild slope

This test case has been studied both experimentally by Dingemans (1994);

Luth et al. (1994) and numerically by Guyenne and Nicholls (2007); Bingham

and Zhang (2007). The bottom variation is defined by:

β (x) =



0.05 (x− 6) for 6 ≤ x ≤ 12,

0.3 for 12 ≤ x ≤ 14,

0.3− 0.1 (x− 14) for 14 ≤ x ≤ 17,

0 elsewhere,

(32)

and can be seen in Fig.19. It has been scaled with a factor of two in comparison

with the experiment of Dingemans (1994). The value of the front and back

slopes are respectively 5% and 10%, corresponding to classical orders of mag-

nitude observed on continental shelves. The relative variation of the bottom is490

β
h0

= 0.75 and we want to investigate if the method can deal with such variations.

Regular waves are generated at the left side of the domain using the solution

of Rienecker and Fenton (1981) of steepness ka = 0.017 and relative water depth

kh = 0.67. The period is fixed to 2.02s with an amplitude of 0.01m.495

30



Figure 19: Sketch of the submerged bar as described in the experiments of Dingemans (1994).
Blue markers correspond to the gauges in the experiments.

With the two methods the convergence and steady-state are reached after

t = 25T with a number of nodes per wavelength N
λ = 40. The original method

needs an HOS order M = 17 to reach the steady-state. Indeed, such a high-order

is needed on the bottom because non-linearities on the free-surface are small (see

the value of ka) while the ones induced by the bottom variation are important.500

As a comparison, the improved method only needs an order M = 3 on the free

surface and an order Mb = 16 on the bottom to reach the steady-state.

When the convergence and steady-state are achieved, exactly the same re-

sults are obtained with the two methods. Thus, in the following, we present

only the results with the improved method. Moreover, we demonstrated in that505

when the two needed orders of non-linearities are very different, the use of a

couple (M,Mb) rather than a couple (M,M) will reduce the computational ef-

fort. Thus, in this case, the use of the improved method rather than the original

method improves the efficiency, while keeping the accuracy.

5.1.1. Time series of free surface elevations510

For the incident wave conditions (T0, a0)= (2.02s, 0.01m), a snapshot of the

surface elevation (scaled by a factor of 3) is presented in Fig.20 and the time

histories of the surface elevations at various locations are shown in Fig.21. The

location of the gauges can be seen in Fig.19. The experimental data comes from
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the experiment of Luth et al. (1994).515

Figure 20: Snapshot of the surface elevation at a steady-state (scaled by a factor of 3).

The comparison between our numerical results and the experimental data

is very good, and similar to the results obtained with other numerical methods

(Guyenne and Nicholls (2007); Bingham and Zhang (2007)). In particular, the

asymmetry of the shoaling waves and the generation of higher harmonics are

correctly reproduced by the two methods. Thus, both free-surface non-linearities520

and bottom non-linearities are correctly solved and we are confident in the

accuracy of the model and its ability to treat large bottom variations.

5.1.2. Harmonic analysis

For a deeper comparison, a harmonic analysis of the surface elevation is run

as presented in Bingham and Zhang (2007). Our results are shown in Fig.22525

where the normalized amplitude of the first five harmonics of the wavefield are

depicted as functions of x. As expected, we can clearly observe the generation

of high-harmonics over the bar. Moreover, the comparison of all harmonics

with the measurements is good even up to the fifth-harmonic, indicating that

non-linear effects due to the bottom variation are correctly resolved. It is also530

very similar to the numerical results presented in Bingham and Zhang (2007),

especially with similar slight discrepancies observed on the first harmonic. The

oscillations are due to the interaction between the incident waves and the waves

reflected on the first slope of the bar. We can notice that even if β
h0

= 0.75 over
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Figure 21: Time series of measured and computed surface elevations at 6 positions. Solid line:
calculations. Points: measurements Luth et al. (1994).
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the submerged bar (which represents a very large relative bottom variation),535

the steepness is weak (ka = 0.017), and the bottom variation does not take

place in the whole domain, helping the model to solve this problem accurately.

Looking at the computational effort, we observe that the improved method is

more efficient: the CPU time needed to compute one period is 5.5s with the

improved method (M = 3 and Mb = 16) and 8.6s with the original method540

(M = 17).
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Figure 22: Harmonic analysis at steady-state for the mild slope case. N
λ

= 40, M = 3 and
Mb = 16.

5.2. Steep slope

We now apply the two HOS methods to a submerged bar with steeper front

and back slopes, as presented in the experimental set-up of Ohyama et al. (1995).545

In this case, β
h0

= 0.7 and the value of the slope is 50% so it allows to check the

domain of validity of our model. This experiment has also been used by Shen

et al. (2004); Gobbi and Kirby (1998); Benxia and Xiping (2009) as a validation

case for their numerical methods.
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550

The bottom variation is presented in Fig.23 and defined for this steeper case

by:

β (x) =



0.5 (x− 2.6) for 2.6 ≤ x ≤ 3.3,

0.35 for 3.3 ≤ x ≤ 4.8,

0.35− 0.5 (x− 4.8) for 4.8 ≤ x ≤ 5.5,

0 elsewhere,

(33)

Figure 23: Sketch of the submerged bar from Ohyama et al. (1995).

The initialisation of η and φ̃ is based on a solution of Rienecker and Fenton

(1981) of steepness ka = 0.039 and relative water depth kh = 0.77. The period

is fixed to 2.01s with an amplitude of 0.025m. The relaxation zones are the

same as previously.

Simulations are run until the steady-state is reached after t = 30T with a555

number of nodes per wavelength N
λ = 60 and an HOS order M = 17. The

improved method only needs an order M = 5 on the free surface and an order

Mb = 16 on the bottom to reach the steady-state. As previously, the results are

identical with the two methods, so we only present the results achieved with the

improved one. The computational effort of the two methods is different because560

it depends from the numerical parameters M and Mb, as seen before.

For the incident wave conditions (T0, a0)= (2.01s, 0.025m), the time histories
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of the surface elevations at locations a (over the bar) and b (after the bar) (see

Fig.23) are shown in Fig.24. The experimental data come from the experiment

of Ohyama et al. (1995).565
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Figure 24: Time series of measured and computed surface elevations at 2 positions. Solid line:
calculations. Points: measurements Ohyama et al. (1995).

The comparison between our numerical results and the experimental data

is also good even if we observe slight discrepancies with respect to the exper-

iments. In this steeper case, the maximum variation of the bottom is almost

the same as in the mild slope case ( βh0
= 70%) but the gradient is much larger.

Nevertheless, the large slopes are more difficult to simulate with the proposed570

models. However, in this extreme configuration, we still manage to obtain rea-

sonable accuracy on the free-surface elevation. Moreover, the level of accuracy

achieved on the time series of the free-surface elevations is better than the one
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presented in Shen et al. (2004) and almost the same as in Gobbi and Kirby

(1998); Benxia and Xiping (2009).575

With the two proposed methods, the bottom and the gradient need to be

continuous, and we clearly see that this is not the case in theses two configura-

tions. Nevertheless, we reach to treat the two cases of the underwater bars with

mild and steep slopes. For more complicated bathymetries, the bathymetry580

could be smoothed to avoid the development of instabilities.

Thus, these HOS models appear suitable to simulate wave propagation with

large variations of water depth and relatively large bottom slopes.

6. Conclusion

In the frame of the initial HOS model developed for a flat bottom, we have585

implemented two numerical methods to simulate non-linear free surface waves

over variable depth. Both methods are based on a Taylor expansion of the bot-

tom boundary condition with respect to the mean water depth. The first method

uses the same order of non-linearity for the bottom and for the free-surface as

presented in Liu and Yue (1998), while the second method is an extension of590

the work of Guyenne and Nicholls (2007) to the HOS formalism by considering

two independent orders of non-linearity.

We first characterized and demonstrated the validity of both methods by

computing large but constant bottom variations. We demonstrated that the595

error made on the vertical velocity converged exponentially with increasing N ,

M and Mb. The improved method is more flexible as we can dissociate the

different orders of non-linearity. Moreover, the computational effort to account

for a variable bathymetry scales with Ndlog(Nd) for both methods (where Nd

is the number of dealiased nodes), similarly to the initial HOS method. We also600

saw that we can always find numerical parameters (M,Mb) leading to a better

accuracy with the improved method than with the original one. In some cases
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(where the two orders of non-linearities are very different), the use of a couple

(M,Mb) rather than a couple (M,M) will even reduce the computational effort

(while keeping or improving the accuracy). The flexibility and efficiency of the605

improved method are thus important features of the new scheme.

Then, by a series of two validation cases, we have shown the accuracy and effi-

ciency of the two methods. Efficient procedures for waves generation/absorption

have been developed to ensure the periodicity of the simulation. The first test

case reproduces Bragg reflection over small bottom variations and shows results610

in agreement with Liu and Yue (1998); Bingham and Zhang (2007); Guyenne

and Nicholls (2007). The second test case was implemented to reproduce the

shoaling of linear waves. It shows very good agreement with the analytical

solution and with numerical results described in Bingham and Agnon (2005);

Guyenne and Nicholls (2007).615

Finally, the application case of a submerged bar which simulates large and

realistic bottom variations has been presented. It shows very good agreement

with both numerical and experimental data, and thus proves the ability of the

two methods to accurately simulate the propagation of waves over large varia-

tions of the bathymetry and of its gradient. The improved method seems to be620

more efficient on the specific case of the underwater bar because the bottom and

the free-surface do not require expansions with the same order of non-linearity,

so the computational time is reduced with this method.

Thus, we have demonstrated the ability of our methods to compute high625

water depth variations and bottom slopes. Despite the limitations inherent to

the Taylor expansions, very good results have been obtained even for very steep

waves over highly varying bathymetries. Moreover, the two iterative methods

presented appear very effective, and the choice of one or another will depend

on the computed case. They both can be used to accurately characterize the630

wavefields in coastal regions. The calculation of corresponding wave loads on

marine renewable energy systems is the next step. These loads may be directly

computed from wave kinematics using added mass and drag terms estimated
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from Morison’s formula. A more reliable and accurate solution will be to couple

one of the proposed models for wave propagation, with a CFD solver accounting635

for the interaction with the structure.

The extension of the model to irregular waves and to 3D cases is conceptually

straightforward with the use of relaxation zones and is under development.
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