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The class of complexsymmetric functions contains the Stieltjes functions. The aim of this work is
to give some new results concerning the location of zeros and poles of Padé approximants using
the Taylor series of functions developed in neighborhoods of complex points and their conjugate
points.

1. Introduction

In 1976, Chisholm et al. [1] published a paper concerning the location of poles and zeros of
Padé approximants of ln(1 − z) developed at the complex point ζ : ln(1 − z) =ln(1 − ζ) −
∑∞

n=1 1/n(z − ζ/1 − ζ)n. They claimed that all poles and zeros of diagonal Padé approximants
[n/n] interlace on the cut z = ζ + t(1 − ζ), t ∈]1,∞[. Unfortunately, this result is only partially
true, for poles. Klarsfeld remarked in 1981 [2] that the zeros do not follow this rule. The study
of this problemwas the starting motivation of the present work.We consider the general class
of complexsymmetric functions f , that is, functions satisfying the following condition:

f(z) = f(z). (1.1)

In particular, if ζ and ζ are two complex conjugate points, then

f(z) =
∞∑

n=0

cn(z − ζ)n, f(z) =
∞∑

n=0

cn
(
z − ζ

)n
, (1.2)

that is, the coefficients of these two series are also complex conjugates, This property is the
basic element of all our proofs.
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Let us introduce some definitions and notations.
The 1-point Padé approximant (PA), or simply Padé approximant [m/n] to f at the

point ζ is a rational function Pm/Qn if and only if

f(z) − Pm(z)
Qn(z)

= O
(
(z − ζ)m+n+1

)
. (1.3)

Because the existence of PA defined by (1.3) implies the invertibility of Qn, the equivalent
definition is

Qn(z)f(z) − Pm(z) = O
(
(z − ζ)m+n+1

)
, Qn(ζ) = 1. (1.4)

This definition leads to the following linear system for the coefficients of polynomialsQn and
Pm:

Qn(z) = 1 + q1(z − ζ) + · · · + qn(z − ζ)n, (1.5)

Pm(z) = p0 + p1(z − ζ) + · · · + pm(z − ζ)m, (1.6)
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, c−|k| ≡ 0, (1.7)

k = 0, 1, . . . , m : −Pk +
n∑

j=1

ck−jqj = −ck. (1.8)

The PA exists iff the system (1.7) has a solution. The following so-called Padé form [3] defines
PA if it exists (and other rational functions in the square blocs in the Padé table if (1.7) has no
solution); for simplicity, it is written for the case ζ = 0,

Pm(z)
Qn(z)

=

∣
∣
∣
∣
∣
∣
∣

C(m)(z) zC(m−1)(z) z2C(m−2)(z) ... znC(m−n)(z)
cm+1 cm cm−1 ... cm−n+1
cm+2 cm+1 cm ... cm−n+2
...

...
... ...
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∣
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∣
∣
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, (1.9)
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where

C(k)(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k∑

j=0

cjzj if k ≥ 0,

0 if k < 0.

(1.10)

Let f be a function defined at the points ζ1, . . . , ζN ∈ � and having at these points the
following power expansions:

i = 1, 2, . . . ,N :
pi−1∑

k=0

ck(ζi)(z − ζi)k +O
(
(z − ζi)pi

)
. (1.11)

AnN-point Padé approximant (NPA) [m/n] at the points ζ1, . . . , ζN noted

[
m

n

]p1p2 ··· pN

ζ1ζ2 ··· ζN
(z) =

Pm(z)
Qn(z)

=
a0 + a1z + · · · + amzm

1 + b1z + · · · + bnzn
, (1.12)

where

p := p1 + p2 + · · · + pN = m + n + 1 (1.13)

is defined by

i = 1, 2, . . . ,N : f(z) −
[
m

n

]p1 p2 ··· pN

ζ1 ζ2 ··· ζN
(z) = O

(
(z − ζi)pi

)
. (1.14)

This leads to the following definition like (1.4):

i = 1, 2, . . . ,N : Qn(z)f(z) − Pm(z) = O
(
(z − ζi)pi

)
, (1.15)

representingm + n + 1 linear equations.

2. Zeros and Poles of Padé Approximants of ln(1 − z)

This function studied in [1] is related to the Stieltjes function

f(z) =
∫1

0

dx

1 − xz
= −1

z
ln(1 − z) (2.1)

defined in the cut-plane � \ [1,∞[. The zeros and poles of PA defined by a power series of f
expanded at the real points interlace on the cut ]1,∞[. What does happen if PA is defined at
the complex point ζ? Klarsfeld remarked [2] that Chisholm result [1] is wrong and showed
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that poles of the PA of ln(1 − z) follow the cut z = ζ + t(1 − ζ), t ≥ 1, as mentioned in the
introduction, but not the zeros. We generalize this result to all m ≥ n. For convenience, let us
introduce the following notations:

if ζ = 0 : f(z) = ln(1 − z) =
∞∑

n=0

cnz
n = −

∞∑

n=1

1
n
zn (2.2)

if ζ /= 0 : f(z) = ln(1 − ζ) + ln
(

1 − z − ζ

1 − ζ

)

=
∞∑

n=0

c∗n(z − ζ)n = ln(1 − ζ) −
∞∑

n=1

1
n

(
z − ζ

1 − ζ

)n

,

(2.3)

then we have

c∗0 = ln(1 − ζ), n ≥ 1 : c∗n =
cn

(1 − ζ)n
. (2.4)

Theorem 2.1. Let [m/n] and [m/n]∗, m ≥ n, be the Padé approximants of the function f(z) =
ln(1 − z) developed at the points z = 0 and z = ζ, respectively, then if zk(k = 1, 2, . . . , n) denotes a
pole of [m/n], then

z∗k = ζ + zk(1 − ζ) (2.5)

denotes the pole of [m/n]∗. In other words, the poles of [m/n]∗ locate on the cut

z = ζ + t(1 − ζ), t ≥ 1, (2.6)

directed by the straight line joining the point of development of f : z = ζ with the branch point z = 1.
The zeros of [m/n]∗ locate out of this line.

Proof. We can readily verify this theorem looking at the formula (1.9) and considering the
numerator P ∗

m and the denominator Q∗
n of [m/n]∗ and the relation (2.4). The denominatorQ∗

n

expressed in the variable (z − ζ)/(1 − ζ) has the same coefficients as Qn of [m/n] if c∗0 do not
occur in its definition, that is, ifm − n + 1 > 0 and ifm ≥ n. More exactly, we have

Q∗
n(z) =

1
(1 − ζ)mnQn

(
z − ζ

1 − ζ

)

. (2.7)

That is, in this case, the poles of [m/n]∗ follow the way of poles of [m/n] rotated by some
angle around the branch point which gives (2.5) and (2.6). On the contrary, the definition of
P ∗
m always contains c∗0, and then the zeros of [m/n]∗ locate out of (2.6).
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The location of the zeros of [m/n]∗ remains an open problem. However, the following
remarks can unlock, may be, this question. The particular case of Gilewicz theorem [3, page
217] says that if [n/n]f is a PA of some function f and α a constant, then

[
n

n

]

f

+ α =
[
n

n

]

f+α
. (2.8)

This readily leads to the following theorem, where all notations are the same as in
Theorem 2.1 except c∗0 which is replaced by an arbitrary constant α.

Theorem 2.2. Let f(z) = ln(1 − z) − ln(1 − ζ) = ln(1 − z/1 − ζ) and

[
n

n

]

f

(z) =
Pn(z − ζ)/(1 − ζ)
Qn(z − ζ)/(1 − ζ)

=
p0 + p1(z − ζ)/(1 − ζ) + · · · + pn(z − ζ/1 − ζ)n

1 + q1(z − ζ/1 − ζ) + · · · + qn(z − ζ/1 − ζ)n
, (2.9)

then

[
n

n

]∗
(z) =

[
n

n

]

f+α
(z) =

P ∗
n(z − ζ)/(1 − ζ)

Q∗
n(z − ζ)/(1 − ζ)

=
αQn(z − ζ)/(1 − ζ) + Pn(z − ζ)/(1 − ζ)

Qn(z − ζ)/(1 − ζ)
.

(2.10)

If α = 0, then the poles and also the zeros simulate the cut ζ + t(1 − ζ), t ≥ 0. The problem consists to
analyze the behavior of the zeros of P ∗

n as a function of α with α ∈ [0, c∗0 = ln(1 − ζ)].

3. Zeros and Poles of Padé Approximants at Complex Conjugate Points

In this section, [m/n]f(z − ζ) and [m/n]∗f(z − ζ) denote the Padé approximants of a

complexsymmetric function f at the point ζ and its complex conjugate ζ, respectively.

Theorem 3.1. Let [m/n] and [m/n]∗ be Padé approximants of a complexsymmetric function f at ζ
and ζ, then the zeros and the poles of [m/n] are complex conjugates of the corresponding zeros and
poles of [m/n]∗.

Proof. Equation (1.1) gives

f(z) =
∞∑

i=0

ci(z − ζ)i =
∞∑

i=0

ci
(
z − ζ

)i
. (3.1)

Now, [m/n](z − ζ) = Pm/Qn, Qn = 1 + q1(z − ζ) + · · · + qn(z − ζ)n, where qi are defined
by the linear system (1.7). We identify the solutions qi as coefficients of Q∗

n due to (3.1): Q∗
n =

1+q1(z−ζ)+· · ·+qn(z−ζ)n. Then, the zeros ofQ∗
n (poles of [m/n]∗) are the complex conjugates

of those of Qn. The same arguments are used for the system (1.8) and for Pm and P ∗
m which

completes the proof.
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4. N-Point Padé Approximants of the Complexsymmetric Functions

The following theorem is the consequence of Theorem 3.1.

Theorem 4.1. Let f be a complexsymmetric function, then the zeros and poles of 2-point Padé
approximant [m/n]l l′

ζ ζ
of f are complex conjugates of the zeros and poles of [m/n]l

′ l

ζ ζ
, where l and l′

are the arbitrary integers satisfying the condition l + l′ = m + n + 1.

Proof. In this case, the NPA is defined by two linear systems like (1.7) and (1.8) leading from

fQn − Pm = O
(
(z − ζ)l

)
, fQn − Pm = O

((
z − ζ

)l′
)

, (4.1)

and for the second NPA leading from

fQn − Pm = O
(
(z − ζ)l

′)
, fQn − Pm = O

((
z − ζ

)l
)

. (4.2)

The same arguments as those used in the proof of Theorem 3.1 can be used to transform the
system (4.1) to (4.2), and then to obtain the result of Theorem 4.1 on the basis of Theorem 3.1.

Corollary 4.2. Let f be a complexsymmetric function, then the zeros and poles of

NPA [m/n]
l1 l2 ··· lk l′1 l′2 ··· l′k
ζ1 ζ2···ζk ζ1 ζ2 ··· ζk

of f are complex conjugates of the zeros and poles of

[m/n]
l′1 l′2 ··· l′

k
l1 l2 ··· lk

ζ1 ζ2··· ζk ζ1 ζ2··· ζk
, where l1 + l2 + · · · + lk + l′1 + l′2 + · · · + l′k = m + n + 1.

We also prove the following

Theorem 4.3. Let f be a complexsymmetric function, then all coefficients of N-point Padé

approximant [m/n] l1 ··· lk l1 ··· lk
ζ1 ··· ζk ζ1··· ζk

of f are real.

Proof. In the last corollary, all li = l′i, then twoNPA are equal, and then, because the coefficients
of the first NPA are complex conjugates of the coefficients of the second NPA, they are real.
Unfortunately, it is not true that all the zeros and poles of these NPA are real.

Unfortunately, it is not true that all the zeros and poles of these NPA are real.

5. Conclusion

In many numerical experiments with Padé approximants or N-point Padé approximants at
the complex points, we are not able to detect any clear regularity related to the location of
poles and zeros. However, it seems that their positions follow some well-defined corridors.
In the present time, many general problems in this field remain open.
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