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Families of deformations of the twelfth Peregrine breather solutions to the NLS equation with twenty two parameters. +
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The twelfth Peregrine breather (P12 breather) solution to the focusing one dimensional nonlinear Schrödinger equation (NLS) with its twenty two real parameters deformations solutions to the NLS equation are explicitly constructed here. New families of quasi-rational solutions of the NLS equation in terms of explicit quotients of polynomials of degree 156 in x and t by a product of an exponential depending on t are obtained. The patterns of the modulus of these solutions in the (x; t) plane, in function of the different parameters are studied in details.

Introduction

Since the first resolution of the one dimensional focusing nonlinear Schrödinger equation (NLS) in 1972 by Zakharov and Shabat using the inverse scattering method [START_REF] Zakharov | Stability of periodic waves of finite amplitude on a surface of a deep fluid[END_REF][START_REF] Zakharov | Exact theory of two dimensional self focusing and one dimensinal self modulation of waves in nonlinear media[END_REF], a lot of studies have been carried out. The first quasi-rational solution to NLS equation was constructed in 1983 by Peregrine [START_REF] Peregrine | Water waves, nonlinear Schrödinger equations and their solutions[END_REF]. Akhmediev, Eleonskii and Kulagin obtained the twophase almost periodic solution to the NLS equation and obtained the first higher order analogue of the Peregrine breather [START_REF] Akhmediev | Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions[END_REF][START_REF] Akhmediev | Exact first order solutions of the nonlinear Schrödinger equation[END_REF] in 1986; other families of higher order 3 and 4 were constructed in a series of articles by Akhmediev et al. [START_REF] Akhmediev | Rogue waves and rational solutions of nonlinear Schrödinger equation[END_REF][START_REF] Akhmediev | Rogue waves, rational solutions, the patterns of their zeros and integral relations[END_REF], using Darboux transformations. Since the beginning of the years 2010, many works were published using various methods, in particular a formulation by means of wronskians was given in [START_REF] Gaillard | Families of quasirational solutions of the NLS equation and multi-rogue waves[END_REF]. Recently, in 2013, it was found in [START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF], solutions expressed in terms of determinants of order 2N depending on 2N -2 real parameters. A new representation has been found as a ratio of a determinant of order N + 1 by another one of order N by Ling and Zhao in [START_REF] Ling | Trajectory Characters of rogue waves[END_REF]. Very recently in 2014, another approach has been given in [START_REF] Gelash | Superregulier solitonic solutions : a novel scenario for the nonlinear stage of modulation instability[END_REF] using a dressing method where the solutions are expressed as the quotient of a determinant of order N + 1 by another one of order N .

In the present work, we construct new solutions to the focusing one dimensional nonlinear Schrödinger equation which appear as deformations of the (analogue) Peregrine breather of order 12 with 22 real parameters. These solutions are completely expressed as a quotient of two polynomials of degree 156 in x and t by an exponential de-pending on t. Because of the length of the solutions in terms of polynomials of x and t, we cannot give them in this text; only plots in the (x, t) plane of the modulus of the solutions to analyze the evolution of the solutions in function of the different parameters are presented in details here.

Determinant representation of solutions to NLS equation

In [START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF][START_REF] Gaillard | Multi-parametric deformations of the Peregrine breather of order N solutions to the NLS equation and multi-rogue waves[END_REF] the following result have been proved :

Theorem 2.1 The function v defined by v(x, t) = det((n jk) j,k∈[1,2N ] ) det((d jk) j,k∈[1,2N ] ) e (2it-iϕ)
is a quasi-rational solution to the NLS equation

iv t + v xx + 2|v| 2 v = 0,
where n j1 = f j,1 (x, t, 0),

n jk = ∂ 2k-2 fj,1 ∂ǫ 2k-2 (x, t, 0), n jN +1 = f j,N +1 (x, t, 0), n jN +k = ∂ 2k-2 fj,N+1 ∂ǫ 2k-2
(x, t, 0), d j1 = g j,1 (x, t, 0),

d jk = ∂ 2k-2 gj,1 ∂ǫ 2k-2 (x, t, 0), d jN +1 = g j,N +1 (x, t, 0), d jN +k = ∂ 2k-2 gj,N+1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N
The functions f and g are defined for 1 ≤ k ≤ N by :

f 4j+1,k = γ 4j-1 k sin A k , f 4j+2,k = γ 4j k cos A k , f 4j+3,k = -γ 4j+1 k sin A k , f 4j+4,k = -γ 4j+2 k cos A k , f 4j+1,N +k = γ 2N -4j-2 k cos A N +k , f 4j+2,N +k = -γ 2N -4j-3 k sin A N +k , f 4j+3,N +k = -γ 2N -4j-4 k cos A N +k , f 4j+4,k = γ 2N -4j-5 k sin A N +k , g 4j+1,k = γ 4j-1 k sin B k , g 4j+2,k = γ 4j k cos B k , g 4j+3,k = -γ 4j+1 k sin B k , g 4j+4,k = -γ 4j+2 k cos B k , g 4j+1,N +k = γ 2N -4j-2 k cos B N +k , g 4j+2,N +k = -γ 2N -4j-3 k sin B N +k , g 4j+3,N +k = -γ 2N -4j-4 k cos B N +k , g 4j+4,N +k = γ 2N -4j-5 k sin B N +k , (1) 
The arguments A ν and B ν of these functions are given for 1 ≤ ν ≤ 2N by

A ν = κ ν x/2 + iδ ν t -ix 3,ν /2 -ie ν /2, B ν = κ ν x/2 + iδ ν t -ix 1,ν /2 -ie ν /2. The terms κ ν , δ ν , γ ν are defined by 1 ≤ ν ≤ 2N κ j = 2 1 -λ 2 j , δ j = κ j λ j , γ j = 1-λj 1+λj , κ N +j = κ j , δ N +j = -δ j , γ N +j = 1/γ j , 1 ≤ j ≤ N, (2) 
where λ j are given for 1 ≤ j ≤ N by :

λ j = 1 -2j 2 ǫ 2 , λ N +j = -λ j . (3) 
The terms x r,ν (r = 3, 1) are defined for 1 ≤ ν ≤ 2N by :

x r,ν = (r -1) ln γν -i γν +i . (4) 
The parameters e ν are given by

e j = i N -1 k=1 ãj ǫ 2k+1 j 2k+1 - N -1 k=1 bj ǫ 2k+1 j 2k+1 , e N +j = i N -1 k=1 ãj ǫ 2k+1 j 2k+1 + N -1 k=1 bj ǫ 2k+1 j 2k+1 , 1 ≤ j ≤ N, (5) 
3 Quasi-rational solutions of order 12 with twenty two parameters

We have already explicitly constructed quasi rational solutions to NLS equation from order 2 until 11. We construct here deformations of the Peregrine breather P 12 of order 12 depending on 22 parameters. We do not give the analytic expression of the solution to NLS equation of order 12 with twenty two parameters. The computations were done using the computer algebra systems Maple and TRIP [START_REF] Gastineau | TRIP 1.3.8 : TRIP Reference manual[END_REF]. For simplicity, we denote

d 3 := det((n jk) j,k∈[1,2N ] ), d 1 := det((d jk) j,k∈[1,2N ] ).
The number of terms of the polynomials of the numerator d We construct figures to show deformations of the Peregrine breather of order 12. We get different types of symmetries in the plots in the (x, t) plane. We give some examples of this fact in the following discussion.

Peregrine breather of order 12

If we choose ãi = bi = 0 for 1 ≤ i ≤ 10, we obtain the classical eleventh Peregrine breather

Figure 1: Solution of NLS, N=12, all parameters equal to 0, Peregrine breather P 12 .

Variation of parameters

With other choices of parameters, we obtain all types of configurations : triangles and multiple concentric rings configurations with a maximum of 78 peaks. 

Conclusion

Among the various methods currently built to determine explicit solutions of the nonlinear Schrdinger equation, by using the transformations of Darboux [START_REF] Akhmediev | Rogue waves and rational solutions of nonlinear Schrödinger equation[END_REF][START_REF] Akhmediev | Rogue waves, rational solutions, the patterns of their zeros and integral relations[END_REF][START_REF] Guo | Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions[END_REF], the bilinear method of Hirota [START_REF] Ohta | General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation[END_REF], the ratio of special determinants [START_REF] Ling | Trajectory Characters of rogue waves[END_REF][START_REF] Gelash | Superregulier solitonic solutions : a novel scenario for the nonlinear stage of modulation instability[END_REF] or the wronskiens [START_REF] Dubard | On multi-rogue waves solutions of the NLS equation and positon solutions of the KdV equation[END_REF][START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF][START_REF] Gaillard | Multi-parametric deformations of the Peregrine breather of order N solutions to the NLS equation and multi-rogue waves[END_REF], the method presented in this text is the most effective.

We have constructed explicitly multiparametric solutions to the NLS equation of order 12 with 22 real parameters. The explicit representation in terms of polynomials of degree 156 in x and t is obtained. We cannot give its expression because of his length. It confirms the property about the shape of the breather in the (x, t) coordinates, the maximum of amplitude equal to 2N + 1 and the degree of polynomials in x and t here equal to N (N + 1). We obtained different patterns in the (x; t) plane by different choices of these parameters. So we obtain a classification of the rogue waves at order 12.

We obtain two types of patterns : the triangular shape and the concentric rings for the same index i for a i or b i non equals to 0.

In the cases a With the previous study, we can formulate the following conjectures about the structure of solutions to the NLS equation based on the parameters a j and b j ; we chose the convention that P 0 represent 0 peak. These conjectures are given under the hypothesis that only one parameter is not equal to 0 : at order N , for a 1 = 0 or b 1 = 0, the modulus of the solution to the NLS equation presents the configuration of a triangle with N (N + 1)/2 peaks; at order N , in the case 1 ≤ i ≤ [ N 2 ], for a N -i = 0 or b N -i = 0, the modulus of the solution to the NLS equation presents i concentric rings with 2N -2i + 1 peaks and in the center the P N -2i breather; at order N , in the case [ N 2 ] < i ≤ N -2, for a N -i = 0 or b N -i = 0, the modulus of the solution to the NLS equation presents n k rings of k(2N -2i + 1) peaks, for 1 ≤ k ≤ r, rn r (2N -2i + 1) < N (N + 1)/2) with in the center the P N -2i breather, verifying

r n k =1 n k k(2N -2i + 1) = 2iN -2i 2 + i.
It currently has many applications in various fields like nonlinear optics [START_REF] Kibler | The Peregrine soliton in nonlinear fibre optics[END_REF] or hydrodynamics [START_REF] Chabchoub | Super rogue waves : observation of a higher-order breather in water waves[END_REF]. We hope that this work will be able to lead to physical applications and to bring a better comprehension of the phenomenon of the rogue waves. It would be relevant to continue this study to try to classify them in the general case of order N (N > 11) and to prove the preceding conjectures.
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 2 Figure 2: Solution of NLS, N=12, ã1 = 10 3 : triangle with 78 peaks; on the right, sight from top.
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 3 Figure 3: Solution of NLS, N=12, b1 = 10 3 : triangle with 78 peaks; on the right, sight from top.
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 4 Figure 4: Solution of NLS, N=12, ã2 = 10 5 : 7 rings with 5, 10, 10, 10, 20, 10, 10,peaks on each of them with in the center P 2 ; on the right, sight from top.
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 5 Figure 5: Solution of NLS, N=12, b2 = 10 5 : 7 rings with 5, 10, 10, 10, 20, 10, 10,peaks on each of them with in the center P 2 ; on the right, sight from top.

Figure 6 :

 6 Figure 6: Solution of NLS, N=12, ã3 = 10 6 : 7 rings with 7, 14, 7, 21, 14, 7, 7 peaks with in the center P 1 ; on the right, sight from top.
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 7 Figure 7: Solution of NLS, N=12, b3 = 10 6 : 7 rings with 7, 14, 7, 21, 14, 7, 7 peaks with in the center P 1 ; on the right, sight from top.
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 8 Figure 8: Solution of NLS, N=12, ã4 = 10 8 : 6 rings with 9, 18, 9, 9, 19, 9 peaks, in the center P 3 ; on the right, sight from top.

Figure 9 :

 9 Figure 9: Solution of NLS, N=12, b4 = 10 8 : 6 rings with 9, 18, 9, 9, 19, 9 peaks, in the center P 3 ; on the right, sight from top.

Figure 10 :

 10 Figure 10: Solution of NLS, N=11, ã5 = 10 11 : 6 rings of 11, 11, 22, 11, 11, 11 peaks one peak in he center; on the right, sight from top.

Figure 11 :

 11 Figure 11: Solution of NLS, N=11, b5 = 10 11 : 6 rings of 11, 11, 22, 11, 11, 11 peaks one peak in he center; on the right, sight from top.

Figure 12 :

 12 Figure 12: Solution of NLS, N=12, ã6 = 10 13 : 6 rings with 13 peaks without peak in the center; on the right, sight of top.

Figure 13 :

 13 Figure 13: Solution of NLS, N=12, b6 = 10 13 : 6 rings with 13 peaks without peak in the center; on the right, sight of top.

Figure 14 :

 14 Figure 14: Solution of NLS, N=12, ã7 = 10 15 : 5 rings with 15 peaks and in the center the Peregrine breather of order 2; on the right, sight from top.

Figure 15 :

 15 Figure 15: Solution of NLS, N=12, ã7 = 10 15 : 5 rings with 15 peaks and in the center the Peregrine breather of order 2; on the right, sight from top.

Figure 16 :

 16 Figure 16: Solution of NLS, N=12, ã8 = 10 18 : 4 rings with 17 peaks and in the center the Peregrine breather of order 4; on the right, sight from top.

Figure 17 :

 17 Figure 17: Solution of NLS, N=12, b8 = 10 18 : 4 rings with 17 peaks and in the center the Peregrine breather of order 4; on the right, sight from top.

Figure 18 :

 18 Figure 18: Solution of NLS, N=10, ã9 = 10 20 : 3 rings with 19 peaks and in the center the Peregrine breather of order 6; on the right, sight from top.

Figure 19 :

 19 Figure 19: Solution of NLS, N=10, b9 = 10 20 : 3 rings with 19 peaks and in the center the Peregrine breather of order 6; on the right, sight from top.

Figure 20 :

 20 Figure 20: Solution of NLS, N=12, ã10 = 10 20 : two rings with 21 peaks and in the center the Peregrine breather of order 8; on the right, sight from top.

Figure 21 :

 21 Figure 21: Solution of NLS, N=12, b10 = 10 20 : two rings with 21 peaks and in the center the Peregrine breather of order 8; on the right, sight from top.

Figure 22 :

 22 Figure 22: Solution of NLS, N=12, ã11 = 10 20 : one ring with 23 peaks and in the center the Peregrine breather of order 10; on the right, sight from top.

Figure 23 :

 23 Figure 23: Solution of NLS, N=12, b11 = 10 20 : one ring with 23 peaks and in the center the Peregrine breather of order 10; on the right, sight from top.

  1 = 0 or b 1 = 0 we obtain triangles with a maximum of 78 peaks; for a 2 = 0 or b 2 = 0 , we have 7 rings with 5, 10, 10, 10, 20, 10, 10 peaks with in the center the Peregrine P 2 . For a 3 = 0 or b 3 = 0, we obtain 7 rings with 7, 14, 7, 21, 14, 7, 7 peaks with in the center one peak. For a 4 = 0 or b 4 = 0, we have 6 rings with 9, 18, 9, 9, 18, 9 peaks with in the center the Peregrine P 3 . For a 5 = 0 or b 5 = 0 , we have 6 rings of 11, 11, 22, 11, 11, 11 peaks with in the center, one peak. For a 6 = 0 or b 6 = 0 , we have 6 rings with 13 peaks on each of them without peak in the center. For a 7 = 0 or b 7 = 0 , we have 5 rings with 15 peaks on each of them and in the center the Peregrine breather of order 2. For a 8 = 0 or b 8 = 0, we have 4 rings with 17 peaks on each of them and in the center the Peregrine breather of order 4. For a 9 = 0 or b 9 = 0, we have 3 rings with 19 peaks and in the center the Peregrine breather of order 6. For a 10 = 0 or b 10 = 0, we have 2 rings with 21 peaks and in the center the Peregrine breather of order 8. At least, for a 11 = 0 or b 11 = 0, we have only one ring with 23 peaks and in the center the Peregrine breather of order 10.

  , b 1 , x, t) 1535989 d1(a 1 , b 1 , x, t) 777834 d3(a 2 , b 2 , x, t) 579793 d1(a 2 , b 2 , x, t) 293604 d3(a 3 , b 3 , x, t) 310973 d1(a 3 , b 3 , x, t) 157500 d3(a 4 , b 4 , x, t) 196817 d1(a 4 , b 4 , x, t) 99668 d3(a 5 , b 5 , x, t) 196817 d1(a 5 , b 5 , x, t) 70052 d3(a 6 , b 6 , x, t) 138317 d1(a 6 , b 6 , x, t) 52513 d3(a 7 , b 7 , x, t) 81416 d1(a 7 , b 7 , x, t) 41240 d3(a 8 , b 8 , x, t) 65909 d1(a 8 , b

	N=11	number of terms
	d3(a 1	

3 and denominator d 1 of the solutions are shown in the table below (Table 1) when other a i and b i are set to 0. 8 , x, t) 33334 d3(a 9 , b 9 , x, t) 52787 d1(a 9 , b 9 , x, t) 26728 d3(a 10 , b 10 , x, t) 38627 d1(a 10 , b 10 , x, t) 19547 d3(a 11 , b 10 , x, t) 21558 d1(a 11 , b 10 , x, t) 10908 Table 1: Number of terms for the polynomials d 3 and d 1 of the solutions of the NLS equation.