
HAL Id: hal-01299432
https://hal.science/hal-01299432

Submitted on 7 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Checking with Fly-Automata
Bruno Courcelle, Irène Durand

To cite this version:
Bruno Courcelle, Irène Durand. Model Checking with Fly-Automata. Ming-Yang Kao Encyclopedia of
Algorithms, second edition., Chapitre 20, 2015, 978-3-642-27848-8. �10.1007/978-3-642-27848-8_692-
1�. �hal-01299432�

https://hal.science/hal-01299432
https://hal.archives-ouvertes.fr

Model-checking with fly-automata

Bruno Courcelle, Irène Durand
Bordeaux University, LaBRI, CNRS

courcell@labri.fr
idurand@labri

Key words :

Model-checking; monadic second-order logic; tree-width; clique-width; fixed pa-
rameter tractable algorithm; automaton on terms; fly-automaton.

Problem definition

The verification of monadic second-order (MSO) graph properties, equivalently,
the model-checking problem for MSO logic over finite binary relational struc-
tures, is fixed-parameter tractable (FPT) for the parameter consisting of the
formula that expresses the property and the tree-width or the clique-width of
the input graph or structure. How to build usable algorithms for this problem
? The proof of the general theorem (an algorithmic meta-theorem, cf. [12]) is
based on the description of the inputs by algebraic terms and the construction
of finite automata that accepts the terms describing the satisfying inputs. But
these automata are in practice much too large to be constructed [11,14]. A typ-

ical number of states is 22
10

and lower-bounds match this number. Can one use
automata and overcome this difficulty ?

Key results

We propose to use fly-automata (FA) [3]. They are automata whose states are
described and not listed, and whose transitions are computed on the fly and not
tabulated. When running on a term of size 1000, a fly-automaton with 22

10

states
computes only 1000 transitions if it is deterministic. FA can have infinitely many
states. For example, a state can record, among other things, the (unbounded)

number of occurrences of a particular symbol in the input term. FA can thus
check certain graph properties that are not monadic second-order expressible. An
example is regularity, the fact that all vertices have the same degree. Further-
more, an FA equipped with an output function that maps the set of accepting
states to an effectively given domain D can compute a value, for example the
number of k-colorings of the given graph G, or the minimum cardinality of one
of the k color classes if G is k-colorable (this number measures how close is this
graph to be (k − 1)-colorable). We have implemented and tested an FA that
computes the number of 3-colorings of a graph.

Tree-width and clique-width are graph complexity measures that serve as
parameters in many FPT algorithms [7, 8, 10]. Both are based on hierachical
decompositions of graphs that can be expressed by terms written with the oper-
ation symbols of appropriate graph algebras [6]. The model-checking automata
take such terms as inputs. We will present results concerning graphs of bounded
clique-width. The similar results for graphs of bounded tree-width reduce to
them as we will explain at the end of this section.

Graphs and monadic second-order logic

Graphs are finite, undirected, without loops and multiple edges. The exten-
sion to directed graphs, possibly with loops and/or labels is straightforward. A
graph G is identified with the relational structure �VG, edgG� where edgG is a
binary symmetric relation representing adjacency.

Rather than giving a formal definition of monadic second-order (MSO) logic,
we present the closed formula expressing 3-colorability (an NP-complete prop-
erty). It is ∃X,Y.Col(X,Y) where Col(X,Y) is the formula

X ∩ Y = ∅ ∧ ∀u, v.{edg(u, v) =⇒
[¬(u ∈ X∧v ∈ X)∧¬(u ∈ Y ∧v ∈ Y)∧¬(u /∈ X∪Y ∧v /∈ X∪Y)]}.

This formula expresses that X,Y and VG−(X∪Y) are the three color classes
of a 3-coloring. The corresponding colors are respectively 1, 2 and 3.

Definition 1 : The graph algebra G
(a) We will use N+ as a set of labels called port labels. A p-graph is a triple

G = �VG, edgG, πG� where πG is a mapping : VG → N+. If πG(x) = a, we say
that x is an a-port. The set π(G) of port labels of G is its type. By using a default
label, say 1, we make every nonempty graph into a p-graph of type {1}.

(b) We let Fk be the following finite set of operations on p-graphs of type
included in C := {1, ..., k} ⊆ N+ :

• the binary symbol ⊕ denotes the union of two disjoint p-graphs,
• the unary symbol relaba→b denotes the relabelling that changes every
port label a into b (where a, b ∈ C),
• the unary symbol adda,b, for a < b, a, b ∈ C, denotes the edge-addition

that adds an edge between every a-port x and every b-port y (unless
there is already an edge between them; our graphs have no multiple
edges),
• for each a ∈ C, the nullary symbol a denotes an isolated a-port.

2

(c) Every term t in T (Fk) (the set of finite terms written with Fk) is called a
k-expression. Its value is a p-graph, val(t), that we now define. For each position
u of t (equivalently, each node u of the syntax tree of t) we define a p-graph
val(t)/u, whose vertex set is the set of leaves of t below u. The definition of
val(t)/u is, for fixed t, by bottom-up induction on u:

• If u is an occurrence of a, then val(t)/u has vertex u as an a-port and
no edge,
• if u is an occurrence of ⊕ with sons u1 and u2, then val(t)/u :=
val(t)/u1 ⊕ val(t)/u2, (note that val(t)/u1 and val(t)/u2 are disjoint),
• if u is an occurrence of relaba→b with son u1, then val(t)/u := relaba→b(val(t)/u1),
• if u is an occurrence of adda,b with son u1, then val(t)/u := adda,b(val(t)/u1).

Finally, val(t) := val(t)/roott. Its vertex set is the set of all leaves (occur-
rences of nullary symbols). For an example, let

t := add1b,c(add
2
a,b(a

3 ⊕4 b5)⊕6 relab7b→c(add
8
a,b(a

9 ⊕10 b11)))

where the superscripts 1 to 11 number the positions of t. The p-graph val(t)
is 3a − 5b − 11c − 9a where the subscripts a, b, c indicate the port labels. (For
clarity, port labels are letters in examples). If u := 2 and w := 8, then t/u =
t/w = adda,b(a ⊕ b), however, val(t)/u is the p-graph 3a − 5b and val(t)/w is
9a − 11b, isomorphic to val(t)/u.

(d) The clique-width of a graph G, denoted by cwd(G), is the least integer k
such that G is isomorphic to val(t) for some t in T (Fk). We denote by Gk the
set val(T (Fk)) of p-graphs that are the value of a term over Fk. We let F be
the union of the sets Fk, and G be the union of the sets Gk. Every p-graph is
isomorphic to a graph in G, hence, has a clique-width.

(e) An F-congruence is an equivalence relation ≈ on p-graphs such that:

• two isomorphic p-graphs are equivalent, and
• if G ≈ G′ and H ≈ H ′, then G⊕H ≈ G′⊕H ′, adda,b(G) ≈ adda,b(G

′)
and relaba→b(G) ≈ relaba→b(G′).

(f) A set of graphs L is recognizable if there exists an F -congruence such
that, for each finite type C ⊆ N+, the number of equivalence classes of p-graphs
of type C is finite.

Definition 2: Fly-automata.

(a) LetH be a finite or countable, effectively given, signature. A fly-automaton

over H (in short, an FA over H) is a 4-tuple A = �H,QA, δA,AccA� such that
QA is the finite or countable, effectively given set of states, AccA is the set of
accepting states, a decidable subset of QA, and δA is a computable function that
defines the transition rules: for each tuple (f, q1, . . . , qm) with q1, . . . , qm ∈ QA,
f ∈ H, ρ(f) = m ≥ 0, δA(f, q1, . . . , qm) is a finite set of states. We write
f [q1, . . . , qm]→ q (and f → q if f is nullary) to mean that q ∈ δA(f, q1, . . . , qm).
We say that A is finite if F and QA are finite.

3

(b) Runs and recognized languages are defined as usual, see [1]. A determin-

istic FA A (by "deterministic" we mean "deterministic and complete") has a
unique run on each term t and qA(t) is the state reached at the root of t. The
mapping qA is computable and the membership in L(A) of a term t ∈ T (H) is
decidable.

(c) Every FA A that is not deterministic can be determinized by an easy ex-
tension of the usual construction, see [3]; it is important that the sets δA(f, q1, . . . , qm)
be finite.

(d) A deterministic FA overH with output function is a 4-tupleA = �H,QA, δA,OutA�
that is a deterministic FA where AccA is replaced by a total and computable
output function OutA: QA →D such that D is an effectively given domain. The
function computed by A is Comp(A) : T (H) → D such that Comp(A)(t) :=
OutA(qA(t)).

Example 1 : The number of accepting runs of an automaton.

Let A = �H,QA, δA,AccA� be a nondeterminisic FA. We construct a deter-
ministic FA B that computes the number of accepting runs of A on any term in
T (H). As set of states QB, we take the set of finite subsets of QA × N+. The
transitions are defined so that B reaches state α at the root of t ∈ T (H) if and
only if α is the finite set of pairs (q, n) ∈ QA × N+ such that n is the number
of runs of A that reach state q at its root. This number is finite and α can be
seen as a partial function : QA → N+ having a finite domain. For a symbol f of
arity 2, B has the transition : f [α, β]→ γ where γ is the set of pairs (q, n) such
that n is the sum of the integers np.nr over all pairs (p, r) ∈ QA×QA such that
(p, np) ∈ α, (r, nr) ∈ β and q ∈ δA(f, p, r). The transitions for other symbols are
defined similarly. The function OutA maps a state α to the sum of the integers
n such that (q, n) ∈ α ∩ (AccA ×N+).�

Example 2 : An FA for checking 3-colorability.

In order to construct an FA that accepts the terms t ∈ T (F) such that val(t)
is 3-colorable, we first construct an FA A for the property Col(X,Y). For this
purpose, we transform F into F (2) by replacing each nullary symbol a by the
four nullary symbols (a, ij), i, j ∈ {0, 1}. A term t ∈ T (F (2)) defines, first, the
graph val(t′) where t′ is obtained from t by removing the Booleans i, j from the
nullary symbols and, second, the pair (VX , VY) such that VX is the set of vertices
u (leaves of t) that are occurrences of (a, 1j) for some a and j, and VY is the
set of those that are occurrences of (a, i1) for some a and i. The set of terms
t ∈ T (F (2)) such that Col(VX , VY) holds in val(t′) is defined by a determinitic
FA A than we now specify. Its states are Error and the nonempty subsets of
C × {1, 2, 3}. Their meanings are as follows:

• at position u of t, the automaton reaches state Error if and only if
val(t′)/u has a vertex in VX ∩VY or an edge between two vertices, either
both in VX , or both in VY , or both in VG − (VX ∪ VY), hence of same
color, respectively 1,2 or 3;

4

• it reaches state α ⊆ C ×{1, 2, 3} if and only if these conditions do not
hold and α is the set of pairs (a, i) such that val(t′)/u has an a-port of
color i.

All states except Error are accepting. Here are the transitions of A:

(a, 00)→ {(a, 3)}, (a, 10)→ {(a, 1)}, (a, 01)→ {(a, 2)}, (a, 11)→ Error.

For α, β ⊆ C × {1, 2, 3}, A has transitions :

⊕[α, β]→ α ∪ β,
adda,b[α]→ Error, if (a, i) and (b, i) belong to α for some i = 1, 2, 3,
adda,b[α]→ α, otherwise,
relaba→b[α]→ β, obtained by replacing a by b in each pair of α.

Its other transitions are ⊕[α, β]→ Error if α or β is Error, adda,b[Error]→
Error and relaba→b[Error]→ Error.

This FA checks Col(X,Y). To check, ∃X,Y.Col(X,Y), we build a nondeter-
ministic FA B by deleting the state Error, by replacing the first three rules of
A by a → {(a, 3)},a → {(a, 1)},a → {(a, 2)} and by deleting those that yield
Error. All states are accepting but on some terms, no run can reach the root,
and these terms are rejected. Furthermore, the construction of Example 1 shows
how to make B into a deterministic FA that computes the number of 3-colorings,
because the 3-colorings of val(t) are in bijection with the accepting runs of B on
t.�

Recognizability Theorem : The set of graphs that satisfy a closed MSO
formula ϕ is F -recognizable.

Weak Recognizability Theorem : For every closed MSO formula ϕ, for
every k, the set of graphs in Gk that satisfy ϕ is Fk-recognizable.

Proofs: The Recognizability Theorem is Theorem 5.68 of [6]. Its proof shows
that the equivalence defined by the fact that the two considered p-graphs have
the same type and satisfy the same closed MSO formulas of quantifier-height at
most that of ϕ satisfies the conditions of Definition 1(f). (These formulas have
unary predicates for expressing port labels). The Weak Recognizability Theorem
follows from the former one. It can be proved directely by constructing an FA
over F [3]. (We construct a single FA, not a particular FA for each subsignature
Fk as in Theorem 6.35 of [6]). This construction can be implemented, at least in
a number of nontrivial cases. The proof of the strong theorem does not provide
any usable automaton.

Counting and optimizing automata

Let P (X1, ...,Xs) be an MSO property of vertex sets X1, ...,Xs. We denote
(X1, ...,Xs) by X and t |= P (X) means that X satisfies P in the graph val(t)
defined by a term t. We are interested, not only to check the validity of ∃X.P (X),
but also to compute from a term t the following values:

5

#X.P (X), defined as the number of assignments X such that t |= P (X),
SpX.P (X), the spectrum of P (X), defined as the set of tuples of the
form (|X1|, . . . , |Xs|) such that t |= P (X),
MSpX.P (X), the multispectrum of P (X), defined as the multiset of tu-
ples (|X1|, . . . , |Xs|) such that t |= P (X).

These computations can be done by FA. The construction for #X.P (X) is
based on Example 1. We obtain in this way FPT or XP algorithms [8,10].

Edge set quantifications and tree-width.

The two recognizability theorems and the corresponding constructions of FA
yielding FPT and XP algorithms hold and can be done for graphs of bounded
tree-width and MSO formulas with edge set quantifications: it suffices to replace
a graph G by its incidence graph Inc(G), a bipartite graph whose vertices are
those of G and its edges, to observe that the clique-width of Inc(G) is bounded
in terms of the tree-width of G, and that an MSO formula with edge set quan-
tifications over G can be translated into an MSO formula over Inc(G). Another
approach is in [2].

Beyond MS logic

The property that the considered graph is the union of two disjoint regular
graphs with possibly some edges between these two subgraphs is not MSO ex-
pressible but can be checked by an FA. An FA can also compute the minimal
number of edges between X and VG − X such that G[X] and G[VG − X] are
connected, when such a set X exists.

Open problems

The parsing problem for graphs of clique-width at most k is NP-complete (with
k in the input) [9]. Good heuristics remain to be developped.

Experimental results

These constructions have been implemented and tested [3—5]. We have computed
the number of optimal colorings of graphs of clique-width at most 8 for which
the chromatic polynomial is known, which allows to verify the correctness of the
automaton. We can verify in, respectively, 35 and 105 minutes that the 20×20
and the 6×60 grids are 3-colorable. In 29 minutes, we can verify that the McGee
graph (24 vertices) given by a term over F10 is acyclically 3-colorable.

Recommend reading.

A different approach using games is presented in [13].

6

References

1. H. Comon et al., Tree automata techniques and applications, 2007,
http://tata.gforge.inria.fr/

2. B. Courcelle, On the model-checking of monadic second-order formulas with edge
set quantifications, Discrete Applied Mathematics 160 (2012) 866-887.

3. B. Courcelle and I. Durand, Automata for the verification of monadic second-order
graph properties, J. Applied Logic 10 (2012) 368-409.

4. B. Courcelle and I. Durand, Computations by fly-automata be-
yond monadic second-order logic, submitted for publication, 2013,
http://arxiv.org/abs/1305.7120.

5. B. Courcelle, I. Durand: Model-checking by infinite fly-automata. Proceedings of

the 5th Conference on Algebraic Informatics, Lecture Notes in Computer Science,

vol. 8080 (2013) 211-222.
6. B. Courcelle and J. Engelfriet, Graph structure and monadic second-order logic,

a language theoretic approach, vol. 138 of Encyclopedia of Mathematics and its

Application, Cambridge University Press, June 2012.
7. B. Courcelle, J. Makowsky and U. Rotics, Linear-time solvable optimization prob-

lems on graphs of bounded clique-width, Theory Comput. Syst. 33 (2000) 125-150.
8. R. Downey and M. Fellows, Parameterized complexity, Springer-Verlag, 1999.
9. M. Fellows, F. Rosamond, U. Rotics and S. Szeider, Clique-Width is NP-Complete,

SIAM Journal on Discrete Mathematics, 23 (2009) 909-939.
10. J. Flum and M. Grohe, Parametrized complexity theory, Springer, 2006.
11. M. Frick and M. Grohe, The complexity of first-order and monadic second-order

logic revisited, Ann. Pure Appl. Logic 130 (2004) 3-31.
12. M. Grohe and S. Kreutzer, Model Theoretic Methods in Finite Combinatorics, in

M. Grohe, J. Makowsky (eds), Contemporary Mathematics 558, American Math-

ematical Society, 2011, pp. 181-206.
13. J. Kneis, A. Langer, P. Rossmanith: Courcelle’s theorem - A game-theoretic ap-

proach. Discrete Optimization 8 (2011) 568-594.
14. K. Reinhardt, The complexity of translating logic to finite automata, in Automata,

logics, and infinite games: a guide to current research, E. Graedel et al. eds., Lecture
Notes in Computer Scienc, vol. 2500 (2002) 231-238.
.

7

