
HAL Id: hal-01299280
https://hal.science/hal-01299280v1

Submitted on 16 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A quadratic complexity eigenspace technique for blind
SIMO channel identification
Houcem Gazzah, Jean-Pierre Delmas

To cite this version:
Houcem Gazzah, Jean-Pierre Delmas. A quadratic complexity eigenspace technique for blind SIMO
channel identification. ISSSE 2012 : International Symposium on Signals, Systems and Electronics,
Oct 2012, Potsdam, Germany. pp.1 - 5, �10.1109/ISSSE.2012.6374337�. �hal-01299280�

https://hal.science/hal-01299280v1
https://hal.archives-ouvertes.fr


A QUADRATIC COMPLEXITY EIGENSPACE TECHNIQUE FOR BLIND SIMO CHANNEL

IDENTIFICATION

Houcem Gazzah

Dept. of Elec. and Computer Engineering

University of Sharjah, 27272, UAE

hgazzah@sharjah.ac.ae

Jean-Pierre Delmas

Telecom SudParis, UMR CNRS 5157

91011 Evry, France

jean-pierre.delmas@it-sudparis.eu

ABSTRACT

Eigenspace techniques are very popular techniques for blind

channel identification, but are ones with a large complexity,

cubic in the channel order. The newly introduced channel

compaction is a signal processing technique that consists

in using small-sized linear transformations to progressively

force to zero some of the channel coefficients. As such,

channel compaction was used to develop the first (and, up

to now, the only) blind channel equalization technique with

a quadratic complexity. In this paper, we apply blind com-

paction to develop a new blind identification technique, the

first to have a quadratic complexity. Simulation tests show

that the low-complexity compaction-based blind identifica-

tion performs quite similarly to the most referenced existing

eigenspace blind identification techniques.

1. INTRODUCTION

When input is known, estimating the impulse response of

an M -order linear channel is often conducted using the well

known Levinson algorithm [1, Chap. 11] whose complexity

is quadratic, i.e. in O(M2), thanks to the Toeplitz-structure

of the data matrix. When input is not known, the so-called

blind identification relies only on the channel outputs. This

is an interesting situation in communication systems because

more bandwidth is made available to the user. Algorithms to

achieve blind identification are based on high-order statistics

(HOS), or, more preferably, on second-order statistics (SOS)

that are much easier to estimate. They are used by the so-

called eigenspace (or subspace) techniques to built quadratic

cost functions whose minimization does not suffer from local

convergence problems, as happens with HOS-based tech-

niques [2]. On the negative side, eigenspace techniques

assume the receiver to use many antennas and/or sample data

at a rate higher than the baud-rate [3]. More seriously, com-

plexity is in O(M3), as a direct consequence of inversion,

pseudo-inversion, or (eigen/singular) vector decomposition

(EVD/SVD) typically performed by SOS techniques.

It is only recently that a blind eigenspace channel process-

ing technique was proposed that has a quadratic complexity.

It is based on the idea, called channel compaction, that con-

sists in finding an invertible linear transformation to force to

zero some leading and/or trailing coefficients of the channel

impulse response. These transformations are derived from the

correlation coefficients with large time lags. Such correlation

coefficients are rank-deficient matrices and depend on some

of the leading and/or trailing coefficients. A vector orthog-

onal to such a matrix is also orthogonal to these particular

channel taps. This elementary step serves as the starting point

to a low-complexity blind zero-forcing equalization technique

that progressively suppresses inter-symbol interference [4].

Reduction in complexity is very desired because M is

large for band-limited channels [5]. We propose a quadratic

complexity channel identification algorithm using the com-

paction principle. Since identification requires twice as much

iteration as equalization, error propagation is severe to the

point that estimation performance in realistic conditions may

be unpractical. An other reason is that we handle sub-blocks

of the correlation matrix that depend on the leading and trail-

ing channel coefficients, which are typically small for ban-

dlimited channels [5]. As such, these sub-blocks are difficult

to estimate in the presence of noise. As a solution, we propose

a channel output pre-processing step, with the objective of

rendering channel coefficients of comparable norm. This pre-

processing has low complexity, but shows dramatic impact on

identification performance, made, by this means, comparable

to what prevails for existing eigenspace techniques.

The paper is organized as follows. The multi-channel set-

ting and the associated observation model is detailed in Sec.

2. The identification algorithm is described in Sec. 3 and

some implementation issues are discussed in Sec. 4. Sim-

ulation results are displayed and discussed in Sec. 5 and a

conclusion is given in Sec. 6.

2. THE DATA MODEL

We adopt the well-known Single-Input Multiple-Output

(SIMO) channel where the transmitted data s(t) is col-

lected by a set of C antennas. It delivers a C-dim output

y(t)
def
= [y(1)(t), · · · , y(C)(t)]T , where y(c)(t) is the snapshot



collected by the c-th antenna at time index t. The propagation

from the transmitter to the c-th receiving antenna is mod-

eled as an impulse response h(c) = [h
(c)
0 , · · · , h(c)

M ]T where

M is the largest order among all impulses responses h(c),

c = 1, · · · , C. The observation model is

y(t) = H [s(t), · · · , s(t − M)]T + n(t)
def
= x(t) + n(t).

In H
def
= [h0, · · · ,hM ], the (k + 1)-th column

hk
def
=

[

h
(1)
k , · · · , h(C)

k

]T

is the k-th tap of the SIMO channel.

The noise vector n(t) is defined analogously to the output

vector y(t). We stack L successive outputs into the CL-dim

vector

yL(t)
def
=

[

yT (t) · · ·yT (t − L + 1)
]T

= TL {H} [s(t), · · · , s(t − M − L + 1)]
T

+ nL(t),

where TL {H} def
=









H 0 · · · 0

0 H · · · 0
. . .

0 · · · 0 H









is the CL × (M + L)

channel filtering matrix, 0 is C-dim zero vector, and nL(t)
is defined similarly as yL(t). We define σ2

s as the power

of the source symbols and σ2
n as the power of the noise

snapshots. Then, the channel correlation matrices R
y
L

def
=

E
[

yL(t)yH
L (t)

]

and RL
def
= E

[

xL(t)xH
L (t)

]

verify

R
y
L = RL + σ2

nI,

RL = σ2
sTL {H}TL {H}H

.

The above holds assuming (as commonly the case in SOS-

based techniques [3, 6, 7]) that we have i.i.d., zero-mean

source symbols uncorrelated from the white noise. The block

Toeplitz-structured correlation matrix RL is made of correla-

tion coefficients Γk
def
= E

[

x(t + k)xH(t)
]

, possibly not zero

for k = 0, · · · , M . They are identical to the noise-corrupted

correlation coefficients Γ
y
k

def
= E

[

y(t + k)yH(t)
]

except for

Γ
y
0 = Γ0 + σ2

nI.

3. THEORETICAL DEVELOPMENT

The easy-to-obtain relationship

Γk = [hk, · · · ,hM ] [h0, · · · ,hM−k]
H

is useful to highlight some properties of the left and right ker-

nels of the opportunistically small-sized Γk. We can assume,

with probability one, that any C columns of H are linearly

independent so that the rank of Γk is equal to min{M − k +
1, C}. We assume, without any loss of generality, C to be

an even number. Blind channel compaction is based on the

kernel properties of the Γk that are rank-deficient, and in par-

ticular the one with rank C/2. Its left and right orthogonal

vectors will be used to built up an invertible transformation

matrix with interesting properties.

If M + 1 ≥ C/2, rank of ΓK is C/2 for K
def
=

M + 1 − C/2. SVD of ΓK allows one to obtain C/2
vectors left (resp. right) orthogonal to [hK , · · · ,hM ] (resp. to
[

h0, · · · ,hC/2−1

]

), that are stacked as columns of the matrix

U(1) (resp. V(1)). We assume

M + 1 ≥ C,

so that C/2 − 1 < K . Consequently, [hK , · · · ,hM ] and
[

h0, · · · ,hC/2−1

]

do not have any column in common. As

a result, kernels U(1) and V(1) are not related to each other.

Together, they form an invertible matrix
[

U(1),V(1)
]H

by

means of which the SIMO channel is converted into a zero-

padded one

[

U(1),V(1)
]H

H
def
=

[

Hleft,0C/2,C/2

0C/2,C/2,H
right

]

, (1)

where Hleft def
=

(

U(1)
)H

[h0 · · ·hK−1] and Hright def
=

(

V(1)
)H [

hC/2 · · ·hM

]

are C/2 × K . Individual rows in

(1) have order K−1 but, since none of the columns is strictly

zero, the right hand side of (1) does not represent a channel

with a smaller (than M ) order. A few steps are needed before

we can identify such a channel.

By using [4, Eq. (3)], we can prove that

[

0CM,C/2, ICM ,0CM,C/2

]

(

I⊗
[

U(1),V(1)
]H

)

RM+1

(

I ⊗
[

U(1),V(1)
])

[

0CM,C/2, ICM ,0
]T

= TM

{

H(1)
}

TH
M

{

H(1)
}

,

where H(1) def
=

[

0C/2,C/2−1,H
right

Hleft,0C/2,C/2−1

]

is an (M − 1)-order

SIMO channel in the strict sense. Clearly, we can manipulate

the SOS of the original M -order SIMO to obtain the SOS of

an equivalent (M − 1)-order SIMO channel. Furthermore,

the SOS of the new channel can be obtained from those of the

original one be means of the relationship [4]

[

Γ
(1)
0 , · · · ,Γ(1)

M−1

]

=

[[

(

V(1)
)H

Γ0
(

U(1)
)H

ΓH
1

]

V(1),

[

(

V(1)
)H

Γ1
(

U(1)
)H

Γ0

]

[

U(1),V(1)
]

, · · · ,
[

(

V(1)
)H

ΓM
(

U(1)
)H

ΓM−1

]

U(1)

]

We proceed iteratively and obtain, each time, an equiv-

alent SIMO channel with an order decremented by 1. For

instance, the next step is about transforming the (M − 1)-
order SIMO channel H(1) into an equivalent (M − 2)-order



SIMO channel H(2). This time, compaction does not re-

quire any SOS-derived transformation. Simple lines and

columns permutation leads to a relationship similar to (1),

see [4]. Progressively, we form a sequence of SIMO chan-

nels H(1), · · ·H(M) with a number of coefficients, M, · · · , 1,

respectively. These channels are not directly accessible but

their respective SOS Γ
(i)
0 , · · · ,Γ(i)

M−i, i = 1, · · · , M . The

very last one corresponds to a zero order channel and its only

non-zero correlation coefficient is

Γ
(M)
0

def
= H(M)

(

H(M)
)H

, (2)

where H(M) is, actually, a C-dim vector. EVD of Γ
(M)
0 al-

lows us to estimate H(M) up to an unknown multiplicative

constant. Such ambiguity is inherent to blind SIMO identi-

fication. Once H(M) is estimated, H(M−1), . . . , H(1) and,

ultimately, H are reconstructed, up to the same ambiguity.

4. DISCUSSION

4.1. Pre-processing

A weak point is that the proposed algorithm starts with the

SVD of ΓK , where K is slightly lower than M . This ΓK

is function of a few leading and trailing channel coefficients.

For band-limited channels, such coefficients are very likely to

be weak [5] so that the estimation of ΓK is sensitive to noise

and its SVD is badly-conditioned.

Hence, prior to applying the above blind identification

procedure, we propose a pre-processing step to convert the

original SIMO channel, for which coefficients may have very

unequal magnitude, into an equivalent SIMO channel for

which they are bounded. This pre-processing step is not com-

putation consuming, nor sensitive to noise because it is based

on Γ0 which, in contrast, is full column rank and highly likely

to be well-conditioned.

Having assumed C ≤ M + 1, the SVD of H is given by

H = U[D,0]VH , where U and V are unitary matrices and

D is diagonal. Both U and D can be blindly estimated from

the EVD of Γ0 = HHH = UD2UH . Clearly, the following

transformation D−1UH leads to an equivalent SIMO channel

[I,0]VH . The newly obtained SIMO channel has the same

order M but its coefficients are upper-bounded. As a conse-

quence of V being unitary, the magnitude of each column of

[I,0]VH is smaller than
√

C/(M + 1). This pre-processing

will show a dramatic impact on the performance of the pro-

posed algorithm.

4.2. Algorithm Description

Consider now sample estimates of E
[

y(n)yH (n − k)
]

, k =
0, · · · , M obtained from a finite number of snapshots y(t).
These estimates are still denoted by Γk. The identification

algorithm is as follows:

1. Removing the noise contribution: Noise power σ2
n

is estimated using the low-complexity procedure de-

scribed in [4, Sec. V-B], by σ̂2
n defined as the average of

the C−1 lowest eigenvalues of Γ0+
∑M

k=1

[

Γk + ΓH
k

]

.

Update Γ0 as Γ0 − σ̂2
nI.

2. Pre-processing: Perform EVD of the Γ0 to obtain

eigenvectors q1, · · · ,qC and their respective eigenval-

ues q1, . . . , qC . Initialize:

W(0) = Diag(1/
√

q1, . . . , 1/
√

qC) [q1, · · · ,qC ]
H

,

Γ
(0)
0 = I,

Γ
(0)
k = W(0)Γk

(

W(0)
)H

, k = 1, · · · , M , and

i = 0.

3. Forward mode

While i < M , repeat:

(a) Set m = M − i and

k = max {m + 1 − C/2, 1 + ⌊m/2⌋}.

(b) Perform SVD of Γ
(i)
k . Let uj (resp. vj) be the left

(resp. right) unit-norm singular vector associated

with the j-th lowest singular value. Built the C-

square matrix

W(i+1) =
[

u1, · · · ,uC/2,v1, · · · ,vC/2

]H
.

(c) Calculate the inverse
[

W(i+1)
]

−1
of W(i+1).

(d) Calculate Γ
(i+1)
0 , · · · ,Γ(i+1)

m−1 as follows:

Γ
(i+1)
j =

[[

(

V(i+1)
)H

Γ
(i)
j

(

U(i+1)
)H

Γ
(i)
j−1

]

V(i),

[

(

V(i+1)
)H

Γ
(i)
j+1

(

U(i+1)
)H

Γ
(i)
j

]

U(i)

]

,

for j = 0, · · · , m − 1 and increment i by 1.

(e) Repeat m − k times:

i. Set W(i) =

[

0 IC/2

IC/2 0

]

.

ii. Same as step 3d.

4. Backward mode

(a) Initialize Ĥ(M) as the eigenvector associated with

the i-th largest eigenvalue of Γ
(M)
0 .

(b) For i = M − 1, · · · , 0, calculate

Ĥ(i) =
[

W(i+1)
]

−1
[

Hdown,0C/2,C1

0C/2,C1
,Hup

]

where

Hup and Hdown are made of, respectively, the

first and last C/2 rows of H(i+1).

(c) Calculate
[

W(0)
]

−1
Ĥ(0) as the estimate of H,

up to an unknown multiplicative constant.



4.3. Identifiability

Channel identifiability is guaranteed at the condition that all

transformation matrices W(i) are full rank. As explained ear-

lier, the condition K ≥ (M + 1)/2 is necessary and suffi-

cient (with probability 1). In comparison, existing SOS-based

techniques require a full column-rank channel filtering ma-

trix, i.e. a minimum-phase SIMO impulse response: The (z-

transforms of the) sub-channels impulse responses should not

have common zeros. In practice, this can be reasonably as-

sumed to be true (with probability 1) [3].

Nevertheless, we are tempted to study the behavior of the

proposed technique applied to non-minimum-phase SIMO

channels. Because each impulse response of a sub-channel of

H(i) is a linear combination of those of H(i−1), every com-

mon zero to the latter will be a common zero of the former.

As the length of the compacted channel decreases, at some

stage of the algorithm, for the newly computed H(i), all (z-

transforms of all) sub-channels impulse responses are made

of common zeros only, i.e. rows of H(i) are identical up to

some multiplicative constants. As a consequence, columns of

H(i) are co-linear so that rank-deficient Γ
(i)
k are Hermitian

and, so, have identical left and right kernels, which then,

violates the identifiability condition.

As a conclusion, similarly as for existing SOS-based tech-

niques, the proposed one fails to identify a minimum-phase

channel. However, the algorithm becomes instable only at the

very last iterations when the compacted SIMO channel is, ac-

tually, a SISO channel corresponding to the part common to

all sub-channels. This is a clear advantage of the proposed

algorithm. In particular, this means that the proposed algo-

rithm can be claimed to be the only eigenspace technique of

channel shortening (examples are [8, 9]) capable of handling

non-minimum-phase channels.

4.4. Computation Complexity

First, notice that calculations involving matrices W(i) ob-

tained in (3(e)i) do not contribute to complexity since they

merely imply row/column permutations. Consequently, only

steps (3b), (3c), (3d) and (4b) [only when the involved W(i)

was computed in (3b) and not in (3(e)i)] are taken into con-

sideration for the operations count. For practical reasons, it

is plausible to assume that the number C of sensors is limited

and that only the channel order M is eventually large. As a

consequence, steps in the algorithm that involve SVDs, EVDs

and inversions of C-square matrices are not what contribute

the most to the computation burden because each is executed

a maximum of M times.

If M is large enough (compared to C), k in step (3a) is

equal to m + 1 − C/2 except for the last values taken by the

decreasing m. Consequently, successive values taken by m
at step (3) are M + 1 − C/2, M + 1 − C, · · · so that the

loop (3) is executed 2M/C times approximately, for large

M . The computation load is mainly due to matrix multiplica-

tions in steps (3d) and (4b). We estimate it, bearing in mind

that the product of m1 × m2 matrix by an m2 × m3 ma-

trix results in O(2m1m2m3) flops [10]. On one hand, step

(3d) involves O(6C3(m + 1)) flops, where m = M − iC/2
and i = 0, · · · , 2M/C, hence, leading to a load of approx-

imately O(6C2M2). On the other hand, step (4b) involves

O(2C2(M − i)) flops for i + 1 = 1, 1 + C/2, 1 + C, · · · , M
leading to a computation load of of O(2CM2). The total

computation load is, hence, given by O(2(1 + 3C)CM2),
which is quadratic in M , as claimed.

5. SIMULATIONS

A series of simulations has been conducted to compare the

proposed algorithm to the main eigenspace blind identi-

fication techniques. We use the SIMO channel from [6]

with C = 4 sub-channels and an order M = 4. It is

driven by unit-variance i.i.d. 4-QAM symbols and cor-

rupted by additive white Gaussian noise. The channel ob-

servation SNR is defined as E
[

‖x(t)‖2
]

/E
[

‖n(t)‖2
]

=

σ2
s

∑M
m=0 ‖hm‖2/

(

C σ2
n

)

.

A channel estimate ĥ approximates the exact impulse re-

sponse h
def
=

[

hT
0 , · · · ,hT

M

]T
, up to a scaling and rotation

ambiguity. The estimation accuracy is evaluated in terms of

the identification Mean Square Error (MSE) defined [11] as

1 −





∣

∣

∣hH ĥ

∣

∣

∣

‖h‖‖ĥ‖





2

.

We tested the proposed technique in comparison with some

among the most referenced eigenspace blind identification

algorithms, namely, the Sub-Space (SS) technique [6], the

Outer Product Decomposition (OPD) [7] technique and the

Linear Prediction (LP) technique [12].

Identification results, averaged over 100 Monte Carlo

runs, are reported in Fig. 1 as function of an increasing num-

ber of snapshots. They show that the proposed technique

is capable of estimating the channel response with an ac-

curacy comparable to that of the existing algorithms. The

pre-processing step described in Sec. 4.1 is very effective

in improving the performance of the proposed algorithm.

The gap to the existing algorithms is reduced when the num-

ber of snapshots increases. Results reported in [4] show

compaction-based equalization to perform very closely to

existing algorithms. This contrasts with blind channel iden-

tification, where channel compaction is clearly less efficient.

In fact, compaction-based blind equalization is a forward-

only procedure, while compaction-based blind identification

is a forward-backward procedure, resulting in twice as many

steps and, hence, more error propagation occurs.
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Fig. 1. Identification MSE as function of the number of snapshots.

6. CONCLUSION

Using the recently-introduced principle of channel com-

paction [4], we develop an blind channel identification al-

gorithm with an unprecedented quadratic complexity, in

O(M2), where M is the channel order. In the first step

(forward mode), channel order is reduced progressively from

M to zero, and channel SOS are updated in the process. The

response of the zero-order channel is trivially estimated from

the channel SOS. Then, a second step (backward mode) is

started where the channel taps are progressively reconstructed

until reaching (an estimate of) the original (physical) channel.

Simulation tests are conducted to prove the efficiency of the

proposed method under realistic observation conditions.
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