Model Checking with Fly-Automata

Bruno Courcelle, Irène Durand

To cite this version:

Bruno Courcelle, Irène Durand. Model Checking with Fly-Automata. Ming-Yang Kao Encyclopedia of Algorithms, second edition., Chapitre 20, 2015, 978-3-642-27848-8. 10.1007/978-3-642-27848-8_692-

1. hal-01299432

HAL Id: hal-01299432
https://hal.science/hal-01299432
Submitted on 7 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Model-checking with fly-automata

Bruno Courcelle, Irène Durand
Bordeaux University, LaBRI, CNRS
courcell@labri.fr idurand@labri

Key words :

Model-checking; monadic second-order logic; tree-width; clique-width; fixed parameter tractable algorithm; automaton on terms; fly-automaton.

Problem definition

The verification of monadic second-order (MSO) graph properties, equivalently, the model-checking problem for MSO logic over finite binary relational structures, is fixed-parameter tractable (FPT) for the parameter consisting of the formula that expresses the property and the tree-width or the clique-width of the input graph or structure. How to build usable algorithms for this problem ? The proof of the general theorem (an algorithmic meta-theorem, cf. [12]) is based on the description of the inputs by algebraic terms and the construction of finite automata that accepts the terms describing the satisfying inputs. But these automata are in practice much too large to be constructed [11, 14]. A typical number of states is $2^{2^{10}}$ and lower-bounds match this number. Can one use automata and overcome this difficulty?

Key results

We propose to use fly-automata (FA) [3]. They are automata whose states are described and not listed, and whose transitions are computed on the fly and not tabulated. When running on a term of size 1000 , a fly-automaton with $2^{2^{10}}$ states computes only 1000 transitions if it is deterministic. FA can have infinitely many states. For example, a state can record, among other things, the (unbounded)
number of occurrences of a particular symbol in the input term. FA can thus check certain graph properties that are not monadic second-order expressible. An example is regularity, the fact that all vertices have the same degree. Furthermore, an FA equipped with an output function that maps the set of accepting states to an effectively given domain \mathcal{D} can compute a value, for example the number of k-colorings of the given graph G, or the minimum cardinality of one of the k color classes if G is k-colorable (this number measures how close is this graph to be $(k-1)$-colorable). We have implemented and tested an FA that computes the number of 3 -colorings of a graph.

Tree-width and clique-width are graph complexity measures that serve as parameters in many FPT algorithms [7, 8, 10]. Both are based on hierachical decompositions of graphs that can be expressed by terms written with the operation symbols of appropriate graph algebras [6]. The model-checking automata take such terms as inputs. We will present results concerning graphs of bounded clique-width. The similar results for graphs of bounded tree-width reduce to them as we will explain at the end of this section.

Graphs and monadic second-order logic

Graphs are finite, undirected, without loops and multiple edges. The extension to directed graphs, possibly with loops and/or labels is straightforward. A graph G is identified with the relational structure $\left\langle V_{G}, e d g_{G}\right\rangle$ where $e d g_{G}$ is a binary symmetric relation representing adjacency.

Rather than giving a formal definition of monadic second-order (MSO) logic, we present the closed formula expressing 3 -colorability (an NP-complete property). It is $\exists X, Y . \operatorname{Col}(X, Y)$ where $\operatorname{Col}(X, Y)$ is the formula

$$
\begin{aligned}
& X \cap Y=\emptyset \wedge \forall u, v \cdot\{e d g(u, v) \Longrightarrow \\
& \quad[\neg(u \in X \wedge v \in X) \wedge \neg(u \in Y \wedge v \in Y) \wedge \neg(u \notin X \cup Y \wedge v \notin X \cup Y)]\} .
\end{aligned}
$$

This formula expresses that X, Y and $V_{G}-(X \cup Y)$ are the three color classes of a 3 -coloring. The corresponding colors are respectively 1,2 and 3 .

Definition 1 : The graph algebra \mathcal{G}
(a) We will use \mathbb{N}_{+}as a set of labels called port labels. A p-graph is a triple $G=\left\langle V_{G}, e d g_{G}, \pi_{G}\right\rangle$ where π_{G} is a mapping : $V_{G} \rightarrow \mathbb{N}_{+}$. If $\pi_{G}(x)=a$, we say that x is an a-port. The set $\pi(G)$ of port labels of G is its type. By using a default label, say 1 , we make every nonempty graph into a p-graph of type $\{1\}$.
(b) We let F_{k} be the following finite set of operations on p-graphs of type included in $C:=\{1, \ldots, k\} \subseteq \mathbb{N}_{+}$:

- the binary symbol \oplus denotes the union of two disjoint p-graphs,
- the unary symbol relab ${ }_{a \rightarrow b}$ denotes the relabelling that changes every port label a into b (where $a, b \in C$),
- the unary symbol $a d d_{a, b}$, for $a<b, a, b \in C$, denotes the edge-addition that adds an edge between every a-port x and every b-port y (unless there is already an edge between them; our graphs have no multiple edges),
- for each $a \in C$, the nullary symbol a denotes an isolated a-port.
(c) Every term t in $T\left(F_{k}\right)$ (the set of finite terms written with F_{k}) is called a k-expression. Its value is a p-graph, $\operatorname{val}(t)$, that we now define. For each position u of t (equivalently, each node u of the syntax tree of t) we define a p-graph $\operatorname{val}(t) / u$, whose vertex set is the set of leaves of t below u. The definition of $\operatorname{val}(t) / u$ is, for fixed t, by bottom-up induction on u :
- If u is an occurrence of \mathbf{a}, then $\operatorname{val}(t) / u$ has vertex u as an a-port and no edge,
- if u is an occurrence of \oplus with sons u_{1} and u_{2}, then $\operatorname{val}(t) / u:=$ $\operatorname{val}(t) / u_{1} \oplus \operatorname{val}(t) / u_{2}$, (note that $\operatorname{val}(t) / u_{1}$ and $\operatorname{val}(t) / u_{2}$ are disjoint),
- if u is an occurrence of $\operatorname{relab}_{a \rightarrow b}$ with son u_{1}, then $\operatorname{val}(t) / u:=\operatorname{relab}_{a \rightarrow b}\left(v a l(t) / u_{1}\right)$,
- if u is an occurrence of $a d d_{a, b}$ with son u_{1}, then $\operatorname{val}(t) / u:=a d d_{a, b}\left(\operatorname{val}(t) / u_{1}\right)$.

Finally, $\operatorname{val}(t):=\operatorname{val}(t) /$ root $_{t}$. Its vertex set is the set of all leaves (occurrences of nullary symbols). For an example, let

$$
t:=a d d_{b, c}^{1}\left(a d d_{a, b}^{2}\left(\mathbf{a}^{3} \oplus^{4} \mathbf{b}^{5}\right) \oplus^{6} \operatorname{relab}_{b \rightarrow c}^{7}\left(a d d_{a, b}^{8}\left(\mathbf{a}^{9} \oplus^{10} \mathbf{b}^{11}\right)\right)\right)
$$

where the superscripts 1 to 11 number the positions of t. The p-graph $\operatorname{val}(t)$ is $3_{a}-5_{b}-11_{c}-9_{a}$ where the subscripts a, b, c indicate the port labels. (For clarity, port labels are letters in examples). If $u:=2$ and $w:=8$, then $t / u=$ $t / w=a d d_{a, b}(\mathbf{a} \oplus \mathbf{b})$, however, $\operatorname{val}(t) / u$ is the p-graph $3_{a}-5_{b}$ and $\operatorname{val}(t) / w$ is $9_{a}-11_{b}$, isomorphic to $\operatorname{val}(t) / u$.
(d) The clique-width of a graph G, denoted by $\operatorname{cwd}(G)$, is the least integer k such that G is isomorphic to $\operatorname{val}(t)$ for some t in $T\left(F_{k}\right)$. We denote by \mathcal{G}_{k} the set $\operatorname{val}\left(T\left(F_{k}\right)\right)$ of p-graphs that are the value of a term over F_{k}. We let F be the union of the sets F_{k}, and \mathcal{G} be the union of the sets \mathcal{G}_{k}. Every p-graph is isomorphic to a graph in \mathcal{G}, hence, has a clique-width.
(e) An F-congruence is an equivalence relation \approx on p-graphs such that:

- two isomorphic p-graphs are equivalent, and
- if $G \approx G^{\prime}$ and $H \approx H^{\prime}$, then $G \oplus H \approx G^{\prime} \oplus H^{\prime}, a d d_{a, b}(G) \approx a d d_{a, b}\left(G^{\prime}\right)$
and $\operatorname{relab}_{a \rightarrow b}(G) \approx \operatorname{relab}_{a \rightarrow b}\left(G^{\prime}\right)$.
(f) A set of graphs L is recognizable if there exists an F-congruence such that, for each finite type $C \subseteq \mathbb{N}_{+}$, the number of equivalence classes of p-graphs of type C is finite.

Definition 2: Fly-automata.
(a) Let H be a finite or countable, effectively given, signature. A fly-automaton over H (in short, an $F A$ over H) is a 4 -tuple $\mathcal{A}=\left\langle H, Q_{\mathcal{A}}, \delta_{\mathcal{A}}, A c c_{\mathcal{A}}\right\rangle$ such that $Q_{\mathcal{A}}$ is the finite or countable, effectively given set of states, $A c c_{\mathcal{A}}$ is the set of accepting states, a decidable subset of $Q_{\mathcal{A}}$, and $\delta_{\mathcal{A}}$ is a computable function that defines the transition rules: for each tuple $\left(f, q_{1}, \ldots, q_{m}\right)$ with $q_{1}, \ldots, q_{m} \in Q_{\mathcal{A}}$, $f \in H, \rho(f)=m \geq 0, \delta_{\mathcal{A}}\left(f, q_{1}, \ldots, q_{m}\right)$ is a finite set of states. We write $f\left[q_{1}, \ldots, q_{m}\right] \rightarrow q$ (and $f \rightarrow q$ if f is nullary) to mean that $q \in \delta_{\mathcal{A}}\left(f, q_{1}, \ldots, q_{m}\right)$. We say that \mathcal{A} is finite if F and $Q_{\mathcal{A}}$ are finite.
(b) Runs and recognized languages are defined as usual, see [1]. A deterministic $\mathrm{FA} \mathcal{A}$ (by "deterministic" we mean "deterministic and complete") has a unique run on each term t and $q_{\mathcal{A}}(t)$ is the state reached at the root of t. The mapping $q_{\mathcal{A}}$ is computable and the membership in $L(\mathcal{A})$ of a term $t \in T(H)$ is decidable.
(c) Every FA \mathcal{A} that is not deterministic can be determinized by an easy extension of the usual construction, see [3]; it is important that the sets $\delta_{\mathcal{A}}\left(f, q_{1}, \ldots, q_{m}\right)$ be finite.
(d) A deterministic FA over H with output function is a 4-tuple $\mathcal{A}=\left\langle H, Q_{\mathcal{A}}, \delta_{\mathcal{A}}\right.$, Out $\left._{\mathcal{A}}\right\rangle$ that is a deterministic FA where $A c c_{\mathcal{A}}$ is replaced by a total and computable output function Out $_{\mathcal{A}}: Q_{\mathcal{A}} \rightarrow \mathcal{D}$ such that \mathcal{D} is an effectively given domain. The function computed by \mathcal{A} is $\operatorname{Comp}(\mathcal{A}): T(H) \rightarrow \mathcal{D}$ such that $\operatorname{Comp}(\mathcal{A})(t):=$ Out $_{\mathcal{A}}\left(q_{\mathcal{A}}(t)\right)$.

Example 1: The number of accepting runs of an automaton.

Let $\mathcal{A}=\left\langle H, Q_{\mathcal{A}}, \delta_{\mathcal{A}}, A c c_{\mathcal{A}}\right\rangle$ be a nondeterminisic FA. We construct a deterministic FA \mathcal{B} that computes the number of accepting runs of \mathcal{A} on any term in $T(H)$. As set of states $Q_{\mathcal{B}}$, we take the set of finite subsets of $Q_{\mathcal{A}} \times \mathbb{N}_{+}$. The transitions are defined so that \mathcal{B} reaches state α at the root of $t \in T(H)$ if and only if α is the finite set of pairs $(q, n) \in Q_{\mathcal{A}} \times \mathbb{N}_{+}$such that n is the number of runs of \mathcal{A} that reach state q at its root. This number is finite and α can be seen as a partial function: $Q_{\mathcal{A}} \rightarrow \mathbb{N}_{+}$having a finite domain. For a symbol f of arity $2, \mathcal{B}$ has the transition : $f[\alpha, \beta] \rightarrow \gamma$ where γ is the set of pairs (q, n) such that n is the sum of the integers $n_{p} . n_{r}$ over all pairs $(p, r) \in Q_{\mathcal{A}} \times Q_{\mathcal{A}}$ such that $\left(p, n_{p}\right) \in \alpha,\left(r, n_{r}\right) \in \beta$ and $q \in \delta_{\mathcal{A}}(f, p, r)$. The transitions for other symbols are defined similarly. The function $O u t_{\mathcal{A}}$ maps a state α to the sum of the integers n such that $(q, n) \in \alpha \cap\left(A c c_{\mathcal{A}} \times \mathbb{N}_{+}\right)$.

Example 2: An FA for checking 3-colorability.

In order to construct an FA that accepts the terms $t \in T(F)$ such that $\operatorname{val}(t)$ is 3-colorable, we first construct an FA \mathcal{A} for the property $\operatorname{Col}(X, Y)$. For this purpose, we transform F into $F^{(2)}$ by replacing each nullary symbol a by the four nullary symbols $(\mathbf{a}, i j), i, j \in\{0,1\}$. A term $t \in T\left(F^{(2)}\right)$ defines, first, the graph $\operatorname{val}\left(t^{\prime}\right)$ where t^{\prime} is obtained from t by removing the Booleans i, j from the nullary symbols and, second, the pair $\left(V_{X}, V_{Y}\right)$ such that V_{X} is the set of vertices u (leaves of t) that are occurrences of $(\mathbf{a}, 1 j)$ for some \mathbf{a} and j, and V_{Y} is the set of those that are occurrences of $(\mathbf{a}, i 1)$ for some \mathbf{a} and i. The set of terms $t \in T\left(F^{(2)}\right)$ such that $\operatorname{Col}\left(V_{X}, V_{Y}\right)$ holds in $\operatorname{val}\left(t^{\prime}\right)$ is defined by a determinitic FA \mathcal{A} than we now specify. Its states are Error and the nonempty subsets of $C \times\{1,2,3\}$. Their meanings are as follows:

- at position u of t, the automaton reaches state Error if and only if $\operatorname{val}\left(t^{\prime}\right) / u$ has a vertex in $V_{X} \cap V_{Y}$ or an edge between two vertices, either both in V_{X}, or both in V_{Y}, or both in $V_{G}-\left(V_{X} \cup V_{Y}\right)$, hence of same color, respectively 1,2 or 3 ;
- it reaches state $\alpha \subseteq C \times\{1,2,3\}$ if and only if these conditions do not hold and α is the set of pairs (a, i) such that $v a l\left(t^{\prime}\right) / u$ has an a-port of color i.

All states except Error are accepting. Here are the transitions of \mathcal{A} :

$$
(\mathbf{a}, 00) \rightarrow\{(a, 3)\},(\mathbf{a}, 10) \rightarrow\{(a, 1)\},(\mathbf{a}, 01) \rightarrow\{(a, 2)\},(\mathbf{a}, 11) \rightarrow \text { Error. }
$$

For $\alpha, \beta \subseteq C \times\{1,2,3\}, \mathcal{A}$ has transitions :
$\oplus[\alpha, \beta] \rightarrow \alpha \cup \beta$,

$a d d_{a, b}[\alpha] \rightarrow \alpha$, otherwise,
rela $b_{a \rightarrow b}[\alpha] \rightarrow \beta$, obtained by replacing a by b in each pair of α.
Its other transitions are $\oplus[\alpha, \beta] \rightarrow$ Error if α or β is Error, add $d_{a, b}[$ Error $] \rightarrow$ Error and relab $a_{a \rightarrow b}[$ Error $] \rightarrow$ Error.

This FA checks $\operatorname{Col}(X, Y)$. To check, $\exists X, Y . \operatorname{Col}(X, Y)$, we build a nondeterministic FA \mathcal{B} by deleting the state Error, by replacing the first three rules of \mathcal{A} by $\mathbf{a} \rightarrow\{(a, 3)\}, \mathbf{a} \rightarrow\{(a, 1)\}, \mathbf{a} \rightarrow\{(a, 2)\}$ and by deleting those that yield Error. All states are accepting but on some terms, no run can reach the root, and these terms are rejected. Furthermore, the construction of Example 1 shows how to make \mathcal{B} into a deterministic FA that computes the number of 3 -colorings, because the 3 -colorings of $\operatorname{val}(t)$ are in bijection with the accepting runs of \mathcal{B} on $t . \square$

Recognizability Theorem : The set of graphs that satisfy a closed MSO formula φ is F-recognizable.

Weak Recognizability Theorem : For every closed MSO formula φ, for every k, the set of graphs in \mathcal{G}_{k} that satisfy φ is F_{k}-recognizable.

Proofs: The Recognizability Theorem is Theorem 5.68 of [6]. Its proof shows that the equivalence defined by the fact that the two considered p-graphs have the same type and satisfy the same closed MSO formulas of quantifier-height at most that of φ satisfies the conditions of Definition 1(f). (These formulas have unary predicates for expressing port labels). The Weak Recognizability Theorem follows from the former one. It can be proved directely by constructing an FA over F [3]. (We construct a single FA, not a particular FA for each subsignature F_{k} as in Theorem 6.35 of [6]). This construction can be implemented, at least in a number of nontrivial cases. The proof of the strong theorem does not provide any usable automaton.

Counting and optimizing automata

Let $P\left(X_{1}, \ldots, X_{s}\right)$ be an MSO property of vertex sets X_{1}, \ldots, X_{s}. We denote $\left(X_{1}, \ldots, X_{s}\right)$ by \bar{X} and $t \models P(\bar{X})$ means that \bar{X} satisfies P in the graph $\operatorname{val}(t)$ defined by a term t. We are interested, not only to check the validity of $\exists \bar{X} . P(\bar{X})$, but also to compute from a term t the following values:
$\# \bar{X} \cdot P(\bar{X})$, defined as the number of assignments \bar{X} such that $t \models P(\bar{X})$, $\operatorname{Sp} \bar{X} . P(\bar{X})$, the spectrum of $P(\bar{X})$, defined as the set of tuples of the form $\left(\left|X_{1}\right|, \ldots,\left|X_{s}\right|\right)$ such that $t \models P(\bar{X})$, $\operatorname{MSp} \bar{X} . P(\bar{X})$, the multispectrum of $P(\bar{X})$, defined as the multiset of tuples $\left(\left|X_{1}\right|, \ldots,\left|X_{s}\right|\right)$ such that $t \models P(\bar{X})$.

These computations can be done by FA. The construction for $\# \bar{X} \cdot P(\bar{X})$ is based on Example 1. We obtain in this way FPT or XP algorithms $[8,10]$.

Edge set quantifications and tree-width.
The two recognizability theorems and the corresponding constructions of FA yielding FPT and XP algorithms hold and can be done for graphs of bounded tree-width and MSO formulas with edge set quantifications: it suffices to replace a graph G by its incidence graph $\operatorname{Inc}(G)$, a bipartite graph whose vertices are those of G and its edges, to observe that the clique-width of $\operatorname{Inc}(G)$ is bounded in terms of the tree-width of G, and that an MSO formula with edge set quantifications over G can be translated into an MSO formula over $\operatorname{Inc}(G)$. Another approach is in [2].

Beyond MS logic

The property that the considered graph is the union of two disjoint regular graphs with possibly some edges between these two subgraphs is not MSO expressible but can be checked by an FA. An FA can also compute the minimal number of edges between X and $V_{G}-X$ such that $G[X]$ and $G\left[V_{G}-X\right]$ are connected, when such a set X exists.

Open problems

The parsing problem for graphs of clique-width at most k is NP-complete (with k in the input) [9]. Good heuristics remain to be developped.

Experimental results

These constructions have been implemented and tested [3-5]. We have computed the number of optimal colorings of graphs of clique-width at most 8 for which the chromatic polynomial is known, which allows to verify the correctness of the automaton. We can verify in, respectively, 35 and 105 minutes that the 20×20 and the 6×60 grids are 3 -colorable. In 29 minutes, we can verify that the McGee graph (24 vertices) given by a term over F_{10} is acyclically 3 -colorable.

Recommend reading.

A different approach using games is presented in [13].

References

1. H. Comon et al., Tree automata techniques and applications, 2007, http://tata.gforge.inria.fr/
2. B. Courcelle, On the model-checking of monadic second-order formulas with edge set quantifications, Discrete Applied Mathematics 160 (2012) 866-887.
3. B. Courcelle and I. Durand, Automata for the verification of monadic second-order graph properties, J. Applied Logic 10 (2012) 368-409.
4. B. Courcelle and I. Durand, Computations by fly-automata beyond monadic second-order logic, submitted for publication, 2013, http://arxiv.org/abs/1305.7120.
5. B. Courcelle, I. Durand: Model-checking by infinite fly-automata. Proceedings of the 5th Conference on Algebraic Informatics, Lecture Notes in Computer Science, vol. 8080 (2013) 211-222.
6. B. Courcelle and J. Engelfriet, Graph structure and monadic second-order logic, a language theoretic approach, vol. 138 of Encyclopedia of Mathematics and its Application, Cambridge University Press, June 2012.
7. B. Courcelle, J. Makowsky and U. Rotics, Linear-time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst. 33 (2000) 125-150.
8. R. Downey and M. Fellows, Parameterized complexity, Springer-Verlag, 1999.
9. M. Fellows, F. Rosamond, U. Rotics and S. Szeider, Clique-Width is NP-Complete, SIAM Journal on Discrete Mathematics, 23 (2009) 909-939.
10. J. Flum and M. Grohe, Parametrized complexity theory, Springer, 2006.
11. M. Frick and M. Grohe, The complexity of first-order and monadic second-order logic revisited, Ann. Pure Appl. Logic 130 (2004) 3-31.
12. M. Grohe and S. Kreutzer, Model Theoretic Methods in Finite Combinatorics, in M. Grohe, J. Makowsky (eds), Contemporary Mathematics 558, American Mathematical Society, 2011, pp. 181-206.
13. J. Kneis, A. Langer, P. Rossmanith: Courcelle's theorem - A game-theoretic approach. Discrete Optimization 8 (2011) 568-594.
14. K. Reinhardt, The complexity of translating logic to finite automata, in Automata, logics, and infinite games: a guide to current research, E. Graedel et al. eds., Lecture Notes in Computer Scienc, vol. 2500 (2002) 231-238.
