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number of occurrences of a particular symbol in the input term. FA can thus check certain graph properties that are not monadic second-order expressible. An example is regularity, the fact that all vertices have the same degree. Furthermore, an FA equipped with an output function that maps the set of accepting states to an effectively given domain D can compute a value, for example the number of k-colorings of the given graph G, or the minimum cardinality of one of the k color classes if G is k-colorable (this number measures how close is this graph to be (k -1)-colorable). We have implemented and tested an FA that computes the number of 3-colorings of a graph.

Tree-width and clique-width are graph complexity measures that serve as parameters in many FPT algorithms [START_REF] Courcelle | Linear-time solvable optimization problems on graphs of bounded clique-width[END_REF][START_REF] Downey | Parameterized complexity[END_REF][START_REF] Flum | Parametrized complexity theory[END_REF]. Both are based on hierachical decompositions of graphs that can be expressed by terms written with the operation symbols of appropriate graph algebras [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]. The model-checking automata take such terms as inputs. We will present results concerning graphs of bounded clique-width. The similar results for graphs of bounded tree-width reduce to them as we will explain at the end of this section.

Graphs and monadic second-order logic

Graphs are finite, undirected, without loops and multiple edges. The extension to directed graphs, possibly with loops and/or labels is straightforward. A graph G is identified with the relational structure V G , edg G where edg G is a binary symmetric relation representing adjacency.

Rather than giving a formal definition of monadic second-order (MSO) logic, we present the closed formula expressing 3-colorability (an NP-complete property). It is ∃X, Y.Col(X, Y ) where Col(X, Y ) is the formula

X ∩ Y = ∅ ∧ ∀u, v.{edg(u, v) =⇒ [¬(u ∈ X ∧ v ∈ X)∧¬(u ∈ Y ∧v ∈ Y ) ∧¬(u / ∈ X ∪ Y ∧ v / ∈ X ∪Y )]}.
This formula expresses that X, Y and V G -(X ∪Y ) are the three color classes of a 3-coloring. The corresponding colors are respectively 1, 2 and 3.

Definition 1 :

The graph algebra G (a) We will use N + as a set of labels called port labels. A p-graph is a triple

G = V G , edg G , π G where π G is a mapping : V G → N + . If π G (x) = a,
we say that x is an a-port. The set π(G) of port labels of G is its type. By using a default label, say 1, we make every nonempty graph into a p-graph of type {1}.

(b) We let F k be the following finite set of operations on p-graphs of type included in C := {1, ..., k} ⊆ N + :

• the binary symbol ⊕ denotes the union of two disjoint p-graphs, • the unary symbol relab a→b denotes the relabelling that changes every port label a into b (where a, b ∈ C),

• the unary symbol add a,b , for a < b, a, b ∈ C, denotes the edge-addition that adds an edge between every a-port x and every b-port y (unless there is already an edge between them; our graphs have no multiple edges),

• for each a ∈ C, the nullary symbol a denotes an isolated a-port.

(c) Every term t in T (F k ) (the set of finite terms written with F k ) is called a k-expression. Its value is a p-graph, val(t), that we now define. For each position u of t (equivalently, each node u of the syntax tree of t) we define a p-graph val(t)/u, whose vertex set is the set of leaves of t below u. The definition of val(t)/u is, for fixed t, by bottom-up induction on u:

• If u is an occurrence of a, then val(t)/u has vertex u as an a-port and no edge,

• if u is an occurrence of ⊕ with sons u 1 and u 2 , then val(t)/u := val(t)/u 1 ⊕ val(t)/u 2 , (note that val(t)/u 1 and val(t)/u 2 are disjoint), • if u is an occurrence of relab a→b with son u 1 , then val(t)/u := relab a→b (val(t)/u 1 ), • if u is an occurrence of add a,b with son u 1 , then val(t)/u := add a,b (val(t)/u 1 ).
Finally, val(t) := val(t)/root t . Its vertex set is the set of all leaves (occurrences of nullary symbols). For an example, let

t := add 1 b,c (add 2 a,b (a 3 ⊕ 4 b 5 ) ⊕ 6 relab 7 b→c (add 8 a,b (a 9 ⊕ 10 b 11 )))
where the superscripts 1 to 11 number the positions of t. The p-graph val(t) is 

:= 8, then t/u = t/w = add a,b (a ⊕ b), however, val(t)/u is the p-graph 3 a -5 b and val(t)/w is 9 a -11 b , isomorphic to val(t)/u. (d)
The clique-width of a graph G, denoted by cwd(G), is the least integer k such that G is isomorphic to val(t) for some t in T (F k ). We denote by G k the set val(T (F k )) of p-graphs that are the value of a term over F k . We let F be the union of the sets F k , and G be the union of the sets G k . Every p-graph is isomorphic to a graph in G, hence, has a clique-width.

(e) An F-congruence is an equivalence relation ≈ on p-graphs such that:

• two isomorphic p-graphs are equivalent, and

• if G ≈ G ′ and H ≈ H ′ , then G ⊕ H ≈ G ′ ⊕ H ′ , add a,b (G) ≈ add a,b (G ′ )
and relab a→b (G) ≈ relab a→b (G ′ ).

(f) A set of graphs L is recognizable if there exists an F -congruence such that, for each finite type C ⊆ N + , the number of equivalence classes of p-graphs of type C is finite.

Definition 2: Fly-automata. (a) Let H be a finite or countable, effectively given, signature. A fly-automaton over H (in short, an FA over H) is a 4-tuple A = H, Q A , δ A , Acc A such that Q A is the finite or countable, effectively given set of states, Acc A is the set of accepting states, a decidable subset of Q A , and δ A is a computable function that defines the transition rules: for each tuple (f, q 1 , . . . , q m ) with q 1 , . . . ,

q m ∈ Q A , f ∈ H, ρ(f ) = m ≥ 0, δ A (f, q 1 , . . . , q m )
is a finite set of states. We write f [q 1 , . . . , q m ] → q (and f → q if f is nullary) to mean that q ∈ δ A (f, q 1 , . . . , q m ). We say that A is finite if F and Q A are finite.

(b) Runs and recognized languages are defined as usual, see [START_REF] Comon | Tree automata techniques and applications[END_REF]. A deterministic FA A (by "deterministic" we mean "deterministic and complete") has a unique run on each term t and q A (t) is the state reached at the root of t. The mapping q A is computable and the membership in L(A) of a term t ∈ T (H) is decidable.

(c) Every FA A that is not deterministic can be determinized by an easy extension of the usual construction, see [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF]; it is important that the sets δ A (f, q 1 , . . . , q m ) be finite.

(d) A deterministic FA over H with output function is a 4-tuple A = H, Q A , δ A , Out A that is a deterministic FA where Acc A is replaced by a total and computable output function

Out A : Q A → D such that D is an effectively given domain. The function computed by A is Comp(A) : T (H) → D such that Comp(A)(t) := Out A (q A (t)).
Example 1 : The number of accepting runs of an automaton. Let A = H, Q A , δ A , Acc A be a nondeterminisic FA. We construct a deterministic FA B that computes the number of accepting runs of A on any term in T (H). As set of states Q B , we take the set of finite subsets of Q A × N + . The transitions are defined so that B reaches state α at the root of t ∈ T (H) if and only if α is the finite set of pairs (q, n) ∈ Q A × N + such that n is the number of runs of A that reach state q at its root. This number is finite and α can be seen as a partial function : Q A → N + having a finite domain. For a symbol f of arity 2, B has the transition : f [α, β] → γ where γ is the set of pairs (q, n) such that n is the sum of the integers n p .n r over all pairs (p, r) ∈ Q A × Q A such that (p, n p ) ∈ α, (r, n r ) ∈ β and q ∈ δ A (f, p, r). The transitions for other symbols are defined similarly. The function Out A maps a state α to the sum of the integers n such that (q, n) ∈ α ∩ (Acc A × N + ).

Example 2 : An FA for checking 3-colorability. In order to construct an FA that accepts the terms t ∈ T (F ) such that val(t) is 3-colorable, we first construct an FA A for the property Col(X, Y ). For this purpose, we transform F into F (2) by replacing each nullary symbol a by the four nullary symbols (a, ij), i, j ∈ {0, 1}. A term t ∈ T (F (2) ) defines, first, the graph val(t ′ ) where t ′ is obtained from t by removing the Booleans i, j from the nullary symbols and, second, the pair (V X , V Y ) such that V X is the set of vertices u (leaves of t) that are occurrences of (a, 1j) for some a and j, and V Y is the set of those that are occurrences of (a, i1) for some a and i. The set of terms t ∈ T (F (2) ) such that Col(V X , V Y ) holds in val(t ′ ) is defined by a determinitic FA A than we now specify. Its states are Error and the nonempty subsets of C × {1, 2, 3}. Their meanings are as follows:

• at position u of t, the automaton reaches state Error if and only if val(t ′ )/u has a vertex in V X ∩ V Y or an edge between two vertices, either both in V X , or both in V Y , or both in V G -(V X ∪ V Y ), hence of same color, respectively 1,2 or 3;

• it reaches state α ⊆ C × {1, 2, 3} if and only if these conditions do not hold and α is the set of pairs (a, i) such that val(t ′ )/u has an a-port of color i.

All states except Error are accepting. Here are the transitions of A:

(a, 00) → {(a, 3)}, (a, 10) → {(a, 1)}, (a, 01) → {(a, 2)}, (a, 11) → Error.

For α, β ⊆ C × {1, 2, 3}, A has transitions : This FA checks Col(X, Y ). To check, ∃X, Y.Col(X, Y ), we build a nondeterministic FA B by deleting the state Error, by replacing the first three rules of A by a → {(a, 3)}, a → {(a, 1)}, a → {(a, 2)} and by deleting those that yield Error. All states are accepting but on some terms, no run can reach the root, and these terms are rejected. Furthermore, the construction of Example 1 shows how to make B into a deterministic FA that computes the number of 3-colorings, because the 3-colorings of val(t) are in bijection with the accepting runs of B on t.

⊕[α, β] → α ∪ β, add a,b [α] → Error, if (a, i) and (b, i) belong to α for some i = 1, 2, 3, add a,b [α] → α, otherwise, relab a→b [α] → β,
Recognizability Theorem : The set of graphs that satisfy a closed MSO formula ϕ is F -recognizable.

Weak Recognizability Theorem : For every closed MSO formula ϕ, for every k, the set of graphs in G k that satisfy ϕ is F k -recognizable.

Proofs: The Recognizability Theorem is Theorem 5.68 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]. Its proof shows that the equivalence defined by the fact that the two considered p-graphs have the same type and satisfy the same closed MSO formulas of quantifier-height at most that of ϕ satisfies the conditions of Definition 1(f). (These formulas have unary predicates for expressing port labels). The Weak Recognizability Theorem follows from the former one. It can be proved directely by constructing an FA over F [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF]. (We construct a single FA, not a particular FA for each subsignature F k as in Theorem 6.35 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]). This construction can be implemented, at least in a number of nontrivial cases. The proof of the strong theorem does not provide any usable automaton.

Counting and optimizing automata

Let P (X 1 , ..., X s ) be an MSO property of vertex sets X 1 , ..., X s . We denote (X 1 , ..., X s ) by X and t |= P (X) means that X satisfies P in the graph val(t) defined by a term t. We are interested, not only to check the validity of ∃X.P (X), but also to compute from a term t the following values: #X.P (X), defined as the number of assignments X such that t |= P (X), SpX.P (X), the spectrum of P (X), defined as the set of tuples of the form (|X 1 |, . . . , |X s |) such that t |= P (X), MSpX.P (X), the multispectrum of P (X), defined as the multiset of tuples (|X 1 |, . . . , |X s |) such that t |= P (X).

These computations can be done by FA. The construction for #X.P (X) is based on Example 1. We obtain in this way FPT or XP algorithms [START_REF] Downey | Parameterized complexity[END_REF][START_REF] Flum | Parametrized complexity theory[END_REF].

Edge set quantifications and tree-width. The two recognizability theorems and the corresponding constructions of FA yielding FPT and XP algorithms hold and can be done for graphs of bounded tree-width and MSO formulas with edge set quantifications: it suffices to replace a graph G by its incidence graph Inc(G), a bipartite graph whose vertices are those of G and its edges, to observe that the clique-width of Inc(G) is bounded in terms of the tree-width of G, and that an MSO formula with edge set quantifications over G can be translated into an MSO formula over Inc(G). Another approach is in [START_REF] Courcelle | On the model-checking of monadic second-order formulas with edge set quantifications[END_REF].

Beyond MS logic

The property that the considered graph is the union of two disjoint regular graphs with possibly some edges between these two subgraphs is not MSO expressible but can be checked by an FA. An FA can also compute the minimal number of edges between X and V G -X such that G[X] and G[V G -X] are connected, when such a set X exists.

Open problems

The parsing problem for graphs of clique-width at most k is NP-complete (with k in the input) [START_REF] Fellows | Clique-Width is NP-Complete[END_REF]. Good heuristics remain to be developped.

Experimental results

These constructions have been implemented and tested [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF][START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF][START_REF] Courcelle | Model-checking by infinite fly-automata[END_REF]. We have computed the number of optimal colorings of graphs of clique-width at most 8 for which the chromatic polynomial is known, which allows to verify the correctness of the automaton. We can verify in, respectively, 35 and 105 minutes that the 20×20 and the 6×60 grids are 3-colorable. In 29 minutes, we can verify that the McGee graph (24 vertices) given by a term over F 10 is acyclically 3-colorable.

Recommend reading.

A different approach using games is presented in [START_REF] Kneis | Courcelle's theorem -A game-theoretic approach[END_REF].
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  obtained by replacing a by b in each pair of α. Its other transitions are ⊕[α, β] → Error if α or β is Error, add a,b [Error] → Error and relab a→b [Error] → Error.