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1. Description of the Supplementary Material

The archive texton_noise_sup_mat.zip contains

• This pdf supplementary file texton_noise_sup_mat.pdf
• The video texton_noise_video.mp4 that illustrates the

OpenGL implementation and the on-the-fly anisotropic filtering.
• The source code folder codes.

1.1. Description of the Publicly Available Source Code

The source code folder codes contains two folders
compute_texton, display_texton_noise and one
readme.txt file. The analysis-synthesis pipeline of the texton
noise can be simply followed by running the bash commands
proposed in readme.txt.

The folder compute_texton contains the Matlab functions
required to compute the texton associated to a given exemplar tex-
ture. In particular:

• The function tn_compute_texton.m computes the texton
associated to one particular exemplar.
• The script scr_compute_all_textons.m com-

putes all the textons for the textures given in the folder
compute_texton/input_textures.
• All the textures shown in the paper are given in
compute_texton/input_textures/.

The textons are written in files having the extension .texton .

The folder display_texton_noise contains the OpenGL
sources required to sample and display the texton noise associated
to a given texton. These sources must be compiled before execu-
tion using the provided Makefile. The user interface allows for
changing the direction of the square, changing the mean number of
impacts of the noise as well as its scale. It also enables to turn on
and off the anisotropic filtering so that users can see the immediate
benefit of this antialisaing procedure.

2. Details Regarding Color Texton Noise

2.1. Computation of Color Texton Interpolation Coefficients

As shown in [GGM11], the proper spectral constraint for color
ADSN synthesis is not only that the Fourier spectrum of each

channel is conserved but also that the relative phase shift between
color channels is conserved. More precisely, given a color image
uuu = (uR,uG,uB)

T ∈ RΩ×3let us define its associated normalized
version

tttuuu =
1√
|Ω|

(uuu−mean(uuu)), (1)

(where the mean(uuu) = (mean(uR),mean(uG),mean(uB))
T ), and

t̃ttuuu(k) = tttuuu(−k)T . Another normalized image tttvvv with same mean
corresponds to the same Gaussian texture as uuu if and only if
tttuuu ∗ t̃ttuuu = tttvvv ∗ t̃ttvvv where

tttuuu ∗ t̃ttuuu(k) = ∑
l∈Ω

tttuuu(l)tttuuu(k+ l)T ∈ R3×3.

A straightforward Fourier analysis shows that this is possible if
and only if for all frequencies ξ, the DFT coefficient t̂ttvvv(ξ) be-

longs to the circle
{

eiθt̂ttuuu(ξ), θ ∈ [0,2π)
}

. The projection onto this

circle of a general Fourier coefficient t̂ttvvv(ξ) ∈ C3 is obtained for

eiθ =
t̂ttuuu(ξ)∗t̂ttvvv(ξ)
|t̂ttuuu(ξ)∗t̂ttvvv(ξ)|

where ∗ denotes the conjugate transpose of

a complex vector (see the appendix of [TGP14] or Remark 2.1.3
of [Lec15]). Hence, to compute the interpolation coefficients ααα as-
sociated with uuu, the spectral projection of Algorithm 1 becomes

α̂αα← 1√
b̂

t̂tt∗uα̂αα∣∣t̂tt∗uuuα̂αα
∣∣ t̂ttuuu.

2.2. Color Correction

The cross-correlation matrix of the input image uuu is the 3×3 matrix
tttuuu ∗ t̃ttuuu(0), while the channel covariance matrix of the color texton
noise gλ is

Γggg = E(gggλ(0)gggλ(0)
T ) = ∑

k∈Sb

b(k) ∑
l∈S

ααα(l)αααT (l + k) ∈ R3×3,

where S is the support of ααα and Sb = {−1,0,1}2 is the support
of b. The diagonal coefficients of these two matrices are the vari-
ance of each RGB channel while the off-diagonal coefficients are
the cross-correlations between channels. These correlations are im-
portant perceptually and ideally we want the two matrices Γuuu and
Γggg to be equal. However, due to the support projection that puts
some coefficients to zero, the variance of each color channel is
always smaller than the one of the original image. This loss of
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Figure 1: Color correction of an RGB texton. Top: input Gaussian
texture; bottom left: texton without color correction and associated
noise; bottom right: color corrected texton and associated noise.
Remark that the color content of the second noise is closer to the
one of the input texture.

variance translates visually into textures with less contrast and is
not desirable. We thus perform the linear color correction proposed
in [GLM14, DMR15] once the coefficients are computed:

∀k ∈ S, ααα(k)← SuuuS−1
ggg ααα(k)

where Suuu = Γ
1
2
uuu and Sggg = Γ

1
2
ggg are the unique positive semidefinite

square root matrices of Γuuu and Γggg. This linear correction ensures
that the covariance of the color texton noise gggλ is equal to the cross-
correlation of the original texture uuu. Figure 1 illustrates the effect
of this color correction. Although the visual change due to color
correction is often not as noticeable as for the example of Figure 1,
color correction is applied to all the results of the paper.

3. Comparison

3.1. Comparison with Noise by Example Methods

We compare texton noise results with Gabor noise by exam-
ple [GLLD12] and Local Random Phase noise [GSV∗14] in Fig-
ure 2. Texton noise visually reproduces the Gaussian version of
any texture with a fast parameter-free analysis (see Algorithm 1 in
the paper) and a faster evaluation algorithm. As can be seen with
the last two rows of Figure 2, texton noise gives poor results when
the input texture is not Gaussian. As said in the paper, texton noise
is strictly limited to Gaussian textures, and thus cannot produce
more structured textures contrary to LRP noise [GSV∗14]. Hence,
texton noise improves significantly the state of the art for noise by
example applied to Gaussian textures, while LRP noise remains the
unchallenged state of the art for the noise by example for structured
textures.

3.2. Comparison with Image Quilting

We compare our results with the ones of image quilting [EF01].
Image quilting is a patch-based texture synthesis algorithm that is
close to a tiling method, with the additional refinement that tile bor-
ders are merged seamlessly by computing an optimal boundary cut
(using linear programming). This procedure generally gives better
or similar results than the classical tiling methods discussed in Sec-
tion 2.3 of the paper.

The results presented in Figure 3 have been obtained using the
on-line demo associated to the preprint paper [RG16]. As one can
see, image Quilting produces good results but is prone to repetitions
(verbatim copy) and sometimes growing garbage (see the left side
of the wood texture), as highlighted by the produced coordinate
maps (see [RG16] for a more complete discussion on the limita-
tions of the algorithm). With the Gaussian random fields approach
of texton noise, such exact repetitions cannot occur and the result-
ing texture is by construction stationary, that is, statistically invari-
ant by translation. Of course, in addition, texton noise produces a
noise that is defined in the continuous domain R2 and not only on a
pixel grid. However, once again, texton noise only produces Gaus-
sian texture and cannot handle the rich variety of macro-textures
that image quilting can reproduce.

4. Discussion Regarding Bilinear Interpolation

Let us now discuss the choice of the use of bilinear interpolation
for texton noise.

4.1. Absence of Bilinear Interpolation Artefacts

The goal of this section is to stress that texton noise does not
suffer from bilinear blocky artefacts. Blocky artefacts are present
when zooming in a bilinearly interpolated image. However, by con-
struction texton noise is obtained by summing around 30 such im-
ages that are randomly translated in the continuous domain. Conse-
quently the blocky artefacts of each texton are not aligned and are
no more visible (in the noise no individual texton is discernible). As
illustrated by Figure 4, the accumulation of unaligned blocky arte-
facts only results in slight subpixel horizontal and vertical artefacts
when zooming in. This slight artefact can be explained by the fact
that the covariance of the Gaussian random field is an interpolation
with the cubic spline kernel that is separable, and thus favors the
horizontal and vertical directions.

4.2. Using Higher Order Interpolation

The whole analysis of Section 4 relies on very few hypotheses on
the interpolation kernel ψ, namely that ψ is symmetric at the ori-
gin (ψ̃ = ψ) and its integral is 1. This is satisfied by any BBB-spline
interpolation kernel. One can thus wonder if it would be legitimate
to use BBB-spline interpolation with an order different from 1.

For BBB-spline interpolation of order 0, that is, nearest neighbor
interpolation, one has b̂ = 1, and thus the texton coefficients α are
exactly equal to the discrete “synthesis oriented texton” recently in-
troduced in [GLM14]. However, using nearest neighbor interpola-
tion is not satisfying for the noise generation since the obtained tex-
tures present grid discontinuities along the texton coefficient grid
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Figure 2: Comparison with noise by example methods: Comparison of texton noise with Gabor noise by example [GLLD12] and local
random phase noise [GSV∗14] (with random phase and structured noise). Observe that texton noise reproduces the Gaussian version of all
textures and that it gives results as good as Gabor noise by example and LRP while being respectively two and one order of magnitude faster
than these methods.

while continuity is generally a strict requirement for a procedural
noise function.

Figure 5 presents texton noise simulation with different inter-
polation orders k. As one can observe, when k increases, the noise
appears smoother since BBB-spline interpolation kernel of order k pro-
duces images that are continuous and k− 1 times differentiable.
One can notice that for irregular textures (like the second one of
Figure 5) and interpolation orders k > 1, ringing artifacts may ap-
pear in the output noise, whereas this is not the case for k = 1 (that
is, bilinear interpolation, the interpolation used in the paper). This
experiment thus raises a win-win situation since on one hand bilin-
ear interpolation gives best visual results and on another hand it is
natively supported by standard GPU texture fetching routines and
accompanied with hardware solution for filtering. However, using

texton noise with higher interpolation order may be of interest for
certain applications of procedural noise where regularity is crucial,
such as surfaces bumps with continuous normals.
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Figure 3: Comparison with image quilting [EF01]: From left to right: Input, coordinate map of the input, texton noise on a twice larger
domain, image quilting results on a twice larger pixel grid, and synthesis map to define the image quilting result. Image quilting can be used
to generate various textures, and most particularly macro-textures. When used with Gaussian textures, the results often suffer from verbatim
copy and sometimes growing garbage due to the raster scan order, while texton noise does not.
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Figure 4: Absence of bilinear interpolation artefacts: First row: A bilinearly interpolated texton with a subsampling of factor 20 (left)
and corresponding texton noise at the same scale (right); Second row: close-up views of the center of both images. Although an individual
texton present the usual bilinear interpolation “blocky” artefacts, texton noise does not present the same artefacts since the numerous textons
summed to obtained the noise are not aligned.
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Figure 5: Influence of interpolation order: In this figure we compare texton noise with interpolation order k = 0,1,3,5. All images have the
same scale than the input 128×128 images with a subsampling of a factor 20. As expected, directional artifacts appear with k = 0 because
of the texton grid discontinuity. Also, for the example of the second row, ringing artifacts are slightly noticeable for k = 3 or k = 5 (please
zoom in to observe the artefacts).
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