N
N

N

HAL

open science

Automatic data-driven real-time segmentation and
recognition of surgical workflow

Olga Dergachyova, David Bouget, Arnaud Huaulmé, Xavier Morandi, Pierre

Jannin

» To cite this version:

Olga Dergachyova, David Bouget, Arnaud Huaulmé, Xavier Morandi, Pierre Jannin.
data-driven real-time segmentation and recognition of surgical workflow. International Journal of
Computer Assisted Radiology and Surgery, 2016, 11 (6), pp.1081-1089. 10.1007/s11548-016-1371-x .

hal-01299344

HAL Id: hal-01299344
https://hal.science/hal-01299344

Submitted on 11 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Automatic


https://hal.science/hal-01299344
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Automatic Data-Driven Real-Time Segmentation and
Recognition of Surgical Workflow

Olga Dergachyova - David Bouget -
Arnaud Huaulmé - Xavier Morandi -
Pierre Jannin

the date of receipt and acceptance should be inserted later

Abstract

Purpose With the intention of extending the perception and action of surgical
staff inside the operating room, the medical community has expressed a growing
interest towards context-aware systems. Requiring an accurate identification of the
surgical workflow, such systems make use of data from a diverse set of available
sensors. In this paper, we propose a fully data-driven and real-time method for
segmentation and recognition of surgical phases using a combination of video data
and instrument usage signals, exploiting no prior knowledge. We also introduce
new validation metrics for assessment of workflow detection.

Methods The segmentation and recognition are based on a four-stage process.
Firstly, during the learning time, a Surgical Process Model is automatically con-
structed from data annotations to guide the following process. Secondly, data
samples are described using a combination of low-level visual cues and instrument
information. Then, in the third stage, these descriptions are employed to train a
set of AdaBoost classifiers capable of distinguishing one surgical phase from others.
Finally, AdaBoost responses are used as input to a Hidden semi-Markov Model in
order to obtain a final decision.

Results On the MICCAI EndoVis challenge laparoscopic dataset we achieved a
precision and a recall of 91% in classification of 7 phases.

Conclusion Compared to the analysis based on one data type only, a combination
of visual features and instrument signals allows better segmentation, reduction of
the detection delay and discovery of the correct phase order.
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1 Introduction

Over the past decade, the scientific medical community has been working towards
the next generation of intelligent Operating Room (OR) [2, 6]. This concept in-
cludes various directions such as image guided and robotic surgical systems, aug-
mented reality and visualisation, sensing devices and context-aware systems in
computer assisted interventions (CA-CAI). The research of the present work joins
the last direction. The main goal of CA-CAI systems is to ensure OR situation-
awareness and assist the surgeon and surgical team in preventing medical errors.
Needed support can be provided through multiple clinical applications, e.g. re-
source management [11], surgeon evaluation, detection and prevention of adverse
events, aid in decision-making process and robotic assistance [7].

Creation of a CA-CAI system requires a large informative learning set of clinical
data. A variety of sensors enables the extraction of diverse information. In the area
of surgical workflow detection, the literature describes methods exploiting data
from instruments usage binary signals [16], RFID tags and sensors [1], different
kind of tracking devices (tracking of instruments [8], surgical staff trajectories [14]
and eye motions [9]) or even simple measurements of the surgical table inclination
and lights state [20]. Last but not least, video data represents a great source of
information while being the most challenging one. The preferable option is to
leverage data coming from sensors already used as part of the clinical routine,
thus not requiring additional equipment installation. It makes endoscopic [13] and
microscopic [5, 12] videos ones of the best data providers. Sometimes multiple data
signals are mixed to complete information lacks [21].

The second important aspect of CA-CAI systems is recognition of surgical
workflow. Depending on targeting application, this can be done in different gran-
ularity levels: stages, phases, steps, actions or gestures, starting from the highest
going to the lowest [11]. The approach we propose in this paper is dedicated to
surgical phase discovery from video data and instrument signals. Usually the main
strategy of visual-based methods for surgical workflow detection is to extract vi-
sual features such as RGB and HSV histograms, Histograms of Oriented Gradients,
optical flow [17], SIFT/SURF and STIP [5] points or their combinations [12]. Ex-
tracted features are then used to classify images with machine learning techniques,
e.g. Support Vector Machine (SVM), Bag-of-Visual-Words [12], K-Nearest Neigh-
bors [5], Bayesian Networks [13] or Conditional Random Fields [17]. Knowing that
the surgical procedure is a continuous process, its temporal aspect can be exploited
by Hidden Markov Models (HMM) and Dynamic Time Warping (DTW) methods
[3, 12]. The same strategy can be applied to other sensor input including surgical
tool signals. For instance, interesting results are provided by a combination of in-
strument usage signals with HMM or DTW [16]. Furthermore, the set of extracted
features can be reduced by selecting the most relevant ones, as it was done in [15]
using AdaBoost to define the most representative surgical instruments for phase
detection.

The methods for surgical workflow detection described in the literature have
some drawbacks. The most essential applications of CA-CAI systems require a
real-time analysis. A half of the methods are not suitable for on-line applications,
especially those using DTW which are required to have a complete sequence. Be-
sides, some of the methods have a priori assumptions on surgery type, particular
instruments or regions of interest [5, 12, 17] constricting their application to a spe-
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cific intervention only. To resolve these problems our paper proposes a completely
data-driven method working in real-time and independent of surgery type and its
specificities. It takes as input endoscopic, microscopic or operative field videos and
instrument usage binary signals.

Finally, the workflow detection method used in CA-CAI systems has to be
validated. A common way to do that is to compute accuracy, precision and recall
scores. However, such global scores usually not informative enough and underes-
timate performances as regards to the actual clinical needs. For such purpose, we
propose 3 novel validation metrics and a new application-dependent approach for
error estimation, and use them within the following targeted applications: estima-
tion of remaining time, relevant information display or device triggering.

2 Methods

The workflow detection of our approach is performed in four stages using the data
from section 2.1, as shown in Figure 1. Firstly, a Surgical Process Model is con-
structed as described in section 2.2. The next stage is to create descriptions from
images and instrument signals (see section 2.3). Section 2.4 presents intermediate
AdaBoost classification done in the third stage. In the last stage, detailed in sec-
tion 2.5, Hidden semi-Markov Model provides final classification results. Finally, in
section 2.6 we propose new validation metrics dedicated to workflow recognition.

Training
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Fig. 1 Scheme of the proposed four-stage segmentation and recognition ap-
proach, outlining processing at training and testing time. D stands for descriptions
of all training samples, S for signatures of all training samples, d for test sample
description, and s for test sample signature.
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2.1 Data

The dataset we used to validate our method comes from the sub-challenge of the
MICCAI 2015 EndoVis challenge dedicated to the surgical workflow detection®.
It contains 7 endoscopic videos of laparoscopic cholecystectomies. The videos are
in full HD quality (1920x1080) at 25 fps. Additionally, for each video frame the
dataset includes usage information about the 10 instruments used during the in-
tervention. There are 26 possible combinations of their simultaneous use.

The laparoscopic cholecystectomy operation passes through 7 phases : P1)
Placement of trocars, P2) Preparation, P3) Clipping and cutting, P4) Dissection
of gallbladder, P5) Retrieving of gallbladder, P6) Hemostasis, P7) Drainage and
closing. One operation is executed in linear order without any comebacks. In the
other 6 operations the phase Hemostais is performed before the retrieving phase
is completed. Therefore it can pause the phase 5. The phase 6 is performed again
after the end of the phase 5. Duration statistics are presented in Table 1, where
the mean values and standard deviations were computed on the 7 surgeries.

2.2 Surgical Process Modelling

The main idea of our approach is to remain generic and independent towards the
data and apply the same algorithm to different datasets. To implement this idea we
rely on Surgical Process Modelling [10]. A surgical procedure can be represented
with an individual Surgical Process Model (iISPM) describing its order of surgical
task execution. The union of several iSPMs gives a generic model called gSPM
showing different possible ways to perform the same procedure. In addition, it
is possible to extract from the gSPM some useful information such as a list of
all tasks and their durations. In this work the gSPM is represented in the form
of a directed weighted graph automatically computed from data annotations. To
construct it iISPMs are parsed in order to extract all unique surgical phases which
play the role of vertices of the graph. Then, we derive all edges, meaning transitions
between phases. When the structure of the graph is in place, we assign an attribute
to each edge and vertex. The edge attributes define the probability of continuing
by performing the phase pointed out by the edge. The vertex attributes indicate
phase durations. We use the model and its statistics to manage the following
segmentation and recognition process in all stages.

Table 1 Mean values and standard deviations of phase durations and of total
operation time (min:s)

| PL. P2 P3 P4 P5  P6  P7T | Total

Mean | 03:00 06:59 06:30 09:23 06:31 05:36  02:50 | 40:49
Std 01:58 03:35 03:13 07:16 04:06 01:02 02:08 | 10:21

L http://grand-challenge.org/site/endovissub-workflow /data/
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2.3 Data description

The second stage of the approach is to describe input data. For this we construct
a visual description of each video frame and a corresponding vector of instrument
signals. First, to maintain the generic aspect of the method, the images from the
videos are described with no attachment to particular areas or objects and no as-
sumption on surgery type. Only standard global visual cues are used for that pur-
pose. This choice is driven by two reasons: standard image descriptors are generally
computationally light, and they allow successful classification of all kinds of images
unlike other more complex descriptors designed for specific goals. Three main im-
age aspects are examined: color, shape and texture. The color is represented in form
of histograms from RGB, HSV and LUV color-spaces. The shape is described by
Discrete Cosine Transform (DCT) and Histograms of Oriented Gradients (HOG).
The texture is transmitted through Local Binary Patterns (LBP) histograms. The
image description is computed as follows. The RGB histogram of the entire image
contains 16 bins and their sum for each color component. The same is done for
the HSV, except that the Hue component has 18 bins. For the LUV color-space
we extract only L component in 10 bins, and we also take their sum. For the DCT
representation only 25 values, corresponding to the highest frequencies, are taken.
We compute 6 HOG of 9 bins on 6 different areas of the image. Four histograms are
computed from 4 rectangular sectors of equal size going from the image center to
its corners. The fifth sector of the same size is focused on the center of the frame.
The last sector contains the entire image. For the LBP histogram we use 58 uni-
form patterns only. All computed values are concatenated into a visual description
vector of total 252 values (3%16+3%1418+42%16+3%1+10+1425+6%94-58 = 252).

Along with the visual information we incorporate the signals of instrument
usage. Each analysed data sample can be described as a set of instrument binary
signals: 1 if instrument is in use, 0 if not. In this way we have an instrument vector
of length M, where M is a total number of surgical tools (M = 10 in our case).
The visual description vector and instrument vector are concatenated together to
be used as input for the following AdaBoost classification.

2.4 AdaBoost classification

In order to classify each analysed sample into surgical phases, the third stage of our
method relies on AdaBoost classifier using descriptions from section 2.3 as input.
The boosting approach, underlying concept of AdaBoost, is a machine learning
technique using a great number of weak classifiers assembled into a cascade to
form one strong classifier. The AdaBoost algorithm [19] finds features that separate
positive data samples from negatives the best. The advantage of AdaBoost applied
to our problem is its capacity to analyse each data aspect separately to find the
most discriminant ones unlike SVM, for example, which takes all features in a
scope. To be more concrete, visually each surgical phase can possibly differ from all
others only by one or couple of features (e.g., specific color component or gradient
direction), so it can have its own particularities. The same is applicable to the
instruments. Thereby, in our case each surgical phase needs a proper classifier of
type one-vs-all distinguishing it from all others.
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During training time, for each surgical phase, we create a set of positive (i.e.
belonging to this phase) and negative (i.e. belonging to any other phase) samples
represented by description vectors. Then the AdaBoost classifier specific to this
phase is trained on the built set. At the end of the training we have N AdaBoost
classifiers, where N is the number of surgical phases. For our dataset N = 7, but
practically it is defined by the computed gSPM.

At testing time each sample passes through all classifiers and obtains a signa-
ture of 2« N length consisting of N positive/negative responses (1 or -1) and N
confidence scores from 0 to 100 indicating classifiers certainty. Each ;5 response
shows if the i;;, classifier recognizes the sample as belonging to its phase or not.
The values of the signature containing confidence scores are divided into k inter-
vals. Here k is empirically set to 20. This is needed to obtain a discrete signature
which is used as input for the next stage of our method.

2.5 Hidden semi-Markov Model

In this final stage we construct a predictive model taking into account the temporal
aspect of the procedure to improve the detection capacity of our method. Hidden
Markov Model is a powerful tool for modelling time series. Based on observed data,
the model seeks to recover the sequence of hidden states that the process comes
through. Applicable to surgical workflow segmentation, the surgical phases would
be the hidden states we want to discover and the data samples (signatures from
the last stage in our case) would be the observations. An HMM is formalised as
A= (5,0, A, B, ), where S is a finite set of states, O is a finite set of observations
(sometimes called vocabulary), A is a set of probabilities of transition from one
state to another, B is a probability distribution of observation emissions by states,
7 is a probability distribution over initial states (see [18] for more details).

Classical HMM has a major drawback: exponential state duration density due
to auto-transitions. This is poorly suited for modelling of physical signals and
processes with various state durations. An extension of the classical model exists,
it is called explicit-duration HMM or Hidden semi-Markov Model (HsMM). An
efficient implementation was presented by Yu in [22]. A state duration probability
distribution P is added to the model A = (5,0, A, B, 7, P) and the probabilities
of all auto-transitions in A are set to zero.

The last stage of our algorithm is HsMM training on signatures made of Ad-
aBoost responses used as observations. First of all, the gSPM constructed at the
first stage automatically defines set of phases S and initializes A, P and 7. Then
a finite observation vocabulary O is built from all unique signatures found in the
training data. B is initially computed by counting the number of occurrences of
all signatures from O in each phase. The model is then refined thanks to modified
forward-backward algorithm.

At testing time, the sequence of signatures representing the surgical procedure
is decoded one-by-one with modified Viterbi algorithm inspired from [22] in order
to get a sequence of phase labels attributed to each sample as final result.
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2.6 Validation metrics

In order to validate the performance of our method, we propose 3 novel metrics
and an error estimation approach. These metrics are less severe, more informative
and more representative of real application-based requirements. The notions of
transitional moment, transitional delay, transition window and noise mentioned
below are illustrated in Figure 2.

Negative TD Positive TD

™

Noise

Ground truth i
Prediction B

Transitional moments  TD threshold

Fig. 2 Examples of transitional moments, negative and positive transitional de-
lays (TD), transitional delay threshold, transition window (TW) and noise

Average transitional delay (ATD). This metric characterizes the average time de-
lay between the real phase-to-phase transitional moments T'M and predicted ones.
ATD is defined as follows:

ATD = é S abs(tp(TMy) — tar(TMy), (1)
k=1

where s is the number of T'M s belonging both to the ground truth sequence GT
and the predicted sequence P, tgr(T'M}) is the time stamp of k-th TM in GT,
and tp(TMy,) is the time stamp of the same closest TM in P. Transitional delay
can be positive which tells that the system is late compared to the ground truth,
so the detected transition is made after the real one. Negative values show that
system switches too early. The average delay is computed from absolute values.
Sometimes some T'Ms of GT' are completely missed in P, this is mostly due to a
fault of the classification. The proposed metric, in the other hand, measures the
reaction time of the system. Thereby, AT D does not account for such skipped
transitions.

Noise level (NL). The discovered sequence can contain some noise, meaning short
time separate misclassifications that create false transitional moments. This metric
measures the rate of noise present in predicted sequences. NL is computed as
NL = %, where N is the number of misclassified samples not belonging to any
transitional delay, and T is the total number of samples in the predicted sequence.

Coefficient of transitional moments (Crpr). This coefficient is computed as Crpr =
TT ]\J/\IJGPT. It is a ratio of the number of detected transitional moments T Mp in the
predicted sequence to the number of real ones T Mgt in the ground truth. It im-
plicitly reflects the robustness of the workflow recognition method. For example,
predicted sequences with a repeated high-frequency noise (i.g. high Crps) point

to classification inconsistency.
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Application-dependent scores (AD-scores). For some applications a certain time
delay in detection, which does not influence overall efficiency, can be acceptable.
We propose to re-estimate standard performance scores using acceptable delay
thresholds for transition windows. To do so, we redefine the notion of “true posi-
tives” TP, replacing it by “application-dependent true positives” T'P’. The sample
S eTP if SeTPorifS e TWyu(i,j) and (label(S) = i or label(S) = j),
where T'W4, is one of the transition windows with the allowed threshold ¢r, cen-
tred on the transitional moment between phases ¢ and j in the ground truth. The
AD-accuracy, AD-precision and AD-recall are computed as usual but using TP’
instead of TP.

3 Results

We used metrics from section 2.6 to validate the performance of our approach
through three separate studies using data from section 2.1. In order to estimate
the impact of each data type and to get a better understanding of the method
capacities we first tested each data type (i.e. visual and instrumental) separately,
and then, their combination. The first study (VO) estimated method performances
given videos as the single data input. During the second study (IO) instrument
usage signals were the only input. The third study (VI) explored the performances
of the method given the combination of visual and instrument information. Manual
annotations were used as ground truth. The leave-one-surgery-out cross validation
protocol was used.

The same set of tests was run for all studies. The first test estimated the
standard accuracy, precision and recall scores using sample-by-sample comparison
between the ground truth and predicted sequences. The second test evaluated
ATD, the third test measured NL, and the fourth estimated Crps. The results of
these tests are presented in sections 3.1, 3.2, 3.3 and Figure 3. After that, we re-
estimated the standard scores for two possible applications. The first application
(A1) is device triggering and relevant information display. It allows a relatively
small time delay, so we fixed the transitional delay threshold to 15s, meaning
that all misclassifications caused by a transitional delay of 15s or less are counted
as good classifications. The second application (A2) is estimation of remaining
surgical time, where a high accuracy is less important than in other applications.
The transitional delay threshold can be fixed at 1min with no essential impact on
the estimation. Obtained AD-scores are presented in Table 2.

Table 2 Application-dependent scores (in %) for all study-application couples

Score || VO (A1) VO (A2) | IO (A1) 10 (A2) | VI(Al) VI (A2)
AD-accuracy 71.65 77.96 81.82 84.53 91.59 93.23
AD-precision 75.40 81.00 85.34 87.63 93.54 95.10

AD-recall 74.75 80.34 85.50 87.74 93.70 95.17
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3.1 First study: visual information only (VO)

Standard scores. The global accuracy of this method reached 68.10%. Table 3
shows mean precision and recall scores for all phases and the whole procedure.
Mean values were computed from the global confusion matrix (Figure 3a) con-
structed by the addition of confusion matrices of all 7 surgeries.

ATD. The average transitional delay, computed from all transitional moments
of all surgeries, was 1min 6s (1648 frames) with a standard deviation of 23s (572
frames) which resulted in 2.69+0.93% of the total time for a mean intervention
duration of 40min 48s.

NL. The average noise level in all predicted sequences constituted 16.54% of all
analysed samples, which represented 53.53% of all misclassifications. Supposing
that there are only two types of error, more than a half of all misclassifications
were noise and 46.47% were caused by transitional delays.

Crar- Because of the noise presence in all predicted sequences, none of them had
the same workflow (i.e. order of phases) that the ground truth. This resulted in a
relatively high average C'rps equal to 1.70.

3.2 Second study: instrument information only (I0)

Standard scores. Using surgical tool signals only, the method achieved a global
accuracy of 78.95%, mean precision of 82.85% and mean recall of 82.55% (Table
3). Figure 3c illustrates the global confusion matrix.

ATD. The average transitional delay was twice lower than in the VO study. ATD
was equal to 32s (804 frames) with a standard deviation of 20s (510 frames), i.e.
1.31£0.83% of the total time.

NL. The noise level staid relatively high (13.17%). Its part in the overall detection
error was 64.18%. The remaining 35.82% were due to a transitional delay.

Crar- The 10 method had a high coefficient of transitional moments equal to

1.95. As in the VO study, no sequence was correctly predicted in terms of phase
order.

Table 3 Standard precision and recall scores (in %) for all conducted studies

Score | Study | P1 P2 P3 P4 P5 P6 P7 | Mean + std
VO 81.49 76.68 49.74 67.58 74.47 55.87 98.84 | 72.10 £ 16.39

Precision 10 93.88 70.00 66.11 87.33 84.79 80.85 100.00 | 82.85 + 12.75
VI 100.00 76.83 83.69 93.12 93.60 91.05 99.14 91.06 + 8.29

VO 94.59 68.88 49.67 64.63 72.05 70.26 78.64 | 71.25 + 13.64

Recall 10 100.00 84.99 76.24 60.49 81.29 87.11 87.72 | 82.55 &+ 12.15
VI 100.00 91.40 87.74 77.29 92,51 92.64 96.82 91.20 + 7.28
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3.3 Third study: combination of visual and instrument information (VI)

Standard scores. Thanks to the data combination, our approach gained in predic-
tive capacity and showed a global accuracy of 88.93%, mean precision of 91.06%
and mean recall of 91.20% (Table 3). The global confusion matrix is in Figure 3e.

ATD. A slight improvement was made in terms of transitional delay compared to
the 10 study. The ATD decreased to 26s (643 frames) with a standard deviation
of 21s (535 frames), or 1.05+£0.87% of the total time.

NL. The mean noise level in predicted sequences was four times smaller than in
the VO study. On average the noise level reached only 4.16% of the total classi-
fications and constituted 53.21% of all errors. Thus, the other part of the errors
(46.79%) occurred when transitioning to the next phase too early or too late.

Crar- In this study, the predicted sequences had less false transitions. Suchwise, 3
sequences had no noise in them and had a correct phase order. The average Cras
decreased to 1.13, showing an enhancement of robustness.

3.4 Error analysis

In order to better understand the source of misclassifications we conducted an
additional analysis. The results showed that 42.11% of all errors in the VO study
occurred because the HsMM observation vocabulary constructed from the train-
ing data did not contain signatures of tested samples. In 51.34% of the errors test
samples from different phases had the same signature. In the IO study, only 4.15%
of all errors were caused by the signature absence and 87.88% by the signatures
identity. For the VI study the error distribution was 78.01% and 18.57% respec-
tively. Other errors were probably caused by the HsMM itself, when the phase
duration in the test sequence differed a lot from those in the training sequences.

4 Discussion

Detection of surgical workflow is an important issue requiring a relevant approach
and a rigorous validation. In this paper we proposed and validated a novel method
dedicated to the real-time segmentation and recognition of surgical phases. The
results of the work are discussed below.

4.1 Input data impact

A large set of possible signals collected in the OR can be used for workflow de-
tection. Different signal combinations should be investigated. In this work we pro-
posed a method based on visual or/and surgical instrument information. As shown
by our experiments, the union of both data types strongly enhances the perfor-
mance of the method. It allows a better recognition (i.e. higher accuracy), more
homogeneous detections (i.e. lower standard deviation) and a better prediction of
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transitional moments significantly reducing the time delay. This also eliminates a
large part of the noise which gives a more correct sequential order. From section 3.4
it is clear that information combination enables the construction of descriptions
better reflecting the difference between phases (only 18.57% of error are caused by
the descriptions similarity). Video can capture particularities of each phase which
can be expressed in terms of features, but the transitional moments are hard to
recognize due to a strong resemblance of border frames. That is why the ATD
in the VO study is twice bigger compared to the IO study (1min 6s vs 32s). In-
strument signals enable a better detection of transitional moments, because the
beginning of a new phase is often defined by a change of employed instruments.
However, use of identical sets of instruments during different phases leads to false
detections. Videos and binary signals of surgical tools usage turned out to be a
complementary information correcting weaknesses of each other.

Although the IO method gives better results than VO (78.85% of accuracy over
68.10%), a small set of possible instrument combinations and their multiple use
in different phases limits its individual application regardless the chosen classifier.
Developing new image features, in contrast, can extend discriminative force of
the method. Furthermore, in case of the IO method the phase classification result
depends on the instrument information validity. In this work information about
instrument use was provided within manual annotation files, meaning the ground
truth. For real on-line applications it should come from sensors installed on the
instruments, or the surgical tools must be automatically segmented and recognized
from images using approaches like [4].

4.2 Methodology improvements

The data description process has a major impact on the results. According to our
experiments, a global visual description is not enough (giving a precision of 72%
in the VO study) to confidently classify images from videos into surgical phases.
In this work we applied only standard visual features allowing fast computation in
order to save the generic side of the approach and real-time speed. More elaborate
features might improve the recognition capacity. In the case of the IO method,
data descriptions in form of instrument vector are not diverse enough to be solely
used as input. A large part of classification errors (87.88%) is related to this factor.
Thus, the instrument information should be always complemented with another
source of data to create more complex phase descriptions. The overall approach
stays fairly flexible to be adapted to a new input data type or data description
mechanism. Thereby, other signals from the OR and their combinations should
be tested as well. Moreover, an enlargement of the training dataset would reduce
classification errors by expanding the observation vocabulary of the HsMM. Also,
for off-line applications a part of the noise can be eliminated in post-filtering.

4.3 Application to context-aware systems
When developing methods which end-goal is an integrated use inside the OR,

defining a sufficient level of accuracy can be problematic. Always being able to
perform a perfect segmentation is almost impossible knowing that no definite or
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objective border between phases exists. The more important question in this case is
“What detection delay is acceptable for a particular application?”. In our paper we
demonstrated that the performance of the approach could be estimated differently
depending on the targeted application and existing needs. This shows how close
the system is to a real clinical application.

Finally, we would like to emphasise the strongest advantage of this approach:
its generality and absence of any a priori knowledge or assumptions. There is no
need to segment a particular region of interest or anatomical structure. It requires
videos and/or instruments usage signals only, making it purely data-driven. Both
can be acquired regardless the surgery type. The method can be used for on-line
detection as it can deliver a classification decision each second in real-time. All
this allows believing that the method could be applied to any surgical operation
as a part of a context-aware system.

5 Conclusion

In order to better assist the surgical stuff inside the OR, a need of context-aware
systems, accurately identifying surgical workflow, appeared. The method proposed
in this paper automatically segments and recognizes surgical phases from videos
and instrument usage signals in real-time. It was validated on endoscopic data
using standard performance scores and novel metrics measuring detection time
delay, noise and coefficient of transitional moments. With visual information only
the system reached 68.10% of accuracy, whereas instrument usage signals provided
78.95%. The accuracy increased to 88.93% when using a combination of both
signals as input. That shows a strong need to combine input signals in order to
improve method performances.
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